Lanthanum-Modified Phosphogypsum Red Mud Composite for the Co-Adsorption of Cadmium and Arsenic: Mechanism Study and Soil Remediation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Adsorbents
2.3. Adsorption Experiments
2.4. Characterization
2.5. Soil Incubation Experiments
2.6. Statistical Analysis
3. Results
3.1. SEM
3.2. N2 Adsorption/Desorption Isotherm
3.3. XRD
3.4. FTIR
3.5. Removal Rate of Cd(II)/As(V) before and after Adsorbent Modification
3.6. Factors Affecting the Adsorption of Cd(II)/As(V)
3.6.1. Dosage of L-PR
3.6.2. pH
3.6.3. Adsorption Isotherm
3.6.4. Adsorption Kinetics
3.7. Possible Mechanism of Adsorption of Cd(II)/As(V) by L-PR
3.8. Effects of Various Treatments on As and Cd Availability and Fractions in Soil
3.8.1. Availability of Cd and As
3.8.2. Fractions of Cd and As
4. Discussion
4.1. Properties of L-PR
4.2. Adsorption Behavior of Cd(II)/As(V) on L-PR
4.3. Main Mechanism of Cd(II)/As(V) Adsorption by L-PR
4.4. Applicability of L-PR in Cd-As Complex-Contaminated Soil
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.S.; Kim, Y.J.; Seo, Y.R. An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. J. Cancer Prev. 2015, 20, 232–240. [Google Scholar] [CrossRef]
- Deng, H.; Tu, Y.; Wang, H.; Wang, Z.; Li, Y.; Chai, L.; Zhang, W.; Lin, Z. Environmental behavior, human health effect, and pollution control of heavy metal(loid)s toward full life cycle processes. Eco-Environ. Health 2022, 1, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-L.; Zhou, J.; Li, M.; Hu, Y.-m.; Liu, X.; Zhou, J. Study of the bioavailability of heavy metals from atmospheric deposition on the soil-pakchoi (Brassica chinensis L.) system. J. Hazard. Mater. 2019, 362, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, X.; Wang, P.; Wang, Z.; Li, M.; Zhao, F.-J. Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China. Sci. Total Environ. 2018, 639, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.D.; Kim, M.-S. Interactions between cadmium, lead, mercury, and arsenic and depression: A molecular mechanism involved. J. Affect. Disord. 2023, 327, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.X.; Guan, Y.F.; Su, Z.X.; Tao, L. Interfacial Reactions between As(V) and Cd(II) Co-adsorption onto Various Mineral Surfaces. Acta Pedol. Sin. 2022, 59, 1583–1593. [Google Scholar]
- Duan, G.; Shao, G.; Tang, Z.; Chen, H.; Wang, B.; Tang, Z.; Yang, Y.; Liu, Y.; Zhao, F.-J. Genotypic and Environmental Variations in Grain Cadmium and Arsenic Concentrations Among a Panel of High Yielding Rice Cultivars. Rice 2017, 10, 9. [Google Scholar] [CrossRef]
- Yuan, Z.H.; Li, Q.H.; Ma, X.Y.; Han, M.S. Assessment of heavy metals contamination and water quality characterization in the Nanming River, Guizhou Province. Environ. Geochem. Health 2021, 43, 1273–1286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.L.; Yao, J.F.; Liu, Y.L.; Zhang, W.Y.; Yin, X.F.; Tie, B.Q. Effect of Combined Application of an Enterobacter and Sulfur Fertilizer on Cadmium and Arsenic Accumulation in Rice. Environ. Sci. 2023, 44, 7036–7044. [Google Scholar] [CrossRef]
- Chen, N.C.; Zheng, Y.J.; He, X.F.; Li, X.F.; Zhang, X.X. Analysis of the Report on the national general survey of soil contamination. J. Agro-Environ. Sci. 2017, 36, 1689–1692. [Google Scholar]
- Chen, Z.L.; Qiu, R.L.; Zhang, J.S. Removed Technolongy of Heavy Metal Pollution in Siol. Environ. Prot. 2002, 6, 21–23. [Google Scholar]
- Zeng, X.B.; Li, L.F.; Mei, X.R. Heavy Metal Content in Soils of Vegetable-growing Lands in China and Source Analysis. Sci. Agric. Sin. 2007, 40, 2507–2517. [Google Scholar]
- Chen, H.X.; Xu, F.N.; Chen, Z.Z.; Jiang, O.Y.; Gustave, W.; Tang, X.J. Arsenic and cadmium removal from water by a calcium-modified and starch-stabilized ferromanganese binary oxide. J. Environ. Sci. 2020, 96, 186–193. [Google Scholar] [CrossRef]
- Xu, X.; Luo, P.; Li, S.; Zhang, Q.; Sun, D. Distributions of Heavy Metals in Rice and Corn and Their Health Risk Assessment in Guizhou Province. Bull. Environ. Contam. Toxicol. 2022, 108, 926–935. [Google Scholar] [CrossRef]
- Xiong, Y.; Yang, Y.Q.; Li, M.Z.; Lu, S.J. Study on Comprehensive Utilization of Phosphogypsum. Res. Econ. Environ. Prot. 2018, 202, 33–34+37. [Google Scholar] [CrossRef]
- Zhou, B.; Zhu, H.; Xu, S.; Du, G.; Shi, S.; Liu, M.; Xing, F.; Ren, J. Effect of phosphogypsum on the properties of magnesium phosphate cement paste with low magnesium-to-phosphate ratio. Sci. Total Environ. 2021, 798, 149262. [Google Scholar] [CrossRef]
- Jovičević-Klug, M.; Souza Filho, I.R.; Springer, H.; Adam, C.; Raabe, D. Green steel from red mud through climate-neutral hydrogen plasma reduction. Nature 2024, 625, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Zhen, L.; Chen, H.; Wang, H.; Qi, Y.; Gao, L.; Zhang, S. Comprehensive utilization status and development suggestions of phosphogypsum in China. Phosphate Compd. Fertil. 2017, 32, 33–35. [Google Scholar]
- Liu, W.; Chen, X.; Li, W.; Yu, Y.; Yan, K. Environmental assessment, management and utilization of red mud in China. J. Clean. Prod. 2014, 84, 606–610. [Google Scholar] [CrossRef]
- Liu, G.; He, M.; Chen, H.; Rashad, A.M.; Liang, Y. Study on the curing conditions on the physico-mechanical and environmental performance of phosphogypsum-based artificial aggregates. Constr. Build. Mater. 2024, 415, 135030. [Google Scholar] [CrossRef]
- Xie, L.Q.; Zhang, T.A.; Lv, G.Z.; Yang, J.L.; Wang, Y.X. The effect of NaOH on the direct calcification–carbonation method for processing of Bayer process red mud. Green Process. Synth. 2017, 7, 546–551. [Google Scholar] [CrossRef]
- Kushwaha, S.S.; Kishan, D.; Chauhan, M.S.; Khetawath, S. Stabilization of Red mud using eko soil enzyme for highway embankment. Mater. Today Proc. 2018, 5, 20500–20512. [Google Scholar] [CrossRef]
- Yang, Y.H.; Shu, D.T.; Ning, P. Kinetics and thermodynamics of adsorption of Cu2+,Zn2+,Pb2+ and Cd2+ by modified phosphogypsum induced by microwave field. J. Cen. South Univ. 2013, 44, 2157–2164. [Google Scholar]
- Zhang, L.Z.; Zhang, Y.X.; Zhang, X.F.; Tan, X.M.; Lv, Z.H. Research Progress of Resource Utilization of Phosphogypsum in China. Conserv. Utili. Min. Res. 2019, 39, 14–18+92. [Google Scholar] [CrossRef]
- Wang, Y. Preparation and Properties of Lanthanum-Modified Adsorbents for Phosphorus Removal. Master’s Thesis, Beijing University of Chemical Technology, Beijing, China, 2021. [Google Scholar]
- Li, J.; Zu, Y.Q.; Li, G.; Sun, G.X. Mechanism of As(V) Removal from Water by Lanthanum and Cerium Modified Biochars. Environ. Sci. 2018, 39, 2211–2218. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, R.; Li, Y.; Liu, Y.; Wu, Y.; Chen, Y.; Zhang, J.; Chen, S.; Yin, H.; Zeng, Z.; et al. La(OH)3-modified magnetic CoFe2O4 nanocomposites: A novel adsorbent with highly efficient activity and reusability for phosphate removal. Colloids Surf. A Physicochem. Eng. Asp. 2020, 599, 124870. [Google Scholar] [CrossRef]
- GB 15618-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment the People’s Republic of China: Beijing, China, 2018.
- Mohammad, A.S.G. Study of the Adsorption Efficiency of an Eco-Friendly Carbohydrate Polymer for Contaminated Aqueous Solution by Organophosphorus Pesticide. Open J. Org. Polym. Mater. 2014, 4, 16–28. [Google Scholar]
- Huang, X.; Zhao, H.; Hu, X.; Liu, F.; Ji, P. Optimization of Preparation Technology for Modified Coal Fly Ash and Its Adsorption Properties for Cd2+. J. Hazard. Mater. 2020, 392, 122461. [Google Scholar] [CrossRef]
- Inyang, M.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.R.; Pullammanappallil, P.; Cao, X. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol. 2012, 110, 50–56. [Google Scholar] [CrossRef]
- Zhang, H.; Yue, X.; Li, F.; Xiao, R.; Zhang, Y.; Gu, D. Preparation of rice straw-derived biochar for efficient cadmium removal by modification of oxygen-containing functional groups. Sci. Total Environ. 2018, 631, 795–802. [Google Scholar] [CrossRef]
- Sahuquillo, A.; Rigol, A.; Rauret, G. Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends Anal. Chem. 2003, 22, 152–159. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Adriano, D.C. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 2001, 436, 309–323. [Google Scholar] [CrossRef]
- Fathollahzadeh, H.; Kaczala, F.; Bhatnagar, A.; Hogland, W. Speciation of metals in contaminated sediments from Oskarshamn Harbor, Oskarshamn, Sweden. Environ. Sci. Pollut. Res. 2014, 21, 2455–2464. [Google Scholar] [CrossRef] [PubMed]
- Ennaciri, Y.; Alaoui-Belghiti, H.E.; Bettach, M. Comparative study of K2SO4 production by wet conversion from phosphogypsum and synthetic gypsum. J. Mater. Res. Technol. 2019, 8, 2586–2596. [Google Scholar] [CrossRef]
- Yan, W.; Zeng, B.L.; Meng, J.; Wang, S.M.; Liang, S.W. Study on the Identification of Gypsum Fibrosum with FTIR. Spectrosc. Spectr. Anal. 2016, 36, 2098–2103. [Google Scholar]
- Li, C. Preparation and Application Atudy of Heavy Metal Adsorbents Based on Red Mud. Master’s Thesis, Guizhou University, Guiyang, China, 2021. [Google Scholar]
- Cao, J.L.; Yan, Z.L.; Deng, Q.F.; Yuan, Z.Y.; Zhang, Z.Y. Homogeneous precipitation method preparation of modified red mud supported Ni mesoporous catalysts for ammonia decomposition. Catal. Sci. Technol. 2014, 4, 361–368. [Google Scholar] [CrossRef]
- Cao, J.L.; Yan, Z.L.; Deng, Q.F.; Yan, W.; Yong, Y.Z. Mesoporous modified-red-mud supported Ni catalysts for ammonia decomposition to hydrogen. Int. J. Hydrog. Energy 2014, 39, 5747–5755. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Li, S.; Lin, C.; Liu, C. Feasibility of preparing red mud-based cementitious materials: Synergistic utilization of industrial solid waste, waste heat, and tail gas. J. Clean. Prod. 2020, 285, 124896. [Google Scholar] [CrossRef]
- Chen, M.X. Preparation of Lanthanum Modified Zeolite and Passivation Effect on Phosphorus in the Sediments of the River. Master’s Thesis, Guangzhou University, Guiyang, China, 2022. [Google Scholar]
- He, Y.P.; Yang, S.J. Application of BET Specific Surface Area Method in Materials Research. Adv. Fine Petrochem 2018, 19, 52–56. [Google Scholar] [CrossRef]
- Kam, S.K.; Kang, K.H.; Lee, M.G. Adsorption Characteristics of Acetone, Benzene and Methyl Mercaptan according to the Surface Chemistry and Pore Structure of Activated Carbons Prepared from Waste Citrus Peel in the Fixed Bed Adsorption Reactor. Appl. Chem. Eng. 2018, 29, 237–243. [Google Scholar]
- Anuar, S.A.; Isahak, W.N.R.W.; Masdar, M.S. Carbon nanoflake hybrid for biohydrogen CO2 capture: Breakthrough adsorption test. Int. J. Energy Res. 2020, 44, 3148–3159. [Google Scholar] [CrossRef]
- Wu, J.; Wang, T.; Wang, J.; Zhang, Y.; Pan, W.P. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Sci. Total Environ. 2020, 754, 142150. [Google Scholar] [CrossRef]
- Li, H.; Lin, H.; Liang, Y.; Feng, M.; Zhou, Z.; Liang, Z.; Lu, Y.; Zeng, H.; Chen, G. Simultaneous removal of cadmium(II) and arsenic(III) from aqueous solutions using pyrite-modified biochar: Effects and mechanisms. Chem. Eng. Res. Des. 2023, 200, 344–355. [Google Scholar] [CrossRef]
- Lin, S.; Yang, X.; Liu, L.; Li, A.; Qiu, G. Electrosorption of cadmium and arsenic from wastewaters using nitrogen-doped biochar: Mechanism and application. J. Environ. Manag. 2022, 301, 113921. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Q.; Yang, X.; Liu, L.; Luo, Y.; Tan, W.; Liu, C.; Dang, Z.; Qiu, G. Electrochemical adsorption of cadmium and arsenic by natural Fe-Mn nodules. J. Hazard. Mater. 2020, 390, 122165. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Song, Z.; Khan, Z.H.; Liu, X.; Qiu, W. Enhanced As(III) removal from aqueous solution by Fe-Mn-La-impregnated biochar composites. Sci. Total Environ. 2019, 686, 1185–1193. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, J.; Zhang, G.X. Enhanced arsenate removal by novel Fe-La composite (hydr)oxides synthesized via coprecipitation. Chem. Eng. J. 2014, 251, 69–79. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Ji, H.Y.; Lu, H.H.; Liu, Y.X.; Yang, R.Q.; He, L.L.; Yang, S.M. Simultaneous removal of Sb(III) and Cd(II) in water by adsorption onto a MnFe2O4–biochar nanocomposite. RSC Adv. 2018, 8, 3264–3273. [Google Scholar] [CrossRef]
- Ding, H.L.; Zhang, X.N.; Yang, H.; Luo, X.G.; Lin, X.Y. Highly efficient extraction of thorium from aqueous solution by fungal mycelium-based microspheres fabricated via immobilization. Chem. Eng. J. 2019, 368, 37–50. [Google Scholar] [CrossRef]
- Cai, T.; Du, H.; Liu, X.; Tie, B.; Zeng, Z. Insights into the removal of Cd and Pb from aqueous solutions by NaOH–EtOH-modified biochar. Environ. Technol. Innov. 2021, 24, 102031. [Google Scholar] [CrossRef]
- Bogusz, A.; Oleszczuk, P.; Dobrowolski, R. Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bioresour. Technol. 2015, 196, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Hanif, M.U.; Capareda, S.; Chang, Z.; Ai, Y. Copper(II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algae-dairy-manure and effect of KOH activation. J. Environ. Chem. Eng. 2015, 4, 365–372. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; Da Silva, E.B.; De Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Su, Z.X.; Liu, S.H.; Guan, Y.F.; Tao, L. Cadmium and Arsenic Interactions During Co-sorption onto Goethite. Environ. Sci. 2023, 44, 3970–3977. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, R.; Liang, X.; Ma, L.; Molinari, M. Synergistic adsorption of Cd(II) with sulfate/phosphate on ferrihydrite: An in situ ATR-FTIR/2D-COS study. Chem. Geol. 2018, 477, 12–21. [Google Scholar] [CrossRef]
- Wu, J.Z.; Huang, D.; Liu, X.M.; Meng, J.; Tang, C.X.; Xu, J.M. Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. J. Hazard. Mater. 2018, 348, 10–19. [Google Scholar] [CrossRef]
- Pérez-Esteban, J.; Escolástico, C.; Masaguer, A.; Vargas, C.; Moliner, A. Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils. Chem Environ. Toxicol. Risk Assess. 2014, 103, 164–171. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Wu, J.; Xu, Y.; Wang, F.; Tang, X.; Xu, J.; Ok, Y.S.; Meng, J.; Liu, X. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses. Environ. Pollut. 2020, 260, 114098. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Huang, D.; Liu, X.; Xu, J. A novel calcium-based magnetic biochar is effective in stabilization of arsenic and cadmium co-contamination in aerobic soils. J. Hazard. Mater. 2020, 387, 122010. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.Y.; Li, F.; Liu, T.; Wu, W.; Liu, C.; Liu, C.; Zhang, X. Enhanced immobilization of arsenic and cadmium in a paddy soil by combined applications of woody peat and Fe(NO3)3: Possible mechanisms and environmental implications. Sci. Total Environ. 2019, 649, 535–543. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, P.; Zhou, H.; Peng, P.Q.; Zhang, K.; Mei, J.X.; Li, J.; Liao, B.H. Effects of Cd-resistant bacteria and calcium carbonate plus sepiolite on Cd availability in contaminated paddy soil and on Cd accumulation in brown rice grains. Ecotoxicol. Environ. Saf. 2020, 195, 110492. [Google Scholar] [CrossRef] [PubMed]
- Ainiwaer, M.; Zhang, T.; Zhang, N.; Yin, X.X.; Su, S.M.; Wang, Y.A.; Zhang, Y.; Zeng, X.B. Synergistic removal of As(III) and Cd(II) by sepiolite-modified nanoscale zero-valent iron and a related mechanistic study. J. Environ. Manag. 2022, 319, 115658. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xu, Y.; Xu, Y.; Wang, L.; Liang, X.; Li, Y. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials. Environ. Pollut. 2016, 208, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Jin, Q.; Li, Y.; Li, F. Oxidation and removal of As(III) from soil using novel magnetic nanocomposite derived from biomass waste. Environ. Sci.-Nano 2019, 6, 478–488. [Google Scholar] [CrossRef]
- Lu, R. Methods of Soil Agricultural Chemical Analys; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
Metal Types | Systems | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|---|
Qmax (mg/g) | KL (L/mg) | R2 | KF (mg/g) | 1/n | R2 | ||
Cd(II) | Single | 18.904 | 6.19 × 10−3 | 0.740 | 0.888 | 0.141 | 0.955 |
Binary | 14.925 | 0.205 | 0.859 | 1.944 | 0.631 | 0.951 | |
As(V) | Single | 12.508 | 2.288 | 0.969 | 5.777 | 0.330 | 0.728 |
Binary | 10.654 | 1.191 | 0.985 | 4.163 | 0.356 | 0.731 |
Metal Types | Systems | Pseudo-First-Order Kinetic | Pseudo-Second-Order Kinetic | ||||
---|---|---|---|---|---|---|---|
Qe (mg/g) | K1 (1/h) | R2 | Qe (mg/g) | K2 (g/mg/h) | R2 | ||
Cd(II) | Single | 0.152 | 0.0027 | 0.993 | 0.336 | 0.0737 | 0.996 |
Binary | 0.035 | 0.0387 | 0.584 | 0.373 | 0.6961 | 0.999 | |
As(V) | Single | 3.270 | 0.0029 | 0.879 | 7.851 | 0.0048 | 0.996 |
Binary | 0.370 | 0.0037 | 0.646 | 8.174 | 0.0576 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, C.; Geng, Z.; Sun, Y.; Che, D.; Zhao, Q.; Chen, T.; Tang, M.; Huo, L. Lanthanum-Modified Phosphogypsum Red Mud Composite for the Co-Adsorption of Cadmium and Arsenic: Mechanism Study and Soil Remediation. Agriculture 2024, 14, 464. https://doi.org/10.3390/agriculture14030464
Shang C, Geng Z, Sun Y, Che D, Zhao Q, Chen T, Tang M, Huo L. Lanthanum-Modified Phosphogypsum Red Mud Composite for the Co-Adsorption of Cadmium and Arsenic: Mechanism Study and Soil Remediation. Agriculture. 2024; 14(3):464. https://doi.org/10.3390/agriculture14030464
Chicago/Turabian StyleShang, Chengmei, Zhixi Geng, Yuanyuan Sun, Dongxue Che, Qingjiao Zhao, Ting Chen, Ming Tang, and Lijuan Huo. 2024. "Lanthanum-Modified Phosphogypsum Red Mud Composite for the Co-Adsorption of Cadmium and Arsenic: Mechanism Study and Soil Remediation" Agriculture 14, no. 3: 464. https://doi.org/10.3390/agriculture14030464
APA StyleShang, C., Geng, Z., Sun, Y., Che, D., Zhao, Q., Chen, T., Tang, M., & Huo, L. (2024). Lanthanum-Modified Phosphogypsum Red Mud Composite for the Co-Adsorption of Cadmium and Arsenic: Mechanism Study and Soil Remediation. Agriculture, 14(3), 464. https://doi.org/10.3390/agriculture14030464