Drone-Based Multispectral Remote Sensing Inversion for Typical Crop Soil Moisture under Dry Farming Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Acquisition and Processing
2.2.1. Drone-Based Multispectral Data Collection
2.2.2. Above-Ground Environmental Data Collection
2.3. Selection of Vegetation Indices
2.4. Model Construction and Evaluation
3. Results and Analysis
3.1. Modeling Canopy Leaf Moisture Content Using Vegetation Indices
3.2. Modeling Canopy Leaf Moisture and Surface Soil Moisture Content
3.3. The Biswas Model for Soil Moisture Estimation
3.4. Model Validation
3.4.1. Validation of the Vegetation Index and Canopy Leaf Moisture Content Model
3.4.2. Validation of a Predictive Model for Assessing Canopy Leaf and Soil Surface Water Content
3.4.3. Verification of the Biswas Model for Estimating Soil Moisture
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Presti, D.L.; Di Tocco, J.; Massaroni, C.; Cimini, S.; De Gara, L.; Singh, S.; Raucci, A.; Manganiello, G.; Woo, S.L.; Schena, E.; et al. Current understanding, challenges and perspective on portable systems applied to plant monitoring and precision agriculture. Biosens. Bioelectron. 2023, 222, 115005. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, G. Research progress on monitoring vegetation water content by using hyperspectral remote sensing. Chin. J. Plant Ecol. 2018, 42, 517–525. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, N.; Chen, Z.; Xing, C. ROSCC: An Efficient Remote Sensing Observation-Sharing Method Based on Cloud Computing for Soil Moisture Mapping in Precision Agriculture. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 12, 5588–5598. [Google Scholar] [CrossRef]
- Kim, H.N.; Park, J.H. Monitoring of soil EC for the prediction of soil nutrient regime under different soil water and organic matter contents. Appl. Biol. Chem. 2024, 67, 1. [Google Scholar] [CrossRef]
- Reichle, R.H. Assimilation of satellite observed brightness temperature and terrestrial water storage into the Catchment land surface model for improved soil moisture estimation. In Proceedings of the Agu Fall Meeting, San Francisco, CA, USA, 14–18 December 2015. AGU Fall Meeting Abstracts. [Google Scholar]
- Li, X.; Liang, B.; Bai, X.; Li, N. Research Progress on Spectroscopic Techniques for Soil Moisture Content Detection. Spectrosc. Spectr. Anal. 2020, 40, 3705–3710. [Google Scholar]
- Liu, Y.; Sun, Q.; Feng, H.; Yang, F. Estimation of Aboveground Biomass of Potatoes Based on Wavelet Analysis. Spectrosc. Spectr. Anal. 2021, 41, 1205–1212. [Google Scholar]
- Li, X.-X.; Liang, B.-W.; Bai, X.-B.; Li, N. Research Progress of Spectroscopy in the Detection of Soil Moisture Content. Spectrosc. Spectr. Anal. 2020, 40, 3705–3710. [Google Scholar]
- Chakhar, A.; Hernández-López, D.; Ballesteros, R.; Moreno, M.A. Improvement of the Soil Moisture Retrieval Procedure Based on the Integration of UAV Photogrammetry and Satellite Remote Sensing Information. Remote Sens. 2021, 13, 4968. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, S.; Mo, X.; Hu, S.; Zhou, H.; Xie, C.; Nielsen, S.; Grosen, H.; Bauer-Gottwein, P. Assessing the Potential of 10-m Resolution TVDI Based on Downscaled LST to Monitor Soil Moisture in Tang River Basin, China. Remote Sens. 2023, 15, 744. [Google Scholar] [CrossRef]
- Przeździecki, K.; Zawadzki, J.J.; Urbaniak, M.; Ziemblińska, K.; Miatkowski, Z. Using temporal variability of land surface temperature and normalized vegetation index to estimate soil moisture condition on forest areas by means of remote sensing. Ecol. Indic. 2023, 148, 110088. [Google Scholar] [CrossRef]
- Ndlovu, H.S.; Odindi, J.; Sibanda, M.; Mutanga, O.; Clulow, A.; Chimonyo, V.G.; Mabhaudhi, T. A comparative estimation of maize leaf water content using machine learning techniques and unmanned aerial vehicle (UAV)-based proximal and remotely sensed data. Remote Sens. 2021, 13, 4091. [Google Scholar] [CrossRef]
- Ullah, S.; Skidmore, A.K.; Ramoelo, A.; Groen, T.A.; Naeem, M.; Ali, A. Retrieval of leaf water content spanning the visible to thermal infrared spectra. ISPRS J. Photogramm. Remote Sens. 2014, 93, 56–64. [Google Scholar] [CrossRef]
- Ullah, S.; Skidmore, A.K.; Naeem, M.; Schlerf, M. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis. Sci. Total Environ. 2012, 437, 145–152. [Google Scholar] [CrossRef]
- Yu, X.; Li, H.; Zhuo, W.; Feng, J. Efficient Prediction of Potato Leaf Water Content Based on Near-Infrared Spectroscopy Technology. Opt. Instrum. 2020, 42, 7–13. [Google Scholar]
- Bian, J.; Zhang, Z.; Chen, J.; Chen, H.; Cui, C.; Li, X.; Chen, S.; Fu, Q. Simplified evaluation of cotton water stress using high resolution unmanned aerial vehicle thermal imagery. Remote Sens. 2019, 11, 267. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Mao, H.; Wu, X.; Zhang, X.; Yang, N. Visualization research of moisture content in leaf lettuce leaves based on WT-PLSR and hyperspectral imaging technology. J. Food Process Eng. 2018, 41, e12647. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Z.; Zhao, X.; Huang, M.; Wu, X.; Guo, T. Differentiated responses of plant water use regulation to drought in Robinia pseudoacacia plantations on the Chinese Loess Plateau. Agric. Water Manag. 2024, 291, 108659. [Google Scholar] [CrossRef]
- Aslan, F.; Prado-Tarango, D.E.; Mata-González, R.; Godwin, D. Soil water content and its interaction with plant water potential in a conservation wetland. In Proceedings of the Society for Range Management Annual Meeting, Denver, CO, USA, 16–20 February 2020. [Google Scholar]
- Amatya, S.; Karkee, M.; Alva, A.K. Identifying Water Stress in Potatoes Using Leaf Reflectance as an Indicator of Soil Water Content. GSTF J. Agric. Eng. 2014, 1, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, C.; Huang, W.; Guo, X.; Li, H. Effects of Soil Moisture on Leaf Water Content and Physiological Functions of Wheat. J. Triticeae Crops 2001, 21, 42–47. [Google Scholar]
- Zhang, Z.; Wang, H.; Han, W.; Bian, J.; Chen, S.; Cui, T. Study on Soil Moisture Retrieval Based on Unmanned Aerial Vehicle Multispectral Remote Sensing. Trans. Chin. Soc. Agric. Mach. 2018, 49, 173–181. [Google Scholar]
- Blank, D.; Eicker, A.; Jensen, L.; Güntner, A. A global analysis of water storage variations from remotely sensed soil moisture and daily satellite gravimetry. Hydrol. Earth Syst. Sci. 2023, 27, 2413–2435. [Google Scholar] [CrossRef]
- Tian, S.; Renzullo, L.J.; Van Dijk, A.I.; Tregoning, P.; Walker, J.P. Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response. Hydrol. Earth Syst. Sci. 2019, 23, 1067–1081. [Google Scholar] [CrossRef]
- Yang, J.; Cai, H.; Wang, S.; Xie, H. Study on the Relationship between Shallow Soil Moisture and Deep Soil Moisture in Yangling District. Agric. Res. Arid. Areas 2010, 5, 53–57. [Google Scholar]
- Yao, F.; Cai, H.; Zhang, Z. Study on the Relationship between Surface Soil Moisture and Deep Soil Moisture Transformation in Yantai Apple Orchard. In Modern Water-Saving High-Efficiency Agriculture and Ecological Irrigation District Construction; Yunnan University Press: Yunnan, China, 2010; Volume II. [Google Scholar]
- Tan, C.; Zhang, Z.; Xu, C.; Ma, Y.; Yao, Z.; Wei, G.; Li, Y. Retrieval of Soil Moisture in Corn Root Zone at Various Growth Stages Based on Unmanned Aerial Vehicle Multispectral Remote Sensing. Trans. Chin. Soc. Agric. Eng. 2020, 36, 63–74. [Google Scholar]
- Jia, Y.; Jin, S.; Xiao, Z.; Yan, Q.; Pei, Y. Reflectance Measurement of Soil Moisture Remote Sensing Using Global Navigation Satellite Systems: Current Status and Opportunities. J. Wuhan Univ. Inf. Sci. Ed. 2023, 48, 1784–1799. [Google Scholar] [CrossRef]
- Biswas, B.C.; Dasgupta, S.K. Estimate of moisture at deeper depth from surface layer data. Mausam 1979, 30, 40–45. [Google Scholar] [CrossRef]
- Ma, C. Study on Soil Moisture Conditions of Winter Wheat in the Renmin Shengli Canal Irrigation Area Based on Remote Sensing and Model Coupling. Chin. Acad. Agric. Sci. 2018, 12, 1–104. [Google Scholar]
- Liu, J.; Zhang, Z.; Xie, H.; Cai, H. Study on Estimation of Soil Water Storage in the Root Zone of Pear Orchards in Jiaodong. Soil Bull. 2007, 38, 640–644. [Google Scholar]
- Cheng, T.; Rivard, B.; Sánchez-Azofeifa, A.G.; Féret, J.B.; Jacquemoud, S.; Ustin, S.L. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis. J. Plant Physiol. 2012, 169, 1134–1142. [Google Scholar] [CrossRef]
- Yang, S.; Chen, J.; Zhou, Y.; Cui, W.; Yang, N. Research on Methods for Estimating Soil Moisture Content in the Root Zone of Maize Using Unmanned Aerial Vehicle Thermal Infrared Remote Sensing. Water-Sav. Irrig. 2021, 3, 12–18. [Google Scholar]
- Ke, Y.; Im, J.; Lee, J.; Gong, H.; Ryu, Y. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sens. Environ. 2015, 164, 298–313. [Google Scholar] [CrossRef]
- Zhao, W.; Duan, W.; Wang, Y.; Zhou, C.; Ma, H. Study on the Inversion Model of Multispectral Vegetation Water Content Based on Sensitive Variable Selection. Trans. Chin. Soc. Agric. Mach. 2023, 54, 343–351+385. [Google Scholar]
- Chen, D.; Zhang, F.; Tan, M.L.; Chan, N.W.; Shi, J.; Liu, C.; Wang, W. Improved Na+ estimation from hyperspectral data of saline vegetation by machine learning. Comput. Electron. Agric. 2022, 196, 106862. [Google Scholar] [CrossRef]
- Si, S.; Li, D. Study on the Inversion Model of Deep Soil Moisture Content in the Lower Yellow River Diversion Irrigation Area. People’s Yellow River 2023, 45, 124–127+142. [Google Scholar]
- Nijigati, K.; Zhang, Z.; Wumuti, A. Estimation of Leaf Water Content in Spring Wheat Based on Three-Band Spectral Indices. J. Triticeae Crops 2023, 43, 1–10. [Google Scholar]
- Feng, X.; Zhou, G. Relationship between Leaf Water Content, Photosynthesis, and Soil Moisture in Summer Maize. Acta Ecol. Sin. 2018, 38, 177–185. [Google Scholar]
- Rui, T.; Xu, Y.; Cheng, Q.; Yang, B.; Feng, Z.; Zhou, T.; Zhang, S. Estimation of Leaf Water Content in the Canopy of Winter Wheat Based on Unmanned Aerial Vehicle Multispectral Remote Sensing. J. Triticeae Crops 2022, 42, 1921–1930. [Google Scholar]
- Reyi, A.; Wumuti, A.; Abuduni, A.; Negati, K. Hyperspectral Estimation of Leaf Water Content in Spring Wheat Based on Machine Learning. J. Triticeae Crops 2022, 42, 640–648. [Google Scholar]
- Zhang, H.; Zhang, F.; Zhang, X.; Li, Z.; Ghulam, A.; Song, J. Estimation of Leaf Water Content in Vegetation Canopy Using Spectral Indices. Spectrosc. Spectr. Anal. 2018, 38, 1540–1546. [Google Scholar] [CrossRef]
- Wang, H. Influence of Soil Moisture under Different Irrigation Conditions in Hexi Oasis on Leaf Water Content of Wheat Canopy. J. Anhui Agric. Sci. 2014, 42, 6957–6959. [Google Scholar]
- Humphrey, V.; Berg, A.; Ciais, P.; Gentine, P.; Jung, M.; Reichstein, M.; Seneviratne, S.I.; Frankenberg, C. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 2021, 592, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Chen, X.; Xu, H.; Qin, Z.; Liu, S.; Liu, J. Spatial Differentiation Characteristics of Soil Moisture Movement in Agricultural Land under the Influence of Pepper Roots. Trans. Chin. Soc. Agric. Eng. 2023, 39, 141–150. [Google Scholar]
- Brutsaert, W. The daily mean zero-flux plane during soil-controlled evaporation: AG reen’s function approach. Water Resour. Res. 2014, 50, 9405–9413. [Google Scholar] [CrossRef]
- Li, C.; Guo, J.; Wang, D.; Chen, X.; Guan, H.; Li, Y.; Zhang, D.; Liu, X.; He, G.; Wang, T.; et al. Genomic insight into changes of root architecture under drought stress in maize. Plant Cell Environ. 2023, 46, 1860–1872. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chi, B.; Li, N.; Liang, G. Dynamic Soil Moisture and Prediction Simulation in Dryland Farmland of Southern Shanxi. Shanxi Agric. Sci. 2014, 42, 1106–1110. [Google Scholar]
Vegetation Indices | Formula |
---|---|
Normalized Difference Vegetation Index (NDVI) | |
Renormalized Difference Vegetation Index (RDVI) | |
Nonlinear Vegetation Index (NLI) | |
Green Normalized Difference Vegetation Index (GNDVI) | |
Ratio Vegetation Index (RVI) | |
Soil Adjusted Vegetation Index (SAVI) | |
Normalized Difference Green Index (NDGI) | |
Wide Dynamic Range Vegetation Index (WDRVI) | |
Triangular Vegetation Index (TVI) | |
Difference Vegetation Index (DVI) | |
Optimized Soil Adjusted Vegetation Index (OSAVI) | |
Greenness Index (GI) | |
Modified Simple Ratio (MSR) | |
Ratio Vegetation Index 2 (RVI2) |
Vegetation Index | Correlation Coefficient | Vegetation Index | Correlation Coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|
Maize | Millet | Sorghum | Potato | Maize | Millet | Sorghum | Potato | ||
NDVI | 0.889 ** | 0.824 ** | 0.839 ** | 0.565 ** | WDRVI | 0.898 ** | 0.864 ** | 0.729 ** | 0.435 ** |
RDVI | 0.768 ** | 0.876 ** | 0.819 ** | 0.845 ** | TVI | 0.686 ** | 0.836 ** | 0.795 ** | 0.859 ** |
NLI | 0.842 ** | 0.866 ** | 0.867 ** | 0.775 ** | DVI | 0.679 ** | 0.839 ** | 0.789 ** | 0.859 ** |
GNDVI | 0.861 ** | 0.835 ** | 0.646 ** | 0.631 ** | OSAVI | 0.834 ** | 0.879 ** | 0.871 ** | 0.780 ** |
RVI | 0.898 ** | 0.864 ** | 0.729 ** | 0.435 ** | GI | 0.878 ** | 0.838 ** | 0.830 ** | 0.277 ** |
SAVI | 0.889 ** | 0.824 ** | 0.839 ** | 0.565 ** | MSR | 0.898 ** | 0.870 ** | 0.850 ** | 0.486 ** |
NDGI | 0.891 ** | 0.821 ** | 0.805 ** | 0.349 ** | RVI2 | 0.882 ** | 0.865 ** | 0.654 ** | 0.594 ** |
Crop | Vegetation Index | Model | Formula | R2 |
---|---|---|---|---|
Maize | NDVI | Linear Regression | y = 0.8077x + 0.068 | 0.792 |
Nonlinear Regression | y = 3.0852x2 − 3.5396x + 1.5667 | 0.860 | ||
RVI | Linear Regression Nonlinear Regression | y = 0.0282x + 0.4213 y = −0.0009x2 + 0.0427x + 0.3677 | 0.816 0.820 | |
SAVI | Linear Regression Nonlinear Regression | y = 0.5386x + 0.0679 y = 1.3722x2 − 2.3615x + 1.5675 | 0.792 0.860 | |
MSR | Linear Regression Nonlinear Regression | y = 0.5386x + 0.0679 y = 1.3722x2 − 2.3615x + 1.5675 | 0.792 0.860 | |
NDGI | Linear Regression Nonlinear Regression | y = 0.9709x + 0.4905 y = 0.3919x2 + 0.8429x + 0.4982 | 0.802 0.822 | |
WDRVI | Linear Regression Nonlinear Regression | y = 0.1695x + 0.5625 y = −0.0311x2 + 0.2042x + 0.5595 | 0.816 0.820 | |
Millet | RDVI | Linear Regression Nonlinear Regression | y = 0.636x + 0.3069 y = 0.085x2 + 0.5427x + 0.3315 | 0.768 0.768 |
NLI | Linear Regression Nonlinear Regression | y = 0.3445x + 0.4817 y = 0.2758x2 + 0.1066x + 0.5214 | 0.765 0.794 | |
RVI | Linear Regression Nonlinear Regression | y = 0.0334x + 0.3928 y = 0.0015x2 + 0.0108x + 0.4707 | 0.777 0.785 | |
OSAVI | Linear Regression Nonlinear Regression | y = 0.7087x + 0.1874 y = 0.9731x2 − 0.5186x + 0.5647 | 0.783 0.805 | |
MSR | Linear Regression Nonlinear Regression | y = 0.1339x + 0.3684 y = 0.0376x2 − 0.0165x + 0.5085 | 0.791 0.810 | |
RVI2 | Linear Regression Nonlinear Regression | y = 0.0679x + 0.3186 y = 0.0117x2 − 0.0431x + 0.5683 | 0.793 0.814 | |
Sorghum | NDVI | Linear Regression Nonlinear Regression | y = 0.9863x − 0.02814 y = 8.138x2 − 11.443x + 4.7057 | 0.747 0.813 |
NLI | Linear Regression Nonlinear Regression | y = 0.3103x + 0.542 y = 0.3395x2 − 0.1232x + 0.6748 | 0.737 0.746 | |
SAVI | Linear Regression Nonlinear Regression | y = 0.6576x − 0.0281 y = 3.6169x2 − 7.6287x + 4.7057 | 0.747 0.813 | |
OSAVI | Linear Regression Nonlinear Regression | y = 0.5862x + 0.3139 y = 0.6286x2 − 0.3333x + 0.6471 | 0.757 0.759 | |
GI | LLinear Regression Nonlinear Regression | y = 0.2113x + 0.4144 y = 0.3657x2 − 0.8752x + 1.209 | 0.774 0.843 | |
MSR | Linear Regression Nonlinear Regression | y = 0.1248x + 0.4437 y = 0.102x2 − 0.3431x + 0.9707 | 0.764 0.798 | |
Potato | TVI | Linear Regression Nonlinear Regression | y = 0.0056x + 0.5431 y = −0.0002x2 + 0.0158x + 0.409 | 0.638 0.681 |
DVI | Linear Regression Nonlinear Regression | y = 0.3513x + 0.5475 y = −0.7505x2 + 1.0434x + 0.4039 | 0.627 0.679 | |
RDVI | Linear Regression Nonlinear Regression | y = 0.4919x + 0.4144 y = −0.5974x2 + 1.181x + 0.224 | 0.723 0.736 | |
OSAVI | Linear Regression Nonlinear Regression | y = 0.8076x + 0.2114 y = 0.4003x2 + 0.3384x + 0.3461 | 0.757 0.792 | |
NLI | Linear Regression Nonlinear Regression | y = 0.3102x + 0.5229 y = 0.1972x2 + 0.1127x + 0.5626 | 0.772 0.779 | |
GNDVI | Linear Regression Nonlinear Regression | y = 1.3023x − 0.1577 y = −1.8966x2 + 3.7887x − 0.9687 | 0.741 0.744 |
Depth/cm | Formula | R2 | |
---|---|---|---|
Maize | 0~10 | y = 0.2953x − 0.0541 | 0.442 |
0~20 | y = 0.3831x − 0.0916 | 0.751 | |
Millet | 0~10 | y = 0.2593x − 0.034 | 0.399 |
0~20 | y = 0.3567x − 0.083 | 0.722 | |
Sorghum | 0~10 | y = 0.3957x − 0.1351 | 0.207 |
0~20 | y = 0.5083x − 0.2028 | 0.719 | |
Potato | 0~10 | y = 0.3269x − 0.0958 | 0.246 |
0~20 | y = 0.4188x − 0.1461 | 0.737 |
Soil Layer Depth/cm | 10 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil Moisture Average/% | Maize | 12.56 | 14.44 | 13.69 | 11.45 | 11.47 | 10.52 | 9.86 | 11.00 | 11.73 | 13.40 | 14.80 |
Millet | 11.26 | 11.61 | 13.08 | 11.12 | 10.73 | 12.34 | 14.04 | 15.50 | 15.90 | 17.69 | 18.12 | |
Sorghum | 11.91 | 12.62 | 12.15 | 11.94 | 13.12 | 13.91 | 14.09 | 15.33 | 14.34 | 14.69 | 14.62 | |
Potato | 13.21 | 15.02 | 15.30 | 13.33 | 13.01 | 13.09 | 13.12 | 14.83 | 16.51 | 17.49 | 18.84 | |
Coefficient of Variation/% | Maize | 43.97 | 21.22 | 19.44 | 17.52 | 14.06 | 11.23 | 11.05 | 13.29 | 11.25 | 12.43 | 12.03 |
Millet | 44.81 | 23.85 | 28.67 | 11.13 | 14.68 | 15.06 | 14.39 | 13.77 | 12.27 | 12.31 | 12.24 | |
Sorghum | 60.18 | 29.60 | 20.08 | 15.05 | 14.91 | 13.12 | 13.36 | 14.80 | 9.34 | 10.13 | 10.36 | |
Potato | 43.80 | 26.38 | 23.67 | 11.28 | 12.13 | 11.05 | 13.70 | 11.96 | 12.02 | 12.73 | 11.11 |
Crop | d0/cm | Biswas Soil Moisture Estimation Model | R2 |
---|---|---|---|
Maize | 0~10 | y = 0.108449x1 − 0.0000334x2 + 0.673764 | 0.9980 |
0~20 | y = 0.096848x1 − 0.000036x2 + 0.816500 | 0.9984 | |
Millet | 0~10 | y = 0.094493x1 − 0.000212x2 + 0.468915 | 0.9996 |
0~20 | y = 0.090255x1 − 0.000121x2 + 0.699142 | 0.9998 | |
Sorghum | 0~10 | y = 0.12128x1 − 0.0000795x2 + 0.002632 | 0.9998 |
0~20 | y = 0.125145x1 − 0.0000348x2 − 0.152142 | 0.9998 | |
Potato | 0~10 | y = 0.114459x1 − 0.000121x2 + 0.746847 | 0.9991 |
0~20 | y = 0.103714x1 − 0.000079x2 + 1.074666 | 0.9995 |
Crop | d0/cm | 0~10 | 0~20 |
---|---|---|---|
Maize | RMSE | 1.714% | 0.918% |
MAE | 1.419% | 0.687% | |
NSE | 0.372 | 0.714 | |
R2 | 0.366 | 0.763 | |
Millet | RMSE | 1.702% | 1.012% |
MAE | 1.354% | 0.873% | |
NSE | 0.621 | 0.869 | |
R2 | 0.654 | 0.931 | |
Sorghum | RMSE | 1.265% | 0.788% |
MAE | 0.871% | 0.656% | |
NSE | 0.149 | 0.670 | |
R2 | 0.3317 | 0.731 | |
Potato | RMSE | 2.030% | 0.883% |
MAE | 1.521% | 0.715% | |
NSE | 0.120 | 0.850 | |
R2 | 0.294 | 0.855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, T.; Li, Y.; Zhao, Q.; Yin, Y.; Wang, Y.; Li, F.; Zhang, W. Drone-Based Multispectral Remote Sensing Inversion for Typical Crop Soil Moisture under Dry Farming Conditions. Agriculture 2024, 14, 484. https://doi.org/10.3390/agriculture14030484
Qu T, Li Y, Zhao Q, Yin Y, Wang Y, Li F, Zhang W. Drone-Based Multispectral Remote Sensing Inversion for Typical Crop Soil Moisture under Dry Farming Conditions. Agriculture. 2024; 14(3):484. https://doi.org/10.3390/agriculture14030484
Chicago/Turabian StyleQu, Tengteng, Yaoyu Li, Qixin Zhao, Yunzhen Yin, Yuzhi Wang, Fuzhong Li, and Wuping Zhang. 2024. "Drone-Based Multispectral Remote Sensing Inversion for Typical Crop Soil Moisture under Dry Farming Conditions" Agriculture 14, no. 3: 484. https://doi.org/10.3390/agriculture14030484
APA StyleQu, T., Li, Y., Zhao, Q., Yin, Y., Wang, Y., Li, F., & Zhang, W. (2024). Drone-Based Multispectral Remote Sensing Inversion for Typical Crop Soil Moisture under Dry Farming Conditions. Agriculture, 14(3), 484. https://doi.org/10.3390/agriculture14030484