The Impact of Long-Term Fallowing on the Yield and Quality of Winter Rape and Winter and Spring Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Analyses
2.2. Statistical Methods
3. Results and Discussion
3.1. Crop Yields
- Winter rape
- 2.
- Winter wheat
- 3.
- Spring wheat
3.1.1. Crop Yields Expressed in Cereal Units
3.1.2. Yields of Crude Fat and Total Protein
- 1
- Winter rape
- 2
- Winter and spring wheat
3.2. Mineral Composition of Plants
- 1
- Winter oilseed rape
- 2
- Winter wheat
- 3
- Spring wheat
3.3. Comparison of the Fallowing Methods Regarding Yield and Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kostrzewska, M.K.; Jastrzębska, M.; Marks, M.; Jastrzębski, W.P. Long-term crop rotation and continuous cropping effects on soil chemical properties. J. Elem. 2022, 27, 335–349. [Google Scholar] [CrossRef]
- Kurowska, K.; Kryszk, H.; Marks-Bielska, R.; Mika, M.; Leń, P. Conversion of agricultural and forest land to other purposes in the context of land protection: Evidence from Polish experience. Land Use Policy 2020, 95, 104614. [Google Scholar] [CrossRef]
- Pawlewicz, A.; Pawlewicz, K. The Risk of Agricultural Land Abandonment as a Socioeconomic Challenge for the Development of Agriculture in the European Union. Sustainability 2023, 15, 3233. [Google Scholar] [CrossRef]
- Pawlewicz, A.; Gotkiewicz, W.; Brodzińska, K.; Pawlewicz, K.; Mickiewicz, B.; Kluczek, P. Organic Farming as an Alternative Maintenance Strategy in the Opinion of Farmers from Natura 2000 Areas. Int. J. Environ. Res. Public Health 2022, 19, 3793. [Google Scholar] [CrossRef] [PubMed]
- Aye, W.M.; Takeda, S. Conversion of abandoned paddy fields to productive land through mangrove restoration in Myanmar’s Ayeyarwady Delta. Paddy Water Environ. 2020, 18, 417–429. [Google Scholar] [CrossRef]
- Kolecka, N. Greening trends and their relationship with agricultural land abandonment across Poland. Remote Sens. Environ. 2021, 257, 112340. [Google Scholar] [CrossRef]
- Koczorski, P.; Furtado, B.; Hrynkiewicz, K.; Breezmann, M.; Weih, M.; Baum, C. Site-Effects Dominate the Plant Availability of Nutrients under Salix Species during the First Cutting Cycle. Forests 2021, 12, 1226. [Google Scholar] [CrossRef]
- Kozak, M.; Pudełko, R. Impact Assessment of the Long-Term Fallowed Land on Agricultural Soils and the Possibility of Their Return to Agriculture. Agriculture 2021, 11, 148. [Google Scholar] [CrossRef]
- United Nations Economic and Social Council. Progress towards the Sustainable Development Goals Report of the Secretary-General, High-Level Political Forum on Sustainable Development, Convened under the Auspices of the Economic and Social Council; E/2020/57; United Nations Economic and Social Council: Geneva, Switzerland, 2020. [Google Scholar]
- Barbier, E.B.; Burgess, J.C. The Sustainable Development Goals and the systems approach to sustainability. Economics 2017, 11, 20170028. [Google Scholar] [CrossRef]
- Dacko, M.; Płonka, A. Economic evaluation of selected agricultural policy instruments in the light of the model of overproduction on the cereal market. Probl. Agric. Econ. 2018, 354, 129–148. [Google Scholar] [CrossRef]
- Kalisz, B.; Żuk-Gołaszewska, K.; Radawiec, W.; Gołaszewski, J. Land Use Indicators in the Context of Land Use Efficiency. Sustainability 2023, 15, 1106. [Google Scholar] [CrossRef]
- Sotherton, N.W. Land use changes and the decline of farmland wildlife: An appraisal of the set-aside approach. Biol. Conserv. 1998, 83, 259–268. [Google Scholar] [CrossRef]
- Firbank, L.G.; Smart, S.M.; Crabb, J.; Critchley, C.N.R.; Fowbert, J.W.; Fuller, R.J.; Gladders, P.; Green, D.B.; Henderson, I.; Hill, M.O. Agronomic and ecological costs and benefits of set-aside in England. Agric. Ecosyst. Environ. 2003, 95, 73–85. [Google Scholar] [CrossRef]
- European Commission. Knowledge for Policy. Supporting Policy with Scientific Evidence. 2021. Available online: https://knowledge4policy.ec.europa.eu/glossary-item/fallow-land_en (accessed on 18 March 2024).
- Kämpf, I.; Mathar, W.; Kuzmin, I.; Hölzel, N.; Kiehl, K. Post-Soviet recovery of grassland vegetation on abandoned fields in the forest steppe zone of Western Siberia. Biodivers. Conserv. 2016, 25, 2563–2580. [Google Scholar] [CrossRef]
- Mantero, G.; Morresi, D.; Marzano, R.; Motta, R.; Mladenoff, D.J.; Garbarino, M. The influence of land abandonment on forest disturbance regimes: A global review. Landsc. Ecol. 2020, 35, 2723–2744. [Google Scholar] [CrossRef]
- Frei, T.; Derks, J.; Fernández-Blanco, C.R.; Winkel, G. Narrating abandoned land: Perceptions of natural forest regrowth in Southwestern Europe. Land Use Policy 2020, 99, 10503. [Google Scholar] [CrossRef]
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Żarczyński, P.J.; Krzebietke, S.J.; Sienkiewicz, S.; Wierzbowska, J. The Role of Fallows in Sustainable Development. Agriculture 2023, 13, 2174. [Google Scholar] [CrossRef]
- Tepes, A.; Galarraga, I.; Markandya, A.; Sánchez, M.J.S. Costs and benefits of soil protection and sustainable land management practices in selected European countries: Towards multidisciplinary insights. Sci. Total Environ. 2021, 756, 143925. [Google Scholar] [CrossRef]
- Poptcheva, K.; Schwartze, P.; Vogel, A.; Kleinebecker, T.; Hölzel, N. Changes in wet meadow vegetation after 20 years of different management in a field experiment (North-West Germany). Agric. Ecosyst. Environ. 2009, 134, 108–114. [Google Scholar] [CrossRef]
- Niksa, D.; Stolarski, M.J.; Krzyżaniak, M.; Załuski, D. Organic carbon, total nitrogen and macronutrients in soil under short-rotation willow and poplar plantations. J. Elem. 2022, 27, 181–199. [Google Scholar] [CrossRef]
- Fullen, M.A.; Booth, C.A.; Brandsma, R.T. Long-term effects of grass ley set-aside on erosion rates and soil organic matter on sandy soils in east Shropshire, UK. Soil Tillage Res. 2006, 89, 122–128. [Google Scholar] [CrossRef]
- Żarczyński, P.; Sienkiewicz, S.; Krzebietke, S. Accumulation of macroelements in plants on newly established fallows. J. Elem. 2008, 133, 455–461. Available online: http://www.uwm.edu.pl/jold/poj1332008/jurnal-16.pdf (accessed on 18 March 2024).
- Nassi o Di Nasso, N.; Roncucci, N.; Bonari, E. Seasonal dynamics of aboveground and belowground biomass and nutrient accumulation and remobilization in Giant Reed (Arundo donax L.): A three-year study on marginal land. Bioenergy Res. 2013, 6, 725–736. [Google Scholar] [CrossRef]
- Yuan, Z.Q.; Yu, K.L.; Guan, X.K.; Fang, C.; Li, M.; Shi, X.Y.; Li, F.M. Medicago sativa improves soil carbon sequestration following revegetation of degraded arable land in a semi-arid environment on the Loess Plateau, China. Agric. Ecosyst. Environ. 2016, 232, 93–100. [Google Scholar] [CrossRef]
- Hedlund, K.; Santa Regina, I.; Van Der Puten, H.W.; Lepš, J.; Díaz, T.; Korthals, G.W.; Lavorel, S.; Brown, V.K.; Gormsen, D.; Mortimer, S.R.; et al. Plant species diversity, plant biomass and responses of soil community on abandoned land across Europe: Idiosyncracy or above-belowground time lags. Oikos 2003, 103, 45–58. [Google Scholar] [CrossRef]
- Żarczyński, P.; Sienkiewicz, S.; Krzebietke, S. Effect of the way set-aside land is maintained on the content of available forms of selected micronutrients in soil. J. Elem. 2011, 16, 651–657. [Google Scholar] [CrossRef]
- Symanowicz, B.; Pala, J.; Kalembasa, S. Influence of biological reduction of N2 on the uptake of nitrogen by goat’s rue (Galega orientalis Lam.). Acta Sci. Pol. Agric. 2005, 4, 93–99. Available online: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-aecaf632-01dc-4a72-9855-8f2fb5c7b809 (accessed on 18 March 2024).
- Fu, X.; Shao, M.; Wei, X.; Horton, R. Effects of two perennials, fallow and millet on distribution of phosphorous in soil and biomass on sloping loess land, China. Catena 2009, 77, 200–206. [Google Scholar] [CrossRef]
- Epie, K.E.; Saikkonen, L.; Santanen, A.; Jaakkola, S.; Mäkelä, P.; Simojoki, A.; Stoddard, F.L. Nitrous oxide emissions from perennial grass–legume intercrop for bioenergy use. Nutr. Cycl. Agroecosyst. 2015, 101, 211–222. [Google Scholar] [CrossRef]
- Sienkiewicz, S.; Żarczyński, P.; Krzebietke, S. Effect of land use of fields excluded from cultivation on soil content of available nutrients. J. Elem. 2011, 16, 75–84. [Google Scholar] [CrossRef]
- Ignaczak, S.; Andrzejewska, J.; Sadowska, K. Fodder Galega—Persistence as a Special Asset in Sustainable Agriculture. Agronomy 2023, 13, 2587. [Google Scholar] [CrossRef]
- Sienkiewicz, S.; Żarczyński, P.J.; Krzebietke, S.J.; Wierzbowska, J.; Mackiewicz–Walec, E.; Jankowski, K.J. Effect of land conservation on content of organic carbon and total nitrogen in soil. Fresen. Environ. Bull 2017, 26, 6517–6524. [Google Scholar]
- Dubis, B.; Jankowski, K.J.; Sokólski, M.M.; Załuski, D.; Bórawski, P.; Szempliński, W. Biomass yield and energy balance of fodder galega in different production technologies: An 11-year field experiment in a large-area farm in Poland. Renew. Energy 2020, 154, 813–825. [Google Scholar] [CrossRef]
- Zander, P.; Amjath-Babu, T.S.; Preissel, S.; Reckling, M.; Bues, A.; Schläfke, N.; Kuhlman, T.; Bachinger, J.; Uthes, S.; Stoddard, F.; et al. Grain legume decline and potential recovery in European agriculture: A review. Agron. Sustain. Dev. 2016, 36, 26. [Google Scholar] [CrossRef]
- Żarczyński, P.J.; Sienkiewicz, S.; Wierzbowska, J.; Krzebietke, S. Fodder galega—A versatile plant. Agronomy 2021, 11, 1797. [Google Scholar] [CrossRef]
- Kang, Y.; Yin, M.; Ma, Y.; Tang, Z.; Jia, Q.; Qi, G.; Wang, J.; Jiang, Y.; Wang, A. Response of Water-Nitrogen Distribution and Use to Water Deficit under Different Applied Nitrogen Fertilizer Rates in Bromus inermis Grassland. Agronomy 2023, 13, 745. [Google Scholar] [CrossRef]
- Palit, R.; DeKeyser, E.S. Impacts and Drivers of Smooth Brome (Bromus inermis Leyss.) Invasion in Native Ecosystems. Plants 2022, 11, 1340. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.A.; DeKeyser, E.S.; Dixon, C.; Kobiela, B. Invasive Species Change Plant Community Composition of Preserved Prairie Pothole Wetlands. Plants 2023, 12, 1281. [Google Scholar] [CrossRef]
- Eggenschwiler, L.; Jacot, K.A.; Edwards, P.J. Vegetation development and nitrogen dynamics of sown and spontaneous set-aside on arable land. Ecol. Eng. 2009, 35, 890–897. [Google Scholar] [CrossRef]
- Ignaczak, S.; Szczepanek, M. Forecrop value of fodder galega for winter wheat. Zesz. Probl. Post. Nauk Rol. 2005, 507, 245–251. Available online: https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-92920b2b-7063-449a-9a62-17aa0ec48334 (accessed on 18 March 2024).
- Jeske, M.; Pańka, D.; Ignaczak, S.; Pala, D. The effect of different organic fertilization on fungi colonizing plant roots and seeds of fodder galega (Galega orientalis Lam.). Zesz. Probl. Post. Nauk Rol. 2015, 580, 25–33. Available online: https://bibliotekanauki.pl/articles/799668 (accessed on 18 March 2024).
- Żarczyński, P.J.; Sienkiewicz, S.; Wierzbowska, J.; Mackiewicz-Walec, E.; Jankowski, K.J.; Krzebietke, S.J. Effect of land protection on the content of mineral nitrogen in soil. Fresen. Environ. Bull. 2019, 28, 4506–4513. Available online: https://www.researchgate.net/publication/334401443_Effect_of_land_protection_on_the_content_of_mineral_nitrogen_in_soil (accessed on 18 March 2024).
- Szatkowski, A.; Sokólski, M.; Załuski, D.; Jankowski, K.J. The Effects of Agronomic Management in Different Tillage Systems on the Fall Growth of Winter Oilseed Rape. Agriculture 2023, 13, 440. [Google Scholar] [CrossRef]
- Sokólski, M.; Załuski, D.; Szatkowski, A.; Jankowski, K.J. Winter Oilseed Rape: Agronomic Management in Different Tillage Systems and Seed Quality. Agronomy 2023, 13, 524. [Google Scholar] [CrossRef]
- Jajor, E.; Horoszkiewicz-Janka, J.; Danielewicz, J.; Korbas, M. Influence of crop rotation and fungicides on occurrence limitation of winter oilseed rape diseases. Prog. Plant Prot. 2012, 52, 1005–1010. Available online: http://www.progress.plantprotection.pl/download.php?ma_id=1159 (accessed on 18 March 2024).
- Blecharczyk, A.; Zawada, D.; Sawinska, Z.; Małecka-Jankowiak, I.; Waniorek, W. Impact of crop sequence and fertilization on yield of winter wheat. Fragm. Agron. 2019, 36, 27–35. [Google Scholar] [CrossRef]
- Dz, U. Regulation of the Minister for the Environment of 16 April 2019, on Detailed Procedures for Assessment of Losses in Agricultural Crops and Yields. 2019; Item 776. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190000776 (accessed on 18 March 2024).
- ISO 5983-1:2005; Animal Feeding Stuffs. Determination of Nitrogen Content and Calculation of Crude Protein Content. Part 1. Kjeldahlmethod. ISO: Geneva, Switzerland, 2019.
- Jankowski, K.J.; Kijewski, Ł.; Dubis, B. Milling quality and flour strength of the grain of winter wheat grown in monoculture. Rom. Agric. Res. 2015, 32, 191–200. [Google Scholar]
- Parenti, A.; Zegada-Lizarazu, W.; Pagani, E.; Monti, A. Soil organic carbon dynamics in multipurpose cropping systems. Ind. Crops Prod. 2022, 187, 115315. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Nogalska, A. Meat and bone meal and the energy balance of winter oilseed rape—A case study in north-eastern Poland. Energies 2022, 15, 3853. [Google Scholar] [CrossRef]
- Fordoński, G.; Pszczółkowska, A.; Krzebietke, S.; Olszewski, J.; Okorski, A. Yield and mineral composition of seeds of leguminous plants and grain of spring wheat as well as their residual effect on the yield and chemical composition of winter oilseed rape seeds. J. Elem. 2015, 20, 827–838. [Google Scholar] [CrossRef]
- Faligowska, A.; Szymańska, G.; Panasiewicz, K.; Szukała, J.; Koziara, W.; Ratajczak, K. The long-term effect of legumes as forecrops on the productivity of rotation (winter rape-winter wheat-winter wheat) with nitrogen fertilization. Plant Soil Environ. 2019, 65, 138–144. [Google Scholar] [CrossRef]
- Tian, Z.; Ji, Y.; Xu, H.; Qiu, H.; Sun, L.; Zhong, H.; Liu, J. The potential contribution of growing rapeseed in winter fallow fields across Yangtze River Basin to energy and food security in China. Resour. Conserv. Recycl. 2021, 164, 105159. [Google Scholar] [CrossRef]
- Groth, D.A.; Sokólski, M.; Jankowski, K.J. A multicriteria evaluation of the effectiveness of nitrogen and sulfur fertilization in different cultivars of winter rapeseed—Productivity, economic and energy balance. Energies 2020, 13, 4654. [Google Scholar] [CrossRef]
- Alletto, L.; Coquet, Y.; Justes, E. Effects of tillage and fallow period management on soil physical behaviour and maize development. Agric. Water Manag. 2011, 102, 74–85. [Google Scholar] [CrossRef]
- Kalembasa, D.; Szukała, J.; Symanowicz, B.; Kalembasa, S.; Faligowska, A.; Becher, M. Amount of biologically nitrogen fixed by faba bean and its uptake by winter wheat determined by 15N ID method. Arch. Agron. Soil Sci. 2021, 67, 1875–1888. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Antonić, O. Determination of soil C:N suitability zones for organic farming using an unsupervised classification in eastern Croatia. Ecol. Indic. 2021, 123, 107382. [Google Scholar] [CrossRef]
- Puppe, D.; Kaczorek, D.; Schaller, J.; Barkusky, D.; Sommer, M. Crop straw recycling prevents anthropogenic desilication of agricultural soil–plant systems in the temperate zone—Results from a long-term field experiment in NE Germany. Geoderma 2021, 403, 115187. [Google Scholar] [CrossRef]
- Pszczółkowska, A.; Okorski, A.; Olszewski, J.; Fordoński, G.; Krzebietke, S.; Chareńska, A. Effects of pre-preceding leguminous crops on yield and chemical composition of winter wheat grain. Plant Soil Environ. 2018, 64, 592–596. [Google Scholar] [CrossRef]
- Yang, N.; Wang, Z.; Gao, Y.; Zhao, H.; Li, K.; Li, F.; Malhi, S.S. Effects of planting soybean in summer fallow on wheat grain yield, total N and Zn in grain and available N and Zn in soil on the Loess Plateau of China. Eur. J. Agron. 2014, 58, 63–72. [Google Scholar] [CrossRef]
- Żarczyński, P.J.; Sienkiewicz, S.; Wierzbowska, J.; Krzebietke, S. Response of winter oilseed rape to differentiated foliar fertilization. Agric. Food Sci. 2021, 30, 36–42. [Google Scholar] [CrossRef]
- Bełdycka-Bórawska, A.; Bórawski, P.; Borychowski, M.; Wyszomierski, R.; Bórawski, M.B.; Rokicki, T.; Ochnio, L.; Jankowski, K.; Mickiewicz, B.; Dunn, J.W. Development of Solid Biomass Production in Poland, Especially Pellet, in the Context of the World’s and the European Union’s Climate and Energy Policies. Energies 2021, 14, 3587. [Google Scholar] [CrossRef]
- Olba-Zięty, E.; Stolarski, M.J.; Krzyżaniak, M. Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review. Energies 2021, 14, 7147. [Google Scholar] [CrossRef]
- Skuodiene, R.; Nekrosiene, R. The effect of perennials as green manure on cereal productivity and disease incidence. Span. J. Agric. Res. 2012, 10, 44–54. [Google Scholar] [CrossRef]
- Bolger, T.P.; Angus, J.F.; Peoples, M.B. Comparison of nitrogen mineralization patterns from root residues of Trifolium subterraneum and Medicago sativa. Biol. Fertil. Soils. 2003, 38, 296–300. [Google Scholar] [CrossRef]
- Ennaïfar, S.; Lucas, P.; Meynard, J.M.; Makowski, D. Effects of summer fallow management on take-all of winter wheat caused by Gaeumannomyces graminis var. tritici. Eur. J. Plant. Pathol. 2005, 112, 167–181. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Załuski, D.; Sokólski, M. Canola-quality white mustard: Agronomic management and seed yield. Ind. Crops Prod. 2020, 145, 112138. [Google Scholar] [CrossRef]
- Sułek, A.; Nieróbca, A.; Cacak-Pietrzak, A. Influence of the autumn sowing date on grain yield and grain quality of spring wheat. Pol. J. Agron. 2017, 29, 43–50. [Google Scholar] [CrossRef]
- Buraczyńska, D.; Ceglarek, F. Yield of winter wheat cultivated after various forecrops. Acta. Sci. Pol. Agric. 2008, 7, 27–37. [Google Scholar]
- Stępień, A.; Wojtkowiak, K.; Pietrzak-Fiećko, R. Influence of crop rotation system and agrotechnology level on the yielding and seed quality of winter rapeseed (Brassica napus L.) varieties Castilla and Nelson. J. Elem. 2018, 23, 1281–1293. [Google Scholar] [CrossRef]
- Wanic, M.; Denert, M.; Treder, K. Effect of forecrops on the yield and quality of common wheat and spelt wheat grain. J. Elem. 2019, 24, 369–383. [Google Scholar] [CrossRef]
- Woźniak, A.; Makarski, B. Content of minerals, total protein and wet gluten in grain of spring wheat depending on cropping systems. J. Elem. 2013, 18, 297–305. [Google Scholar] [CrossRef]
Plant | Type of Fertilizer | Dose kg/ha | Application Form | Stage of Development |
---|---|---|---|---|
Winter rape | Ammonium nitrate | 30 N | to soil | before sowing |
Single superphosphate | 40 P | to soil | before sowing | |
Potassium salt | 120 K | to soil | before sowing | |
Ammonium nitrate | 80 N | top-dressing | BBCH 30 | |
Ammonium nitrate/Ammonium sulfate | 80 N+40 S | top-dressing | BBCH 35 | |
Winter wheat | Ammonium nitrate | 30 N | to soil | before sowing |
Single superphosphate | 40 P | to soil | before sowing | |
Potassium salt | 120 K | to soil | before sowing | |
Ammonium nitrate | 60 N | top-dressing | BBCH 22 | |
Ammonium nitrate | 60 N | top-dressing | BBCH 32 | |
Ammonium nitrate | 40 N | top-dressing | BBCH 72 | |
Spring wheat | Ammonium nitrate | 60 N | to soil | before sowing |
Single superphosphate | 40 P | to soil | before sowing | |
Potassium salt | 120 K | to soil | before sowing | |
Ammonium nitrate | 60 N | top-dressing | BBCH 32 |
Plant | Chemical Agent | Type of Active Substance | Dose g/ha | Stage of Development |
---|---|---|---|---|
Winter rape | Command 480 EC Butisan 500 SC | Clomazon Metazachlor | 120 750 | BBCH 00 BBCH 00 |
Agil 100 EC | Propachizafop | 100 | BBCH 25 | |
Caramba 60 SL | Metconazole | 42 | BBCH 25 | |
Sparta 250 EW | Tebuconazole | 175 | BBCH 43 | |
Nurelle D 550 EC | Chlorpyrifos Cypermethrin | 300 30 | BBCH 55 | |
Alert 375 EC Mospilan 20 SP | Flusilazole Carbendazim Acetamiprid | 125 250 30 | BBCH 67 BBCH 67 | |
Winter wheat | Granstar 75 WG | Tribenuron methyl | 18.75 | BBCH 22 |
Tilt plus 400 EC | Propiconazole Fenpropidin | 125 275 | BBCH 31 | |
Soprano 125 EC Sparta 250 EC | Epoxiconazole Tebuconazole | 125 125 | BBCH 51 BBCH 51 | |
Spring wheat | Apyros 75 WG | Sulfosulfuron | 19.5 | BBCH 22 |
Artea 330 EC | Propiconazole Cyproconazole | 125 40 | BBCH 51 |
Objects | Corg. | Ntot. | pH | Available Forms | |||||
---|---|---|---|---|---|---|---|---|---|
mol/dm3 KCl | P | K | Mg | Cu | Zn | Mn | |||
g/kg | g/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | ||
BF | 9.47 | 0.92 | 5.25 | 75.15 | 191.50 | 66.93 | 3.81 | 20.19 | 127.64 |
NF | 11.53 | 1.39 | 5.15 | 78.80 | 207.50 | 74.87 | 3.62 | 22.56 | 98.39 |
FG | 14.47 | 1.43 | 5.30 | 116.50 | 208.50 | 85.50 | 3.30 | 25.21 | 116.27 |
FG+SB | 12.53 | 1.39 | 5.40 | 78.83 | 183.50 | 83.85 | 2.68 | 24.43 | 124.01 |
SB | 11.76 | 1.33 | 5.00 | 67.75 | 182.50 | 64.25 | 2.49 | 22.07 | 113.22 |
Object | Winter Rape (2005) | HI | Winter Wheat (2006) | HI | Spring Wheat (2007) | HI | |||
---|---|---|---|---|---|---|---|---|---|
Seeds | Straw | Grain | Straw | Grain | Straw | ||||
t/ha | t/ha | t/ha | t/ha | t/ha | t/ha | ||||
BF | 1.86 a | 4.05 a | 0.32 b | 3.96 a | 4.78 a | 0.45 a | 3.37 a | 4.26 a | 0.44 a |
NF | 2.42 b | 6.48 bc | 0.27 a | 5.41 b | 6.79 c | 0.44 a | 4.18 b | 5.12 b | 0.45 a |
FG | 4.38 c | 7.41 cd | 0.37 c | 6.53 c | 7.61 d | 0.46 ab | 6.73 c | 8.13 c | 0.46 a |
FG+SB | 4.24 c | 7.66 d | 0.36 c | 6.68 c | 7.20 cd | 0.48 b | 6.99 c | 8.19 c | 0.45 a |
SB | 2.31 b | 5.47 b | 0.30 ab | 5.58 b | 6.04 b | 0.48 b | 4.46 b | 5.23 b | 0.46 a |
Objects | Seeds | Straw | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | Na | N | P | K | Ca | Mg | Na | |
g/kg DM | ||||||||||||
BF | 39.90 a | 9.32 b | 8.12 a | 5.92 a | 3.06 a | 0.09 a | 6.95 b | 1.57 b | 16.41 a | 11.75 b | 1.05 b | 0.12 a |
NF | 39.92 a | 9.06 a | 8.21 a | 6.17 b | 3.09 a | 0.10 a | 6.57 b | 1.40 a | 17.59 b | 10.30 a | 0.88 a | 0.12 a |
FG | 40.73 a | 9.82 c | 8.41 b | 6.30 b | 3.16 a | 0.11 a | 7.52 c | 1.89 d | 21.31 d | 13.32 c | 1.02 b | 0.14 b |
FG+SB | 40.71 a | 9.85 c | 8.72 b | 6.01 ab | 3.11 a | 0.12 a | 7.64 c | 1.78 c | 20.11 c | 13.22 c | 1.03 b | 0.14 b |
SB | 40.50 a | 9.71 bc | 9.11 c | 6.04 ab | 3.11 a | 0.12 a | 5.76 a | 1.60 b | 17.28 ab | 11.33 b | 0.93 a | 0.12 a |
Objects | Grain | Straw | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | Na | N | P | K | Ca | Mg | Na | |
g/kg DM | ||||||||||||
BF | 16.10 a | 5.57 b | 4.80 b | 0.37 a | 0.76 a | 0.21 a | 4.13 a | 1.86 b | 4.38 a | 1.77 a | 0.39 a | 0.09 a |
NF | 16.87 b | 5.60 b | 4.62 a | 0.42 b | 0.82 b | 0.21 a | 4.32 ab | 2.02 c | 5.93 b | 1.78 a | 0.50 b | 0.13 a |
FG | 19.44 c | 5.88 d | 4.82 b | 0.41 b | 0.89 c | 0.21 a | 5.15 d | 2.19 d | 7.97 d | 2.16 b | 0.55 c | 0.12 a |
FG+SB | 18.83 c | 5.75 c | 4.99 c | 0.42 b | 0.92 c | 0.21 a | 4.94 cd | 1.95 bc | 7.11 c | 2.02 b | 0.59 c | 0.13 a |
SB | 16.98 b | 5.33 a | 4.74 ab | 0.42 b | 0.78 ab | 0.20 a | 4.68 bc | 1.67 a | 7.08 c | 1.84 a | 0.40 a | 0.09 a |
Objects | Grain | Straw | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | Na | N | P | K | Ca | Mg | Na | |
g/kg DM | ||||||||||||
BF | 20.55 a | 4.22 b | 3.73 a | 0.68 a | 0.65 a | 0.11 a | 4.01 a | 1.26 a | 7.87 a | 1.78 a | 0.57 a | 0.23 a |
NF | 21.58 a | 3.93 a | 3.76 a | 0.69 ab | 0.64 a | 0.14 a | 5.38 b | 1.28 a | 9.12 b | 2.26 b | 0.61 a | 0.23 a |
FG | 26.04 b | 4.30 b | 4.24 c | 0.83 d | 0.85 b | 0.13 a | 6.54 c | 1.37 b | 11.18 d | 2.61 b | 0.85 b | 0.25 a |
FG+SB | 26.40 b | 4.27 b | 4.17 c | 0.79 cd | 0.78 b | 0.12 a | 6.42 c | 1.36 b | 11.15 d | 2.57 b | 0.80 b | 0.25 a |
SB | 25.81 b | 4.21 b | 3.96 b | 0.75 bc | 0.78 b | 0.13 a | 5.54 b | 1.25 a | 10.03 c | 2.23 b | 0.62 a | 0.24 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sienkiewicz, S.; Żarczyński, P.J.; Wierzbowska, J.; Krzebietke, S.J. The Impact of Long-Term Fallowing on the Yield and Quality of Winter Rape and Winter and Spring Wheat. Agriculture 2024, 14, 567. https://doi.org/10.3390/agriculture14040567
Sienkiewicz S, Żarczyński PJ, Wierzbowska J, Krzebietke SJ. The Impact of Long-Term Fallowing on the Yield and Quality of Winter Rape and Winter and Spring Wheat. Agriculture. 2024; 14(4):567. https://doi.org/10.3390/agriculture14040567
Chicago/Turabian StyleSienkiewicz, Stanisław, Piotr Jarosław Żarczyński, Jadwiga Wierzbowska, and Sławomir Józef Krzebietke. 2024. "The Impact of Long-Term Fallowing on the Yield and Quality of Winter Rape and Winter and Spring Wheat" Agriculture 14, no. 4: 567. https://doi.org/10.3390/agriculture14040567
APA StyleSienkiewicz, S., Żarczyński, P. J., Wierzbowska, J., & Krzebietke, S. J. (2024). The Impact of Long-Term Fallowing on the Yield and Quality of Winter Rape and Winter and Spring Wheat. Agriculture, 14(4), 567. https://doi.org/10.3390/agriculture14040567