Challenges in Sustainable Agriculture—The Role of Organic Amendments
Abstract
:1. Background
2. Organic Amendments’ Impact on Soil Properties
2.1. Soil Physical Properties
2.2. Soil Chemical Properties
3. Impact of Organic Amendments on Several Soil Degradation Processes and Restoration Strategies
4. Guidance for Further Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- van Leeuwen, J.P.; Saby, N.P.A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R.P.O.; Spiegel, H.; Toth, G.; Creamer, R.E. Gap assessment in current soil monitoring networks across Europe for measuring soil functions. Environ. Res. Lett. 2017, 12, 124007. [Google Scholar] [CrossRef]
- Ellili-Bargaoui, Y.; Walter, C.; Lemercier, B.; Michot, D. Assessment of six soil ecosystem services by coupling simulation modelling and field measurement of soil properties. Ecol. Indic. 2021, 121, 107211. [Google Scholar] [CrossRef]
- AdhikarI, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Pereira, P.; Bogunovic, I.; Muñoz-Rojas, M.; Brevik, E.C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Zurqani, H.A.; Mikhailova, E.A.; Post, C.J.; Schlautman, M.A.; Elhawej, A.R. A review of Libyan soil databases for use within an ecosystem services framework. Land 2019, 8, 82. [Google Scholar] [CrossRef]
- Soto, R.L.; Padilla, M.C.; de Vente, J. Participatory selection of soil quality indicators for monitoring the impacts of regenerative agriculture on ecosystem services. Ecosyst. Serv. 2020, 45, 101157. [Google Scholar] [CrossRef]
- Dimande, P.; Arrobas, M.; Rodrigues, M.Â. Under a Tropical Climate and in Sandy Soils, Bat Guano Mineralises Very Quickly, Behaving More like a Mineral Fertiliser than a Conventional Farmyard Manure. Agronomy 2023, 13, 1367. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision. Available online: https://ageconsearch.umn.edu/record/288998/ (accessed on 8 September 2023).
- Bamdad, H.; Papari, S.; Lazarovits, G.; Berruti, F. Soil amendments for sustainable agriculture: Microbial organic fertilizers. Soil Use Manag. 2022, 38, 94–120. [Google Scholar] [CrossRef]
- Hlisnikovský, L.; Menšík, L.; Kunzová, E. Development and the Effect of Weather and Mineral Fertilization on Grain Yield and Stability of Winter Wheat following Alfalfa—Analysis of Long-Term Field Trial. Plants 2023, 12, 1392. [Google Scholar] [CrossRef]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Davis, A.G.; Huggins, D.R.; Reganold, J.P. Linking soil health and ecological resilience to achieve agricultural sustainability. Front. Ecol. Environ. 2023, 21, 131–139. [Google Scholar] [CrossRef]
- Bateman, A.M.; Muñoz-Rojas, M. To whom the burden of soil degradation and management concerns. In Advances in Chemical Pollution, Environmental Management and Protection; Pereira, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 4, pp. 1–22. [Google Scholar] [CrossRef]
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development; Resolution adopted by the General Assembly on 25 September 2015; United Nations: New York, NY, USA, 2015; 35p. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 15 November 2023).
- European Commission. European Missions: A Soil Deal for Europe-100 Living Labs and Lighthouses to Lead the Transition towards Healthy Soils by 2030-Implementation Plan; European Commission: Brussels, Belgium, 2021; Available online: https://food.ec.europa.eu/system/files/2021-10/f2f_conf_20211015_pres-04.pdf (accessed on 15 November 2023).
- Bouma, J.; Montanarella, L.; Evanylo, G. The challenge for the soil science community to contribute to the implementation of the UN Sustainable Development Goals. Soil Use Manag. 2019, 35, 538–546. [Google Scholar] [CrossRef]
- Löbmann, M.T.; Maring, L.; Prokop, G.; Brils, J.; Bender, J.; Bispo, A.; Helming, K. Systems knowledge for sustainable soil and land management. Sci. Total Environ. 2022, 822, 153389. [Google Scholar] [CrossRef] [PubMed]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical Fertilizers and Their Impact on Soil Health. In Microbiota and Biofertilizers; Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R., Eds.; Springer: Cham, Germany, 2021; Volume 2, pp. 1–20. [Google Scholar] [CrossRef]
- Farmaha, B.S.; Sekaran, U.; Franzluebbers, A.J. Cover cropping and conservation tillage improve soil health in the southeastern United States. Agron. J. 2022, 114, 296–316. [Google Scholar] [CrossRef]
- Guo, M. The 3R Principles for Applying Biochar to Improve Soil Health. Soil Syst. 2020, 4, 9. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Garbisu, C. Potential Benefits and Risks for Soil Health Derived from the Use of Organic Amendments in Agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef]
- Abdul Halim, N.S.A.; Abdullah, R.; Karsani, S.A.; Osman, N.; Panhwar, Q.A.; Ishak, C.F. Influence of soil amendments on the growth and yield of rice in acidic soil. Agronomy 2018, 8, 165. [Google Scholar] [CrossRef]
- Rakshit, A.; Sarkar, B.; Abhilash, P. In Preface. In Soil Amendments for Sustainability: Challenges and Perspectives; Rakshit, A., Sarkar, B., Abhilash, P., Eds.; CRC Press: Boca Raton, FL, USA, 2018; In Preface. [Google Scholar]
- Chatzistathis, T.; Papaioannou, E.; Giannakoula, A.; Papadakis, I.E. Zeolite and Vermiculite as Inorganic Soil Amendments Modify Shoot-Root Allocation, Mineral Nutrition, Photosystem II Activity and Gas Exchange Parameters of Chestnut (Castanea sativa Mill) Plants. Agronomy 2021, 11, 109. [Google Scholar] [CrossRef]
- Kamali, M.; Sweygers, N.; Al-Salem, S.; Appels, L.; Aminabhavi, T.M.; Dewil, R. Biochar for soil applications-sustainability aspects, challenges and future prospects. Chem. Eng. J. 2022, 428, 131189. [Google Scholar] [CrossRef]
- Głąb, T.; Gondek, K.; Marcińska-Mazur, L.; Jarosz, R.; Mierzwa-Hersztek, M. Effect of organic/inorganic composites as soil amendments on the biomass productivity and root architecture of spring wheat and rapeseed. J. Environ. Manag. 2023, 344, 118628. [Google Scholar] [CrossRef]
- Bogunović, I.; Filipović, V. Mulch as a nature-based solution to halt and reverse land degradation in agricultural areas. Curr. Opin. Environ. Sci. Health 2023, 34, 100488. [Google Scholar] [CrossRef]
- De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef] [PubMed]
- Danso, F.; Agyare, W.A.; Bart-Plange, A. Benefits and costs of cultivating rice using biochar-inorganic fertilizer combinations. J. Sci. Food Agric. 2023, 11, 100491. [Google Scholar] [CrossRef]
- Bhogal, A.; Nicholson, F.A.; Rollett, A.; Taylor, M.; Litterick, A.; Whittingham, M.J.; Williams, J.R. Improvements in the quality of agricultural soils following organic material additions depend on both the quantity and quality of the materials applied. Front. Sustain. Food Syst. 2018, 2, 9. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, W.; Xiong, Y.; Zou, J.; Huang, Q.; Xu, X.; Ren, P.; Huang, G. Impact of short-term organic amendments incorporation on soil structure and hydrology in semiarid agricultural lands. Int. Soil Water Conserv. Res. 2022, 10, 457–469. [Google Scholar] [CrossRef]
- Lal, R. Soil organic matter and water retention. Agron. J. 2020, 112, 3265–3277. [Google Scholar] [CrossRef]
- Argaman, E.; Stavi, I. Runoff Mitigation in Croplands: Evaluating the Benefits of Straw Mulching and Polyacrylamide Techniques. Agronomy 2023, 13, 1935. [Google Scholar] [CrossRef]
- Bista, P.; Ghimire, R.; Machado, S.; Pritchett, L. Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management. Agronomy 2019, 9, 623. [Google Scholar] [CrossRef]
- Masowa, M.M.; Dlamini, P.; Babalola, O.O.; Mulidzi, A.R.; Kutu, F.R. In-field assessment of soil pH and mineralization of phosphorus and potassium following the application of composted winery solid waste in sandy loam Ferric Luvisol. Emir. J. Food Agric. 2023, 35, 666–673. [Google Scholar] [CrossRef]
- Roy, S.; Kashem, M.A. Effects of organic manures in changes of some soil properties at different incubation periods. Open J. Soil Sci. 2014, 4, 43613. [Google Scholar] [CrossRef]
- de Melo, T.R.; Figueiredo, A.; Machado, W.; Tavares Filho, J. Changes on soil structural stability after in natura and composted chicken manure application. Int. J. Recycl. Org. Waste Agric. 2019, 8, 333–338. [Google Scholar] [CrossRef]
- Wang, D.; Lin, J.Y.; Sayre, J.M.; Schmidt, R.; Fonte, S.J.; Rodrigues, J.L.; Scow, K.M. Compost amendment maintains soil structure and carbon storage by increasing available carbon and microbial biomass in agricultural soil–A six-year field study. Geoderma 2022, 427, 116117. [Google Scholar] [CrossRef]
- Rivier, P.; Jamniczky, D.; Nemes, A.; Makó, A.; Barna, G.; Uzinger, N.; Rékási, M.; Farkas, C. Short-term effects of compost amendments to soil on soil structure, hydraulic properties, and water regime. J. Hydrol. Hydromech. 2022, 70, 74–88. [Google Scholar] [CrossRef]
- Jensen, J.L.; Schjønning, P.; Christensen, B.T.; Munkholm, L.J. Suboptimal fertilisation compromises soil physical properties of a hard-setting sandy loam. Soil. Res. 2016, 55, 332–340. [Google Scholar] [CrossRef]
- Parras-Alcántara, L.; Lozano-García, B.; Keesstra, S.; Cerdà, A.; Brevik, E.C. Long-term effects of soil management on ecosystem services and soil loss estimation in olive grove top soils. Sci. Total Environ. 2016, 571, 498–506. [Google Scholar] [CrossRef]
- Fu, Y.; de Jonge, L.W.; Moldrup, P.; Paradelo, M.; Arthur, E. Improvements in soil physical properties after long-term manure addition depend on soil and crop type. Geoderma 2022, 425, 116062. [Google Scholar] [CrossRef]
- Juriga, M.; Aydın, E.; Horák, J.; Chlpík, J.; Rizhiya, E.Y.; Buchkina, N.P.; Balashov, E.V.; Šimanský, V. The importance of initial application and reapplication of biochar in the context of soil structure improvement. J. Hydrol. Hydromech. 2021, 69, 87–97. [Google Scholar] [CrossRef]
- Novotná, J.; Badalíková, B. The Soil Structure Changes under Varying Compost Dosage. Agriculture Pol’nohospodárstvo 2018, 64, 143–148. [Google Scholar] [CrossRef]
- Mujdeci, M.; Isildar, A.A.; Uygur, V.; Alaboz, P.; Unlu, H.; Senol, H. Cooperative effects of field traffic and organic matter treatments on some compaction-related soil properties. Solid Earth 2017, 8, 189–198. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Galic, M.; Kisic, I. Tillage system and farmyard manure impact on soil physical properties, CO2 emissions, and crop yield in an organic farm located in a Mediterranean environment (Croatia). Environ. Earth Sci. 2020, 79, 70. [Google Scholar] [CrossRef]
- Patial, D.; Sankhyan, N.K.; Sharma, R.P.; Dev, P.; Anjali. Assessing Soil Physical and Chemical Properties Under Long Term Fertilization After Forty-Eight Years in North-Western Himalayas. Commun. Soil Sci. Plant Anal. 2022, 53, 2257–2270. [Google Scholar] [CrossRef]
- Blanchet, G.; Gavazov, K.; Bragazza, L.; Sinaj, S. Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system. Agric. Ecosyst. Environ. 2016, 230, 116–126. [Google Scholar] [CrossRef]
- Peake, L.R.; Reid, B.J.; Tang, X. Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma 2014, 235, 182–190. [Google Scholar] [CrossRef]
- Yang, C.D.; Lu, S.G. Effects of five different biochars on aggregation, water retention and mechanical properties of paddy soil: A field experiment of three-season crops. Soil Tillage Res. 2021, 205, 104798. [Google Scholar] [CrossRef]
- Vignozzi, N.; Andrenelli, M.C.; Agnelli, A.E.; Fiore, A.; Pellegrini, S. Short-Term Effect of Different Inputs of Organic Amendments from Olive Oil Industry By-Products on Soil Organic Carbon and Physical Properties. Land 2023, 12, 1628. [Google Scholar] [CrossRef]
- Dugan, I.; Pereira, P.; Barcelo, D.; Bogunovic, I. Conservation practices reverse soil degradation in Mediterranean fig orchards. Geoderma Reg. 2023, 36, e00750. [Google Scholar] [CrossRef]
- Da Silva Mendes, J.; Fernandes, J.D.; Chaves, L.H.G.; Guerra, H.O.C.; Tito, G.A.; de Brito Chaves, I. Chemical and physical changes of soil amended with biochar. Water Air Soil Pollut. 2021, 232, 338. [Google Scholar] [CrossRef]
- Oueriemmi, H.; Kidd, P.; Trasar-Cepeda, C.; Rodríguez-Garrido, B.; Zoghlami, R.; Ardhaoui, K.; Prieto-Fernández, Á.; Moussa, M. Evaluation of Composted Organic Wastes and Farmyard Manure for Improving Fertility of Poor Sandy Soils in Arid Regions. Agriculture 2021, 11, 415. [Google Scholar] [CrossRef]
- Goldberg, N.; Nachshon, U.; Argaman, E.; Ben-Hur, M. Short term effects of livestock manures on soil structure stability, runoff and soil erosion in semi-arid soils under simulated rainfall. Geosciences 2020, 10, 213. [Google Scholar] [CrossRef]
- Li, P.; Kong, D.; Zhang, H.; Xu, L.; Li, C.; Wu, M.; Jiao, J.; Li, D.; Xu, L.; Hu, F. Different regulation of soil structure and resource chemistry under animal-and plant-derived organic fertilizers changed soil bacterial communities. Appl. Soil Ecol. 2021, 165, 104020. [Google Scholar] [CrossRef]
- Golchin, A.; Baldock, J.A.; Oades, J.M. A model linking organic matter decomposition, chemistry, and aggregate dynamics. In Soil Processes and the Carbon Cycle; Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 245–266. [Google Scholar]
- Hartmann, M.; Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18. [Google Scholar] [CrossRef]
- Innangi, M.; Niro, E.; D’Ascoli, R.; Danise, T.; Proietti, P.; Nasini, L.; Regini, L.; Castaldi, S.; Fioretto, A. Effects of olive pomace amendment on soil enzyme activities. Appl. Soil Ecol. 2017, 119, 242–249. [Google Scholar] [CrossRef]
- Fernández-Hernández, A.; Roig, A.; Serramiá, N.; Civantos, C.G.O.; Sánchez-Monedero, M.A. Application of compost of two-phase olive mill waste on olive grove: Effects on soil, olive fruit and olive oil quality. Waste Manag. 2014, 34, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Siedt, M.; Schäffer, A.; Smith, K.E.; Nabel, M.; Roß-Nickoll, M.; van Dongen, J.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Feng, G.; Tewolde, H.; Yang, M.; Zhang, F. Soil, biochar, and nitrogen loss to runoff from loess soil amended with biochar under simulated rainfall. J. Hydrol. 2020, 591, 125318. [Google Scholar] [CrossRef]
- Amlinger, F.; Peyr, S.; Geszti, J.; Dreher, P.; Weinfurtner, K.; Nortcliff, S. Evaluierung der Nachhaltig Positiven Wirkung von Kompost auf Die Fruchtbarkeit und Produktivität von Böden; Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft, Lebensministerium: Vienna, Austria, 2006; p. 245.
- Galic, M.; Bogunovic, I. Use of organic amendment from olive and wine industry in agricultural land: A review. Agric. Conspec. Sci. 2018, 83, 123–129. [Google Scholar]
- Blanco-Canqui, H.; Hergert, G.W.; Nielsen, R.A. Cattle manure application reduces soil compactibility and increases water retention after 71 years. Soil Sci. Soc. Am. J. 2015, 79, 212–223. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Wang, T. Effect of Replacing Mineral Fertilizer with Manure on Soil Water Retention Capacity in a Semi-Arid Region. Agronomy 2023, 13, 2272. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Z.; Liang, L.; Yang, B.; Ding, R.; Nie, J.; Wang, J. Impacts of manure application on soil environment, rainfall use efficiency and crop biomass under dryland farming. Sci. Rep. 2016, 6, 20994. [Google Scholar] [CrossRef]
- Yessoufou, M.W.; Tovihoudji, P.G.; Zakari, S.; Adjogboto, A.; Djenontin, A.J.; Akponikpè, P.I. Hill-placement of manure and fertilizer for improving maize nutrient-and water-use efficiencies in the northern Benin. Heliyon 2023, 9, E17823. [Google Scholar] [CrossRef]
- Liu, C.A.; Li, F.R.; Zhou, L.M.; Zhang, R.H.; Lin, S.L.; Wang, L.J.; Siddique, K.H.M.; Li, F.M. Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment. Agric. Water Manag. 2013, 117, 123–132. [Google Scholar] [CrossRef]
- Miller, J.J.; Beasley, B.W.; Drury, C.F.; Larney, F.J.; Hao, X.; Chanasyk, D.S. Influence of long-term feedlot manure amendments on soil hydraulic conductivity, water-stable aggregates, and soil thermal properties during the growing season. Can. J. Soil Sci. 2018, 98, 421–435. [Google Scholar] [CrossRef]
- Ankenbauer, K.J.; Loheide, S.P. The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada, CA. Hydrol. Process. 2017, 31, 891–901. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Ok, Y.S.; Niazi, N.K.; Rizwan, M.; Al-Wabel, M.I.; Usman, A.R.; Moon, D.H.; Lee, S.S. Effect of corn residue biochar on the hydraulic properties of sandy loam soil. Sustainability 2017, 9, 266. [Google Scholar] [CrossRef]
- Baiamonte, G.; Crescimanno, G.; Parrino, F.; De Pasquale, C. Effect of biochar on the physical and structural properties of a sandy soil. Catena 2019, 175, 294–303. [Google Scholar] [CrossRef]
- Ni, J.J.; Bordoloi, S.; Shao, W.; Garg, A.; Xu, G.; Sarmah, A.K. Two-year evaluation of hydraulic properties of biochar-amended vegetated soil for application in landfill cover system. Sci. Total Environ. 2020, 712, 136486. [Google Scholar] [CrossRef]
- Rabbi, S.M.; Minasny, B.; Salami, S.T.; McBratney, A.B.; Young, I.M. Greater, but not necessarily better: The influence of biochar on soil hydraulic properties. Eur. J. Soil Sci. 2021, 72, 2033–2048. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, S.; Wang, R.; Chen, Y.; Siddique, K.H.; Xia, G.; Chi, D. Ameliorative roles of biochar-based fertilizer on morpho-physiological traits, nutrient uptake and yield in peanut (Arachis hypogaea L.) under water stress. Agric. Water Manag. 2021, 257, 107129. [Google Scholar] [CrossRef]
- Lim, T.J.; Spokas, K.A.; Feyereisen, G.; Novak, J.M. Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere 2016, 142, 136–144. [Google Scholar] [CrossRef]
- Barnes, R.T.; Gallagher, M.E.; Masiello, C.A.; Liu, Z.; Dugan, B. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PLoS ONE 2014, 9, e108340. [Google Scholar] [CrossRef]
- Chang, Y.; Rossi, L.; Zotarelli, L.; Gao, B.; Shahid, M.A.; Sarkhosh, A. Biochar improves soil physical characteristics and strengthens root architecture in Muscadine grape (Vitis rotundifolia L.). Chem. Biol. Technol. Agric. 2021, 8, 7. [Google Scholar] [CrossRef]
- Bondì, C.; Castellini, M.; Iovino, M. Compost amendment impact on soil physical quality estimated from hysteretic water retention curve. Water 2022, 14, 1002. [Google Scholar] [CrossRef]
- Brown, S.; Cotton, M. Changes in Soil Properties and Carbon Content Following Compost Application: Results of On-farm Sampling. Compost Sci. Util. 2011, 19, 88–97. [Google Scholar] [CrossRef]
- Adugna, G. A review on impact of compost on soil properties, water use and crop productivity. Acad. Res. J. Agric. Sci. Res. 2016, 4, 93–104. [Google Scholar] [CrossRef]
- Kranz, C.N.; McLaughlin, R.A.; Amoozegar, A.; Heitman, J.L. Influence of compost amendment rate and level of compaction on the hydraulic functioning of soils. J. Am. Water Resour. Assoc. 2023, 59, 1115–1127. [Google Scholar] [CrossRef]
- Assefa, S.; Tadesse, S. The principal role of organic fertilizer on soil properties and agricultural productivity–A review. Agric. Res. Technol. Open Access 2019, 22, 556192. [Google Scholar] [CrossRef]
- Abujabhah, I.S.; Bound, S.A.; Doyle, R.; Bowman, J.P. Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Appl. Soil Ecol. 2016, 98, 243. [Google Scholar] [CrossRef]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, P. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soils Sediments 2019, 19, 2405–2416. [Google Scholar] [CrossRef]
- Domingues, R.R.; Sánchez-Monedero, M.A.; Spokas, K.A.; Melo, L.C.A.; Trugilho, P.F.; Valenciano, M.N.; Silva, C.A. Enhancing Cation Exchange Capacity of Weathered Soils Using Biochar: Feedstock, Pyrolysis Conditions and Addition Rate. Agronomy 2020, 10, 824. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.; Greenberg, I.; Ludwig, B.; Hippich, L.; Fischer, D.; Glaser, B.; Kaiser, M. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agric. Ecosyst. Environ. 2020, 295, 106882. [Google Scholar] [CrossRef]
- Spaeth, K.E., Jr. Soil Health on the Farm, Ranch, and in the Garden; Springer: Cham, Switzerland, 2020; pp. 227–295. [Google Scholar] [CrossRef]
- Barker, A.V. Management of Farm Manures. In Science and Technology of Organic Farming, 1st ed.; Barker, A.V., Ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 81–103. [Google Scholar] [CrossRef]
- Bateni, C.; Ventura, M.; Tonon, G.; Pisanelli, A. Soil carbon stock in olive groves agroforestry systems under different management and soil characteristics. Agroforest Syst. 2021, 95, 951–961. [Google Scholar] [CrossRef]
- Lacolla, G.; Fortunato, S.; Nigro, D.; De Pinto, M.C.; Mastro, M.A.; Caranfa, D.; Gadaleta, A.; Cucci, G. Effects of mineral and organic fertilization with the use of wet olive pomace on durum wheat performance. Int. J. Recycl. Org. Waste Agric. 2019, 8 (Suppl. S1), 245–254. [Google Scholar] [CrossRef]
- Mpanga, I.K.; Neumann, G.; Brown, J.K.; Blankinship, J.; Tronstad, R.; Idowu, O. Grape pomace’s potential on semi-arid soil health enhances performance of maize, wheat, and grape crops. JPNSS 2023, 186, 276–285. [Google Scholar] [CrossRef]
- Ozlu, E.; Kumar, S. Response of soil organic carbon, pH, electrical conductivity, and water stable aggregates to long-term annual manure and inorganic fertilizer. Soil Sci. Soc. Am. J. 2018, 82, 1243–1251. [Google Scholar] [CrossRef]
- Ouyang, W.; Wu, Y.; Hao, Z.; Zhang, Q.; Bu, Q.; Gao, X. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development. Sci. Total Environ. 2018, 613, 798–809. [Google Scholar] [CrossRef]
- Sharma, A.; Tiwari, K.N.; Bhadoria, P.B.S. Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environ. Monit. Assess. 2011, 173, 789–801. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth-Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.H.; Zhang, Z.H.; Jia, L.Z. Impact of tillage erosion on water erosion in a hilly landscape. Sci. Total Environ. 2016, 551, 522–532. [Google Scholar] [CrossRef]
- Shi, Z.H.; Fang, N.F.; Wu, F.Z.; Wang, L.; Yue, B.J.; Wu, G.L. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. J. Hydrol. 2012, 454, 123–130. [Google Scholar] [CrossRef]
- Bajracharya, R.M.; Lal, R.; Kimble, J.M. Soil Organic Carbon Distribution in Aggregates and Primary Particle Fractions as Influenced by Erosion Phases and Landscape Positions. In Soil Processes and the Carbon Cycle; Lal, R., Kimble, J.M., Follet, R.F., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1997; pp. 353–368. [Google Scholar]
- Stocking, M. Soil erosion and land degradation. In Environmental Science for Environmental Management, 2nd ed.; O’Riordan, T., Ed.; Routledge: Oxfordshire, UK, 2000; pp. 287–321. [Google Scholar] [CrossRef]
- Kadlec, V.; Procházková, E.; Urbanová, J.; Tippl, M.; Holubík, O. Soil Organic Carbon Dynamics and its Influence on the Soil Erodibility Factor. Soil Water Res. 2012, 7, 97–108. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Kongsurakan, P.; Hatano, R. Soil organic carbon and soil erodibility response to various land-use changes in northern Thailand. Catena 2022, 219, 106595. [Google Scholar] [CrossRef]
- Rose, N.L.; Yang, H.; Turner, S.D.; Simpson, G.L. An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland, UK. Geochim. Cosmochim. Acta 2012, 82, 113–135. [Google Scholar] [CrossRef]
- Huang, B.; Yuan, Z.; Li, D.; Zheng, M.; Nie, X.; Liao, Y. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: A review. Environ. Sci. Process. Impacts 2020, 22, 1596–1615. [Google Scholar] [CrossRef]
- Nearing, M.A.; Xie, Y.; Liu, B.; Ye, Y. Natural and anthropogenic rates of soil erosion. Int. Soil Water Conserv. Res. 2017, 5, 77–84. [Google Scholar] [CrossRef]
- Lal, R. Soil conservation and ecosystem services. Int. Soil Water Conserv. Res. 2014, 2, 36–47. [Google Scholar] [CrossRef]
- Xiong, M.; Sun, R.; Chen, L. Effects of soil conservation techniques on water erosion control: A global analysis. Sci. Total Environ. 2018, 645, 753–760. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Tsunekawa, A.; Nyssen, J.; Poesen, J.; Tsubo, M.; Tsegaye Meshesha, D.; Schütt, B.; Adgo, E.; Tegegne, F. Soil erosion and conservation in Ethiopia: A review. Prog. Phys. Geogr. 2015, 39, 750–774. [Google Scholar] [CrossRef]
- Rickson, R.J. Can control of soil erosion mitigate water pollution by sediments? Sci. Total Environ. 2014, 468, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching practices for reducing soil water erosion: A review. Earth-Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Chen, D.; Wei, W.; Chen, L. Effects of terracing practices on water erosion control in China: A meta-analysis. Earth-Sci. Rev. 2017, 173, 109–121. [Google Scholar] [CrossRef]
- Baumhardt, R.L.; Stewart, B.A.; Sainju, U.M. North American soil degradation: Processes, practices, and mitigating strategies. Sustainability 2015, 7, 2936–2960. [Google Scholar] [CrossRef]
- Peng, X.; Zhu, Q.H.; Xie, Z.B.; Darboux, F.; Holden, N.M. The impact of manure, straw and biochar amendments on aggregation and erosion in a hillslope Ultisol. Catena 2016, 138, 30–37. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Q.; Liu, X.; Jing, X.; Shi, C.; Zheng, L. Organic manure input and straw cover improved the community structure of nitrogen cycle function microorganism driven by water erosion. Int. Soil Water Conserv. Res. 2022, 10, 129–142. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, F.; Yang, M.; Zhang, J.; Xie, Y. Impacts of biochar application rates and particle sizes on runoff and soil loss in small cultivated loess plots under simulated rainfall. Sci. Total Environ. 2018, 649, 1403–1413. [Google Scholar] [CrossRef] [PubMed]
- Alaoui, A.; Rogger, M.; Peth, S.; Blöschl, G. Does soil compaction increase floods? A review. J. Hydrol. 2018, 557, 631–642. [Google Scholar] [CrossRef]
- Kim, H.; Anderson, S.H.; Motavalli, P.P.; Gantzer, C.J. Compaction effects on soil macropore geometry and related parameters for an arable field. Geoderma 2010, 160, 244–251. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Bourrie, G.; Trolard, F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 2013, 33, 291–309. [Google Scholar] [CrossRef]
- Celik, I.; Gunal, H.; Budak, M.; Akpinar, C. Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma 2010, 160, 236–243. [Google Scholar] [CrossRef]
- Gao, W.; Watts, C.W.; Ren, T.; Whalley, W.R. The effects of compaction and soil drying on penetrometer resistance. Soil Tillage Res. 2012, 125, 14–22. [Google Scholar] [CrossRef]
- Hargreaves, P.R.; Baker, K.L.; Graceson, A.; Bonnett, S.; Ball, B.C.; Cloy, J.M. Soil compaction effects on grassland silage yields and soil structure under different levels of compaction over three years. Eur. J. Agron. 2019, 109, 125916. [Google Scholar] [CrossRef]
- Shah, A.N.; Tanveer, M.; Shahzad, B.; Yang, G.; Fahad, S.; Ali, S.; Bukhari, M.A.; Tung, S.A.; Hafeez, A.; Souliyanonh, B. Soil compaction effects on soil health and cropproductivity: An overview. Environ. Sci. Pollut. Res. 2017, 24, 10056–10067. [Google Scholar] [CrossRef] [PubMed]
- Munkholm, L.J.; Heck, R.J.; Deen, B. Long-term rotation and tillage effects on soil structure and crop yield. Soil Tillage Res. 2013, 127, 85–91. [Google Scholar] [CrossRef]
- Capello, G.; Biddoccu, M.; Ferraris, S.; Cavallo, E. Effects of tractor passes on hydrological and soil erosion processes in tilled and grassed vineyards. Water 2019, 11, 2118. [Google Scholar] [CrossRef]
- Alaoui, A.; Lipiec, J.; Gerke, H.H. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil Tillage Res. 2011, 115, 1–15. [Google Scholar] [CrossRef]
- Prats, S.A.; Malvar, M.C.; Coelho, C.O.A.; Wagenbrenner, J.W. Hydrologic and erosion responses to compaction and added surface cover in post-fire logged areas: Isolating splash, interrill and rill erosion. J. Hydrol. 2019, 575, 408–419. [Google Scholar] [CrossRef]
- Ahmadi, I.; Ghaur, H. Effects of soil moisture content and tractor wheeling intensity on traffic-induced soil compaction. J. Cent. Eur. Agric. 2015, 16, 489–502. [Google Scholar] [CrossRef]
- Botta, G.F.; Tolon-Becerra, A.; Tourn, M.; Lastra-Bravo, X.; Rivero, D. Agricultural traffic: Motion resistance and soil compaction in relation to tractor design and different soil conditions. Soil Tillage Res. 2012, 120, 92–98. [Google Scholar] [CrossRef]
- Becerra, A.T.; Botta, G.F.; Bravo, X.L.; Tourn, M.; Melcon, F.B.; Vazquez, J.; Rivero, D.; Linares, P.; Nardon, G. Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchard in Almería España. Soil Tillage Res. 2010, 107, 49–56. [Google Scholar] [CrossRef]
- Elaoud, A.; Chehaibi, S. Soil compaction due to tractor traffic. J. Fail. Anal. Prev. 2011, 11, 539–545. [Google Scholar] [CrossRef]
- Shaheb, M.R.; Venkatesh, R.; Shearer, S.A. A review on the effect of soil compaction and its management for sustainable crop production. Biosyst. Eng. 2021, 46, 417–439. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.K.; Misra, A.K.; Ghosh, P.K.; Hati, K.M. Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean. Soil Tillage Res. 2010, 110, 115–125. [Google Scholar] [CrossRef]
- Walters, R.D.; White, J.G. Biochar in situ decreased bulk density and improved soil-water relations and indicators in Southeastern US Coastal Plain Ultisols. Soil Sci. 2018, 183, 99–111. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.; Sun, C.; Yang, K.; Zheng, J. Differences in soil physical properties caused by applying three organic amendments to loamy clay soil under field conditions. J. Soils Sediments 2022, 22, 43–55. [Google Scholar] [CrossRef]
- Bogunovic, I.; Dugan, I.; Pereira, P.; Filipovic, V.; Filipovic, L.; Krevh, V.; Defteradovic, J.; Matisic, M.; Kisic, I. Effects of Biochar and Cattle Manure under Different Tillage Management on Soil Properties and Crop Growth in Croatia. Agriculture 2023, 13, 2128. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Chamizo, S.; Cantón, Y.; Lázaro, R.; Solé-Benet, A.; Domingo, F. Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems. Ecosystems 2012, 15, 148–161. [Google Scholar] [CrossRef]
- Indoria, A.K.; Rao, C.S.; Sharma, K.L.; Reddy, K.S. Conservation agriculture–A panacea to improve soil physical health. Curr. Sci. 2017, 112, 52–61. Available online: https://www.jstor.org/stable/24911616 (accessed on 6 December 2023). [CrossRef]
- Šimanský, V.; Jonczak, J. Aluminium and iron oxides affect the soil structure in a long-term mineral fertilised soil. J. Soils Sediments 2020, 20, 2008–2018. [Google Scholar] [CrossRef]
- Fujii, K.; Funakawa, S.; Kosaki, T. Soil acidification: Natural processes and human impact. Pedologist 2012, 55, 415–425. [Google Scholar] [CrossRef]
- En-Qing, H.O.U.; Xiang, H.M.; Jian-Li, L.I.; Jiong, L.I.; Da-Zhi, W.E.N. Soil acidification and heavy metals in urban parks as affected by reconstruction intensity in a humid subtropical environment. Pedosphere 2015, 25, 82–92. [Google Scholar] [CrossRef]
- Msimbira, L.A.; Smith, D.L. The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Front. Sustain. Food Syst. 2020, 4, 106. [Google Scholar] [CrossRef]
- Fageria, N.K.; Nascente, A.S. Management of soil acidity of South American soils for sustainable crop production. Adv. Agron. 2014, 128, 221–275. [Google Scholar] [CrossRef]
- Han, J.; Shi, J.; Zeng, L.; Xu, J.; Wu, L. Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils. Environ. Sci. Pollut. Res. 2015, 22, 2976–2986. [Google Scholar] [CrossRef] [PubMed]
- Bojórquez-Quintal, E.; Escalante-Magaña, C.; Echevarría-Machado, I.; Martínez-Estévez, M. Aluminum, a friend or foe of higher plants in acid soils. Front. Plant Sci. 2017, 8, 1767. [Google Scholar] [CrossRef] [PubMed]
- Penn, C.J.; Camberato, J.J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef]
- Ch’ng, H.Y.; Ahmed, O.S.; Majid, N.M.A. Assessment of soil carbon storage in a tropical rehabilitated forest. Int. J. Phys. Sci. 2011, 6, 6210–6219. [Google Scholar] [CrossRef]
- Bolan, N.; Sarmah, A.K.; Bordoloi, S.; Bolan, S.; Padhye, L.P.; Van Zwieten, L.; Sooriyakumar, P.; Khan, B.A.; Ahmad, M.; Solaiman, Z.M.; et al. Soil acidification and the liming potential of biochar. Environ. Pollut. 2023, 317, 120632. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, X.; Tang, C.; Muhammad, N.; Wu, J.; Brookes, P.C.; Xu, J. Potential role of biochars in decreasing soil acidification-a critical review. Sci. Total Environ. 2017, 581, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Goulding, K.W.T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, Q.; de Vries, W.; Ros, G.H.; Chen, X.; Muneer, M.A.; Zhang, F.; Wu, L. Effects of soil amendments on soil acidity and crop yields in acidic soils: A world-wide meta-analysis. J. Environ. Manag. 2023, 345, 118531. [Google Scholar] [CrossRef]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Nest, T.V.; Ruysschaert, G.; Vandecasteele, B.; Houot, S.; Baken, S.; Smolders, E.; Cougnon, M.; Reheul, D.; Merckx, R. The long term use of farmyard manure and compost: Effects on P availability, orthophosphate sorption strength and P leaching. Agric. Ecosyst. Environ. 2016, 216, 23–33. [Google Scholar] [CrossRef]
- Mockeviciene, I.; Repsiene, R.; Amaleviciute-Volunge, K.; Karcauskiene, D.; Slepetiene, A.; Lepane, V. Effect of long-term application of organic fertilizers on improving organic matter quality in acid soil. Arch. Agron. Soil Sci. 2022, 68, 1192–1204. [Google Scholar] [CrossRef]
- Vašák, F.; Černý, J.; Buráňová, Š.; Kulhanek, M.; Balík, J. Soil pH changes in long-term field experiments with different fertilizing systems. Soil Water Res. 2015, 10, 19–23. [Google Scholar] [CrossRef]
- Aziz, M.A.; Ahmad, H.R.; Corwin, D.L.; Sabir, M.; Hakeem, K.R.; Öztürk, M. Influence of farmyard manure on retention and availability of nickel, zinc and lead in metal-contaminated calcareous loam soils. J. Environ. Eng. Landsc. Manag. 2017, 25, 289–296. [Google Scholar] [CrossRef]
- Hale, S.E.; Nurida, N.L.; Mulder, J.; Sørmo, E.; Silvani, L.; Abiven, S.; Joseph, S.; Taherymoosavi, S.; Cornelissen, G. The effect of biochar, lime and ash on maize yield in a long-term field trial in a Ultisol in the humid tropics. Sci. Total Environ. 2020, 719, 137455. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Julson, J.L. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 2014, 60, 393–404. [Google Scholar] [CrossRef]
- Peña, D.; Fernández, D.; Albarrán, A.; Gómez, S.; Martín, C.; Sánchez-Terrón, J.; Vicente, L.; López-Piñeiro, A. Using olive mill waste compost with sprinkler irrigation as a strategy to achieve sustainable rice cropping under Mediterranean conditions. Agron. Sustain. Dev. 2022, 42, 36. [Google Scholar] [CrossRef]
- Aranda, V.; Macci, C.; Peruzzi, E.; Masciandaro, G. Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost. J. Environ. Manag. 2015, 147, 278–285. [Google Scholar] [CrossRef]
- Perri, S.; Molini, A.; Hedin, L.O.; Porporato, A. Contrasting effects of aridity and seasonality on global salinization. Nat. Geosci. 2022, 15, 375–381. [Google Scholar] [CrossRef]
- Bui, E.N. Soil salinity: A neglected factor in plant ecology and biogeography. J. Arid Environ. 2013, 92, 14–25. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef]
- Abdi, M.R.; Askarian, A.; Safdari Seh Gonbad, M. Effects of sodium and calcium sulphates on volume stability and strength of lime-stabilized kaolinite. Bull. Eng. Geol. Environ. 2020, 79, 941–957. [Google Scholar] [CrossRef]
- Shabtai, I.A.; Shenker, M.; Edeto, W.L.; Warburg, A.; Ben-Hur, M. Effects of land use on structure and hydraulic properties of Vertisols containing a sodic horizon in northern Ethiopia. Soil Tillage Res. 2014, 136, 19–27. [Google Scholar] [CrossRef]
- Rengasamy, P. Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol. 2010, 37, 613–620. [Google Scholar] [CrossRef]
- de Oliveira, A.B.; Alencar, N.L.M.; Gomes-Filho, E. Comparison between the water and salt stress effects on plant growth and development. Responses Org. Water Stress 2013, 4, 67–94. [Google Scholar] [CrossRef]
- Grieve, C.M.; Grattan, S.R.; Maas, E.V. Plant salt tolerance. In ASCE Manual and Reports on Engineering Practice No. 71 Agricultural Salinity Assessment and Management, 2nd ed.; Wallender, W.W., Tanji, K.K., Eds.; ASCE: Reston, VA, USA, 2012; pp. 405–459. [Google Scholar]
- Duan, M.; Liu, G.; Zhou, B.; Chen, X.; Wang, Q.; Zhu, H.; Li, Z. Effects of modified biochar on water and salt distribution and water-stable macro-aggregates in saline-alkaline soil. J. Soils Sediments 2021, 21, 2192–2202. [Google Scholar] [CrossRef]
- Mahmoodabadi, M.; Yazdanpanah, N.; Sinobas, L.R.; Pazira, E.; Neshat, A. Reclamation of calcareous saline sodic soil with different amendments (I): Redistribution of soluble cations within the soil profile. Agric. Water Manag. 2013, 120, 30–38. [Google Scholar] [CrossRef]
- Alcívar, M.; Zurita-Silva, A.; Sandoval, M.; Muñoz, C.; Schoebitz, M. Reclamation of saline–sodic soils with combined amendments: Impact on quinoa performance and biological soil quality. Sustainability 2018, 10, 3083. [Google Scholar] [CrossRef]
- Mahdy, A.M. Comparative effects of different soil amendments on amelioration of saline-sodic soils. Soil Water Res. 2011, 6, 205–216. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.K. Reclamation of Saline-Sodic Soils for Sustainable Agriculture in Egypt. In Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry, 1st ed.; Negm, A., Abu-hashim, M., Eds.; Springer: Cham, Switzerland, 2018; Volume 77, pp. 69–92. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Zimmermann, M. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res. 2019, 188, 41–52. [Google Scholar] [CrossRef]
- McDaniel, M.D.; Tiemann, L.K.; Grandy, A.S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 2014, 24, 560–570. [Google Scholar] [CrossRef]
Rn | Texture | Duration | Tillage | Amendment | Base Material | Rate (t ha−1) | BD | MWD | TP | WSA | SWC |
---|---|---|---|---|---|---|---|---|---|---|---|
[31] | L | ST | Con | Ct | 0 | - | |||||
Com | Sheep manure | 2 | NE | ||||||||
4 | D | ||||||||||
6 | D | ||||||||||
8 | NE | ||||||||||
10 | D | ||||||||||
Str | Maize | 6 | D | ||||||||
[35] | SL | ST | ND | Ct | 0 | - | |||||
Com | Winery solid waste | 5 | NE | ||||||||
10 | NE | ||||||||||
20 | NE | ||||||||||
40 | NE | ||||||||||
[37] | C | ST | ND | Ct | 0 | - | |||||
Com | Sheep manure | 4.5 | I | ||||||||
9 | I | ||||||||||
13.5 | I | ||||||||||
18 | I | ||||||||||
Fm | Sheep manure | 4.5 | I | ||||||||
9 | I | ||||||||||
13.5 | I | ||||||||||
18 | I | ||||||||||
[38] | SiCL | LT | Con | Com | Poultry manure | 8.97 | NE | ||||
8.97 | I | ||||||||||
Bc | Walnut shells | 10 | NE | ||||||||
10 | NE | ||||||||||
[39] | S | ND | ND | Dd | Food waste | 20 | NE | NE | |||
Vcom | Digestate food waste | 20 | NE | NE | |||||||
Com | Sewage sludge, green waste | 20 | NE | I | |||||||
Vcom | Sewage sludge | 20 | NE | I | |||||||
Ct | - | - | |||||||||
LC | Dd | Food waste | 20 | NE | |||||||
Vcom | Digestate food waste | 20 | NE | I | |||||||
Com | Sewage sludge, green waste | 20 | NE | I | |||||||
Vcom | Sewage sludge | 20 | NE | I | |||||||
Ct | - | - | |||||||||
[40] | SL | LT | ND | Ct | 0 | - | - | - | |||
FYM | Solid + liquid phase | 15 + 4 | I | I | I | ||||||
[41] | SiC | LT | Con | Ct | - | - | |||||
M | Olive leaves | 236 | D | NE | |||||||
Pom | Olive mill waste | 270 | D | NE | |||||||
[42] | SiC | LT | Con | Bf | 0 | - | - | - | |||
Ct | 0 | NE | I | NE | |||||||
FYM | Cattle manure | 38 | D | I | NE | ||||||
SiL | LT | Con | Ct | 0 | - | - | - | ||||
FYM | Cattle barn | 20 | NE | NE | NE | ||||||
30 | NE | NE | NE | ||||||||
SL | LT | Con | Ct | 0 | - | - | - | ||||
FYM | Cattle slurry | 25 | NE | NE | I | ||||||
37.5 | D | NE | I | ||||||||
[43] | SiL | LT | ND | Bc | Paper fiber | 10 | I | ||||
20 | I | ||||||||||
[44] | L | LT | Con | Ct | 0 | - | |||||
Com | Grape pomace, poultry droppings, mown grass, and straw | 30 | I | ||||||||
60 | I | ||||||||||
[45] | C | LT | Con | Ct | 0 | - | - | ||||
Gm | ND | ND | D | I | |||||||
FYM | 35 | D | I | ||||||||
[46] | SiC | LT | Con | Ct | 0 | - | |||||
Min | FYM | ND | 15 | D | NE | ||||||
Red | 30 | D | NE | ||||||||
[47] | SiL | LT | ND | Ct | 0 | - | - | ||||
FYM | ND | 10 | D | I | |||||||
[48] | L | LT | Con | Ct | 0 | - | |||||
FYM | Cattle manure—composted | 10 | NE | ||||||||
[49] | LS | ST | ND | Ct | 0 | D | I | ||||
SL | Bc | Pine wood mill waste | 4 | - | I | ||||||
20 | D | I | |||||||||
L | 100 | - | - | ||||||||
100 | - | I | |||||||||
SiL | 100 | D | - | ||||||||
SiCL | 100 | D | - | ||||||||
100 | D | I | |||||||||
[50] | SiL | ND | Htt | Ct | 0 | - | - | ||||
Bc | Rice straw | 0; 11.25; 22.5 | NE | I | NE | ||||||
Maize straw | 0; 11.25; 22.5 | NE | I | NE | |||||||
Wheat straw | 0; 11.25; 22.5 | NE | I | I | |||||||
Rice husk | 0; 11.25; 22.5 | NE | I | I | |||||||
Bamboo | 0; 11.25; 22.5 | NE | I | I | |||||||
[51] | CL | LT | Conservation | Ct | ND | 0.015 per plant | - | - | - | ||
Omw | 0.8 per plant | NE | NE | NE | |||||||
Com | Olive pomace | 0.06 per plant | NE | NE | NE | ||||||
0.12 per plant | NE | I | NE | ||||||||
[52] | SiL | ST | Con | Ct | 0 | - | - | ||||
Com | Olive pomace | 4 | NE | NE | D | ||||||
[53] | SL | ST | ND | Ct | 0 | - | - | - | |||
Bc | Poultry litter waste | 12.39 | D | I | I | ||||||
24.78 | D | I | I | ||||||||
37.17 | D | I | I | ||||||||
49.56 | D | I | I | ||||||||
61.95 | D | I | I |
Rn | Texture | Duration | Tillage | Amendment | Base Material | Rate (t ha−1) | pH | SOM | TN | P | K | C |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[31] | L | ST | Con | Ct | 0 | - | - | |||||
Com | Sheep manure | 2 | D | NE | ||||||||
4 | D | I | ||||||||||
6 | D | I | ||||||||||
8 | NE | I | ||||||||||
10 | D | I | ||||||||||
Str | Maize | 6 | NE | I | ||||||||
[34] | SiL | ST | Con | Ct | 0 | - | - | - | ||||
Bc | Douglas fir | 11.2 | I | I | D | I | ||||||
22.4 | I | I | D | I | ||||||||
44.8 | I | NE | D | I | ||||||||
[35] | SL | ST | ND | Ct | 0 | - | ||||||
Com | Winery solid waste | 5 | NE | |||||||||
10 | I | |||||||||||
20 | I | |||||||||||
40 | I | |||||||||||
[36] | ND | ST | ND | Ct | 0 | - | ||||||
FYM | Cow dung | 10 | D | |||||||||
Chicken manure | 10 | D | ||||||||||
Cow dung + chicken manure | 10 | D | ||||||||||
[37] | C | ST | ND | Ct | 0 | - | - | - | ||||
Com | Sheep manure | 4.5 | NE | NE | NE | |||||||
9 | NE | NE | NE | |||||||||
13.5 | NE | I | NE | |||||||||
18 | NE | I | NE | |||||||||
FYM | 4.5 | NE | NE | NE | ||||||||
9 | NE | NE | NE | |||||||||
13.5 | NE | I | NE | |||||||||
18 | NE | I | NE | |||||||||
[40] | SL | LT | ND | Ct | 0 | - | ||||||
FYM | Solid + liquid phase | 15 + 4 | I | |||||||||
[41] | SiC | LT | Con | Ct | - | - | ||||||
M | Olive leaves | 236 | NE | I | ||||||||
Pom | Olive mill waste | 270 | NE | I | ||||||||
[42] | SiC | LT | Con | Bf | 0 | - | - | - | - | - | ||
Ct | 0 | NE | NE | NE | D | D | ||||||
FYM | Cattle manure with straw | 38 | NE | I | I | I | I | |||||
SiL | Ct | 0 | - | - | - | - | - | |||||
FYM | Cattle barn | 20 | NE | NE | NE | NE | NE | |||||
30 | NE | NE | NE | NE | NE | |||||||
SL | Ct | 0 | - | - | - | - | - | |||||
FYM | Cattle slurry | 25 | NE | I | I | I | I | |||||
37.5 | NE | I | I | I | I | |||||||
[47] | SiL | LT | ND | Ct | 0 | - | - | - | - | |||
FYM | ND | 10 | I | I | I | I | ||||||
[48] | L | LT | Con | Ct | 0 | - | - | - | - | - | ||
Residues | NE | I | NE | NE | NE | |||||||
FYM | Cattle manure—composted | 10 | NE | I | NE | NE | NE | |||||
60 | NE | I | I | I | ||||||||
[52] | SiL | ST | Con | Ct | 0 | - | - | - | - | |||
Com | Olive pomace | 4 | NE | NE | NE | I | ||||||
[53] | SL | ST | ND | Ct | 0 | - | - | - | - | |||
Bc | Poultry litter waste | 2.02 | I | I | I | I | ||||||
4.05 | I | I | I | I | ||||||||
6.07 | I | I | I | I | ||||||||
8.1 | I | I | I | I | ||||||||
10.12 | I | I | I | I | ||||||||
[54] | S | LT | Htt | Ct | 0 | - | - | - | - | |||
FYM | Sheep manure with straw | 20 | D | NE | NE | NE | ||||||
40 | D | I | I | NE | ||||||||
60 | D | I | I | NE | ||||||||
Com | Sewage sludge | 20 | D | NE | I | NE | ||||||
40 | D | I | I | NE | ||||||||
60 | D | I | I | NE | ||||||||
Municipal solid waste | 20 | D | NE | NE | NE | |||||||
40 | NE | NE | NE | NE |
Rn | Texture | Duration | Tillage | Amendment | Base Material | Rate (t ha−1) | Na | Ca | Mg | S |
---|---|---|---|---|---|---|---|---|---|---|
[34] | SiL | ST | ND | Ct | 0 | - | ||||
Bc | Douglas fir | 11.2 | I | |||||||
22.4 | I | |||||||||
44.8 | I | |||||||||
[37] | C | ST | ND | Ct | 0 | - | - | |||
Com | Sheep manure | 4.5 | NE | NE | ||||||
9 | NE | NE | ||||||||
13.5 | NE | NE | ||||||||
18 | NE | NE | ||||||||
Fm | Sheep manure | 4.5 | NE | NE | ||||||
9 | NE | NE | ||||||||
13.5 | NE | NE | ||||||||
18 | NE | NE | ||||||||
[47] | SiL | LT | ND | Ct | 0 | - | ||||
FYM | ND | 10 | I | |||||||
[52] | SiL | ST | Con | Ct | 0 | - | ||||
Com | Olive pomace | 4 | NE | |||||||
[53] | SL | ST | ND | Ct | 0 | - | ||||
Bc | Poultry litter waste | 2.02 | D | |||||||
4.05 | D | |||||||||
6.07 | D | |||||||||
8.1 | D | |||||||||
10.12 | D | |||||||||
[54] | S | LT | Htt | Ct | 0 | - | - | - | ||
FYM | Sheep manure with straw | 20 | NE | NE | NE | |||||
40 | NE | NE | I | |||||||
60 | NE | NE | I | |||||||
Com | Sewage sludge | 20 | NE | NE | NE | |||||
40 | NE | NE | NE | |||||||
60 | NE | I | I | |||||||
Municipal solid waste | 20 | NE | NE | NE | ||||||
40 | NE | NE | NE | |||||||
60 | NE | NE | I |
Rn | Texture | Study Duration | Amendment | Base Material | Rate | IR | Runoff | SL |
---|---|---|---|---|---|---|---|---|
[52] | SiL | ST | Ct | 0 | - | - | ||
Com | Olive pomace | 4 | NE | NE | ||||
[55] | S | ST | Ct | 0 | - | - | - | |
Com | Cattle manure | 0.013/1 * | NE | NE | NE | |||
FYM | Raw cattle manure | 0.013/1 * | NE | NE | NE | |||
C | Ct | 0 | - | - | - | |||
Com | Cattle manure | 0.013/1 * | D | NE | NE | |||
FYM | Raw cattle manure | 0.013/1 * | D | NE | D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matisic, M.; Dugan, I.; Bogunovic, I. Challenges in Sustainable Agriculture—The Role of Organic Amendments. Agriculture 2024, 14, 643. https://doi.org/10.3390/agriculture14040643
Matisic M, Dugan I, Bogunovic I. Challenges in Sustainable Agriculture—The Role of Organic Amendments. Agriculture. 2024; 14(4):643. https://doi.org/10.3390/agriculture14040643
Chicago/Turabian StyleMatisic, Manuel, Ivan Dugan, and Igor Bogunovic. 2024. "Challenges in Sustainable Agriculture—The Role of Organic Amendments" Agriculture 14, no. 4: 643. https://doi.org/10.3390/agriculture14040643
APA StyleMatisic, M., Dugan, I., & Bogunovic, I. (2024). Challenges in Sustainable Agriculture—The Role of Organic Amendments. Agriculture, 14(4), 643. https://doi.org/10.3390/agriculture14040643