Saline–Alkali Soil Reclamation Contributes to Soil Health Improvement in China
Abstract
:1. Introduction
2. Improvement Measures for Saline–Alkali Soil
2.1. Physical Measures
2.2. Chemical Measures
2.3. Biological Measures
2.4. Advantages and Disadvantages of Different Measures
3. Soil Water and Salt Changes in Saline–Alkali Soil
3.1. Soil Water and Salt Simulation and Monitoring
3.2. Soil Water and Salt Dynamics under Irrigation
3.3. Soil Water and Salt Dynamics under Freezing and Thawing
3.4. Soil Water and Salt Dynamics under Buried Layers
4. Nutrients in Saline–Alkali Soil
4.1. Soil Organic Carbon and Its Improvement in Saline–Alkali Soil
4.2. Soil Nitrogen in Saline–Alkali Soil
4.3. Soil Phosphorus
5. Yield Improvement in Saline–Alkali Soil
6. Perspectives on the Improvement and Utilization of Saline Alkali Land
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.Q.; Zhu, S.Q.; Yu, R.P. Salt-Affected Soils of China; Science Press: Beijing, China, 1993. [Google Scholar]
- FAO. Global Soil Health Indicators and Assessment. Available online: http://www.fao.org/soils-portal/soil-degradation-restoration/global-soil-health-indicators-and-assessment/en/ (accessed on 21 February 2016).
- Wichern, J.; Wichern, F.; Joergensen, R.G. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 2006, 137, 100–108. [Google Scholar] [CrossRef]
- FAO. The World Map of Salt Affected Soil [WWW Document]. FOOD Agric. Organ, United Nations. 2021. Available online: https://www.fao.org/global-soil-partnership/gsasmap/en (accessed on 10 December 2010).
- FAO. FAO Land and Plant Nutrition Management Service. Available online: http://www.fao.org (accessed on 10 December 2010).
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef]
- Yang, J.S. Development and prospect of the research on salt-affected soils in China. Acta Pedol. Sin. 2008, 45, 837–845. (In Chinese) [Google Scholar]
- Wang, J.L.; Huang, X.J.; Zhong, T.Y.; Chen, Z.G. Review on sustainable utilization of salt-affected land. Acta Geogr. Sin. 2011, 66, 673–684. (In Chinese) [Google Scholar]
- Ministry of Natural Resources, People’s Republic of China. Actively promoting the comprehensive transformation and utilization of saline alkali land. Qiushi 2023, 23, 15–20. (In Chinese) [Google Scholar]
- Liao, J.; Wen, X. Dynamic change of saline and alkali land in Hexi Region based on remote sensing. J. Arid Land Resour. Environ. 2011, 25, 96–101. (In Chinese) [Google Scholar]
- Guo, S.S.; Ruan, B.Q.; Guan, X.Y.; Wang, S.L.; Li, Y.P. Analysis on spatial-temporal evolution of soil salinity and its driving factors in Hetao Irrigation district during recent 30 years. China Rural Water Hydropower 2016, 9, 159–162+167. (In Chinese) [Google Scholar]
- Xu, Z.Q.; Xu, X.H. The cause of formation and characteristics of Soda saline–alkaline land of the Songnen plain and the study progress of control Measures. Soil Water Conserv. China 2018, 2, 54–59+69. (In Chinese) [Google Scholar]
- Zhang, H.Q.; Wang, L.X.; Sun, G.Y.; Yang, Y. Evaluation of saline-alkali land resource and development potential in low Songnen Plains. Chin. J. Agric. Resour. Reg. Plan. 2013, 34, 6–11. (In Chinese) [Google Scholar]
- Zhao, Y.; Wang, L.; Zhao, H.L.; Chen, X.B. Research Status and Prospects of Saline-alkali Land Amelioration in the Coastal Region of China. Chin. Agric. Sci. Bull. 2022, 38, 67–74. (In Chinese) [Google Scholar]
- Yao, R.J.; Yang, J.S.; Zhao, X.F.; Han, J.J. Effect of soil salt-water management on Helianthus growth and salinity distribution characteristics of coastal saline soil in north Jiangsu province. J. Irrig. Drain. 2013, 32, 5–9. (In Chinese) [Google Scholar]
- Yao, R.J.; Li, H.Q.; Zhu, W.; Yang, J.S.; Wang, X.P.; Yin, C.Y.; Jing, Y.P.; Chen, Q.; Xie, W.P. Biochar and potassium humate shift the migration, transformation and redistribution of urea-N in salt-affected soil under drip fertigation: Soil column and incubation experiments. Irrig. Sci. 2022, 40, 267–282. [Google Scholar] [CrossRef]
- Guo, Y.Z.; Liu, Y.S. Poverty alleviation through land assetization and its implications for rural revitalization in China. Land Use Policy 2021, 105, 105418. [Google Scholar] [CrossRef]
- Du, Y.Q.; Liu, X.F.; Zhang, L.; Zhou, W. Drip irrigation in agricultural saline-alkali land controls soil salinity and improves crop yield: Evidence from a global meta-analysis. Sci. Total Environ. 2023, 880, 163226. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.P.; Kong, W.B.; Zhu, H.S.; Zhang, Q.; Banerjee, S.; Ishii, S.; Sadowsky, M.J.; Gao, J.L.; Feng, C.Z.; Wang, J.J.; et al. Halophytes increase rhizosphere microbial diversity, network complexity and function in inland saline ecosystem. Sci. Total Environ. 2022, 831, 154944. [Google Scholar] [CrossRef] [PubMed]
- Li, J.G.; Pu, L.J.; Han, M.F.; Zhu, M.; Zhang, R.S.; Xiang, Y.Z. Soil salinization research in China: Advances and prospects. J. Geogr. Sci. 2014, 24, 943–960. [Google Scholar] [CrossRef]
- Kim, Y.J.; Choo, B.K.; Cho, J.Y. Effect of gypsum and rice straw compost application on improvements of soil quality during desalination of reclaimed coastal tideland soils: Ten years of long-term experiments. Catena 2017, 156, 131–138. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, J.S.; Yao, R.J.; Wang, X.P.; Xie, W.P. Soil Water and Salt Transport in Medium and Heavy Saline Soils of Yellow River Delta. Soils 2021, 53, 817–825. (In Chinese) [Google Scholar]
- Sun, B.; Xie, J.C.; Wang, N.; Zhu, J.W.; Zhang, J.L.; Li, C.J. An experimental study of straw mulching effects in water and salt in saline soils. Bull. Soil Water Conserv. 2011, 31, 48–51. (In Chinese) [Google Scholar]
- Zhang, J.B.; Yang, J.S.; Li, F.R.; Hou, X.J.; Zhao, M.; Yao, R.J.; Yu, S.P.; Wang, X.P. Effects of farmyard manure and mulching on soil water and salinity in sever salinized tide flat soil of north Jiangsu province. Acta Pedol. Sin. 2014, 51, 184–188. (In Chinese) [Google Scholar]
- Zhang, M.M.; Dong, B.D.; Qiao, Y.Z.; Yang, H.; Wang, Y.K.; Liu, M.Y. Effects of sub-soil plastic film mulch on soil water and salt content and water utilization by winter wheat under different soil salinities. Field Crop. Res. 2018, 225, 130–140. [Google Scholar] [CrossRef]
- Gu, X.Y.; Liang, Z.W.; Huang, L.H.; Ma, H.Y.; Wang, M.M.; Yang, H.Y.; Liu, M.; Lv, H.Y.; Lv, B.S. Effects of plastic film mulching and plant density on rice growth and yield in saline-sodic soil of Northeast China. J. Food Agri. Environ. 2012, 10, 560–564. [Google Scholar]
- Liu, T.; Cao, Y.B.; Zhang, Y.T.; Wang, R.S.; Xiao, H.J.; Wang, B.T.; Si, L.Q. Soil environment and growth adaptation strategies of Amorpha fruticose as affected by mulching in a moderately saline wasteland. Land Degrad. Dev. 2020, 31, 2672–2683. [Google Scholar] [CrossRef]
- Shi, H.B.; Yang, S.Q.; Li, R.P.; Li, X.Y.; Li, W.P.; Yan, J.W.; Miao, Q.F.; Li, Z. Water-saving Irrigation and Utilization Efficiency of Water and Fertilizer in Hetao Irrigation District of Inner Mongolia: Prospect for Future Research. J. Irrig. Drain. 2020, 39, 1–12. (In Chinese) [Google Scholar]
- Shi, K.L.; Lu, T.A.; Zheng, W.G.; Zhang, X.; Zhangzhong, L.L. A Review of the Category, Mechanism, and Controlling Methods of Chemical Clogging in Drip Irrigation System. Agriculture 2022, 12, 202. [Google Scholar] [CrossRef]
- Wan, S.Q.; Jiao, Y.P.; Kang, Y.H.; Jiang, S.F.; Tan, J.L.; Liu, W.; Meng, J. Growth and yield of oleic sunflower (Helianthus annuus L.) under drip irrigation in very strongly saline soils. Irrig. Sci. 2013, 31, 943–957. [Google Scholar] [CrossRef]
- Kang, Y.H.; Chen, M.; Wang, S.Q. Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain. Agric. Water Manag. 2010, 97, 1303–1309. [Google Scholar] [CrossRef]
- Wang, Q.M.; Huo, Z.L.; Zhang, L.D.; Wang, J.H.; Zhao, Y. Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China. Agric.Water Manag. 2016, 163, 125–138. [Google Scholar] [CrossRef]
- Li, Z.J.; Liu, H.G.; Yang, H.C.; Wang, T.A. Effects of Deep Vertical Rotary Tillage Management Methods on Soil Quality in Saline Cotton Fields in Southern Xinjiang. Agriculture 2023, 13, 1864. [Google Scholar] [CrossRef]
- Zhang, J.S.; Bian, Q.Q.; Miao, Q.; Jiang, X.L.; Wang, Y.H.; Wang, H.Y.; Cui, Z.L. Maize productivity response to combined tillage and mulching in coastal saline zones. Agron. J. 2022, 114, 784–794. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Li, Y.Y.; Wang, J.; Pang, H.C.; Li, Y. Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils. Soil Tillage Res. 2016, 155, 363–370. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, J.S.; Yao, R.J.; Wang, X.P.; Xie, W.P.; Shi, Z.G. Buried layers change soil water flow and solute transport from the Yellow River Delta, China. J. Soil. Sediment. 2021, 21, 1598–1608. [Google Scholar] [CrossRef]
- Huo, L.; Pang, H.C.; Zhao, Y.G.; Wang, J.; Lu, C.; Li, Y.Y. Buried straw layer plus plastic mulching improves soil organic carbon fractions in an arid saline soil from Northwest China. Soil Tillage Res. 2017, 165, 286–293. [Google Scholar] [CrossRef]
- Heng, T.; Liao, R.K.; Wang, Z.H.; Wu, W.Y.; Li, W.H.; Zhang, J.Z. Effects of combined drip irrigation and sub-surface pipe drainage on water and salt transport of saline-alkali soil in Xinjiang, China. J. Arid Land 2018, 10, 932–945. [Google Scholar] [CrossRef]
- Bai, Z.T.; Liu, H.G.; Li, J.; Li, M.S.; Gong, P.; Li, P.F.; Li, L. Eight-year comparison of agroeconomic benefits of open ditch and subsurface pipe drainage in mulched drip irrigated saline-sodic farmland. Irrig. Sci. 2023, 41, 687–699. [Google Scholar] [CrossRef]
- Wang, Z.H.; Heng, T.; Li, W.H.; Zhang, J.Z.; Zhangzhong, L.L. Effects of subsurface pipe drainage on soil salinity in saline-sodic soil under mulched drip irrigation. Irrig. Drain. 2020, 6, 95–106. [Google Scholar] [CrossRef]
- Yang, J.S.; Yao, R.J.; Wang, X.P.; Xie, W.P.; Zhang, X.; Zhu, W.; Zhang, L. Research on salt-affected soils in China: History, Status Quo and Prospect. Acta Pedol. Sin. 2022, 59, 10–27. (In Chinese) [Google Scholar]
- Rao, Y.; Peng, T.; Xue, S.W. Mechanisms of plant saline–alkaline tolerance. J. Plant Physiol. 2023, 281, 153916. [Google Scholar] [CrossRef]
- Wu, L.P.; Zheng, H.N.; Wang, X.J. Effects of soil amendments on fractions and stability of soil organic matter in saline–alkaline paddy. J. Environ. Manag. 2021, 294, 112993. [Google Scholar] [CrossRef]
- Zhang, W.C.; Zhang, W.X.; Zhao, Y.G.; Wang, S.J.; Liu, J.; Li, Y. Water regime enhances the effects of flue gas desulfurization gypsum on the reclamation of highly saline-sodic soil. Land Degrad. Dev. 2023, 34, 981–991. [Google Scholar] [CrossRef]
- Wang, S.J.; Chen, Q.; Li, Y.; Zhuo, Y.Q.; Xu, L.Z. Research on saline-alkali soil amelioration with FGD gypsum. Resour. Conserv. Recy. 2017, 121, 82–92. [Google Scholar] [CrossRef]
- Cao, Y.N.; Gao, Y.M.; Li, J.S.; Tian, Y.Q. Straw composts, gypsum and their mixtures enhance tomato yields under continuous saline water irrigation. Agric. Water Manag. 2019, 223, 105721. [Google Scholar] [CrossRef]
- Nan, J.K.; Chen, X.M.; Wang, X.Y.; Lashari, M.S.; Wang, Y.M.; Guo, Z.C.; Du, Z.J. Effects of applying flue gas desulfurization gypsum and humic acid on soil physicochemical properties and rapeseed yield of a saline-sodic cropland in the eastern coastal area of China. J. Soil. Sediment. 2016, 16, 38–50. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, A.Q.; Liu, J.L.; Xiao, G.J.; Xu, X. Amendment of Saline–alkaline Soil with Flue-Gas Desulfurization Gypsum in the Yinchuan Plain, Northwest China. Sustainability 2023, 15, 8658. [Google Scholar] [CrossRef]
- Mao, Y.M.; Li, X.P. Amelioration of flue gas desulfurization gypsum on saline-sodic soil of tidal flats and its effects on plant growth. China Environ. Sci. 2016, 36, 225–231. (In Chinese) [Google Scholar]
- Tang, X.; Shang, H.; Liu, G.M.; Yao, Y.T.; Zhang, F.H.; Yang, J.S.; Zhou, L.X.; Chu, R. Effects of combined amendment on improvement of salinized soil and plant growth. Soils 2021, 53, 1033–1039. (In Chinese) [Google Scholar]
- Zhang, J.S.; Yu, B.T.; Zhang, J.F.; Liu, Y.M.; Jiang, X.L.; Cui, Z.L. Effects of different amendments on soil physical and chemical properties and wheat growth in a coastal saline soil. J. Plant Nutr. Fertil. 2017, 23, 704–711. (In Chinese) [Google Scholar]
- Gou, M.M.; Qu, Z.Y.; Wang, F.; Gao, X.Y.; Hu, M. Progress in research on biochar affecting soil-water environment and carbon sequestration-mitigating emissions in agricultural fields. Trans. Chin. Soc. Agric. Mach. 2018, 49, 1–12. (In Chinese) [Google Scholar]
- Liu, M.L.; Wang, C.; Wang, F.Y.; Xie, Y.J. Maize (Zea mays) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil. Appl. Soil Ecol. 2019, 142, 147–154. [Google Scholar] [CrossRef]
- Han, K.; Huang, C.Y.; Su, W.B.; Guo, X.X.; Li, Z.; Tian, L.; Jian, C.Y.; Ren, H.M.; Wei, Z.G.; Song, J.J. Effects of humic acid conditioners on the growth and development of sugar beet in saline-alkali soil. Soil Fertil. Sci. China 2023, 11, 189–194. (In Chinese) [Google Scholar]
- Yue, Y.; Guo, W.N.; Lin, Q.M.; Li, G.T.; Zhao, X.R. Improving salt leaching in a simulated saline soil column by three biochars derived from rice straw (Oryza sativa L.), sunfower straw (Helianthus annuus), and cow manure. J. Soil Water Conserv. 2016, 71, 467–475. [Google Scholar] [CrossRef]
- Liu, S.; Meng, J.; Jiang, L.L.; Yang, X.; Lan, Y.; Cheng, X.Y.; Chen, W.F. Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Appl. Soil Ecol. 2017, 116, 12–22. [Google Scholar] [CrossRef]
- Sun, H.J.; Lu, H.Y.; Chu, L.; Shao, H.B.; Shi, W.M. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Environ. 2017, 575, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Zhou, J.; Hao, W.P.; Gong, D.Z.; Zhong, X.L.; Gu, F.X.; Liu, Q.; Xia, X.; Tian, J.; Li, H.R. Germination, growth, photosynthesis and ionic balance in Setaria viridis seedlings subjected to saline and alkaline stress. Can. J. Plant Sci. 2012, 91, 1077–1088. [Google Scholar] [CrossRef]
- Xu, G.; Lv, Y.C.; Sun, J.N.; Shao, H.B.; Wei, L.L. Recent advances in biochar applications in agricultural soils: Benefits and environmental implications. Clean–Soil Air Water 2012, 40, 1093–1098. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, X.; Chen, L.; Wang, Z.Y.; Xia, Y.; Zhang, Y.P.; Wang, H.F.; Luo, X.X.; Xing, B.S. Enhanced growth of halophyte plants in biochar-amended coastal soil: Roles of nutrient availability and rhizosphere microbial modulation. Plant Cell Environ. 2018, 41, 517–532. [Google Scholar] [CrossRef]
- He, K.; He, G.; Wang, C.; Zhang, H.P.; Xu, Y.; Wang, S.M.; Kong, Y.Z.; Zhou, G.K.; Hu, R.B. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline alkali soil. Appl. Soil Ecol. 2020, 155, 103674. [Google Scholar] [CrossRef]
- Yang, R.Y.; Zhou, C.X.; Zhu, J.J.; Pan, Y.H.; Sun, J.N.; Zhang, Z.H. Effects of biochar application on phreatic water evaporation and water-salt distribution in coastal saline soil. J. Plant Nutr. 2019, 42, 1243–1253. [Google Scholar] [CrossRef]
- Fei, Y.H.; She, D.L.; Gao, L.; Xin, P. Micro-CT assessment on the soil structure and hydraulic characteristics of saline/sodic soils subjected to short-term amendment. Soil Till. Res. 2019, 193, 59–70. [Google Scholar] [CrossRef]
- Rezapour, S.; Nouri, A.; Asadzadeh, F.; Barin, M.; Erpul, G.; Jagadamma, S.; Qin, R.J. Combining chemical and organic treatments enhance remediation performance and soil health in saline-sodic soils. Commun. Earth Environ. 2023, 4, 285. [Google Scholar] [CrossRef]
- Jia, X.; Zhu, Y.; Zhang, R.; Zhu, Z.; Zhao, T.; Cheng, L.; Gao, L.; Liu, B.; Zhang, X.; Wang, Y. Ionomic and metabolomic analyses reveal the resistance response mechanism to saline-alkali stress in Malus halliana seedlings. Plant. Physiol. Biochem. 2020, 147, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.B. Effects of Different Salt-Tolerant Plants Planting on Soil Physicochemical and Biological Properties of Salines of Saline Soil. Master‘s Thesis, Northwest A&F University, Yangling, China, 2015. (In Chinese). [Google Scholar]
- Liu, X.; Wu, H.Y.; Yang, S.; Lu, X.; Wang, J.W.; Chen, Q.X. Formation of soil aggregates and distribution of soil nutrients in rhizosphere of salt-tolerant trees in coastal polder reclamation. Acta Pedol. Sin. 2020, 57, 1270–1279. (In Chinese) [Google Scholar]
- Chen, X.B.; Yang, J.S.; Yang, C.H.; Hu, S.J.; Liu, G.M. Irrigation-drainage management and hydro-salinity balance in Weigan River Irrigation District. Trans. Chin. Soc. Agric. Eng. 2008, 24, 59–65. (In Chinese) [Google Scholar]
- Jiao, H.Q. Soil Water and Salt Dynamics under Mulched Drip Irrigation in an Oasis Cotton Field: Model Development and Application. Ph.D. Thesis, China Agricultural University, Beijing, China, 2018. (In Chinese). [Google Scholar]
- Yang, X.; Zhu, Q.; Ma, M.C.; Wu, J.W. Research on the evaporation capacity and water-salt variation characteristics of different types of saline wasteland. China Rural Water Hydropower 2019, 9, 49–53. (In Chinese) [Google Scholar]
- Wang, S.L.; Zhou, H.P.; Qu, X.Y.; Guan, X.Y. Study on directional salt transport and surface salt draining under mulched drip irrigation in arid areas. J. Hydraul. Eng. 2013, 44, 549–555. (In Chinese) [Google Scholar]
- Zhao, Z.Y.; Zhang, K.; Wang, L.; Wang, P.; Tian, C.Y. Desalting effect of halophytes on heavily saline soil. J. Desert Res. 2013, 33, 1420–1425. (In Chinese) [Google Scholar]
- Fang, S.M.; Hou, X.; Liang, X.L. Response mechanisms of plants under saline-alkali stress. Front. Plant Sci. 2021, 12, 667458. [Google Scholar] [CrossRef]
- Li, J.; Xu, H.H.; Liu, W.C.; Zhang, X.W.; Lu, Y.T. Ethylene inhibits root elongation during alkaline stress through AUXIN1 and associated changes in auxin accumulation. Plant Physiol. 2015, 168, 1777–1791. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.Y.; Chen, Q.; Cui, X.Y.; Abozeid, A.; Liu, Y.; Liu, J.; Tang, Z.H. Comparative metabolomics of two saline-alkali tolerant plants Suaeda glauca and Puccinellia tenuiflora based on GC-MS platform. Nat. Prod. Res. 2019, 35, 499–502. [Google Scholar] [CrossRef]
- Wang, X.; Bai, J.; Wang, W.; Zhang, G.; Yin, S.; Wang, D. A comparative metabolomics analysis of the halophyte Suaeda salsa and Salicornia europaea. Environ. Geochem. Health 2021, 43, 1109–1122. [Google Scholar] [CrossRef]
- Guan, Q.J.; Ma, H.Y.; Wang, Z.Y.; Bu, Q.Y.; Liu, S.K. A rice LSD1-like-type ZFP gene OsLOL5 enhances saline–alkaline tolerance in transgenic Arabidopsis thaliana, yeast and rice. BMC Genom. 2016, 17, 142. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Zhao, L.; Zhang, K.; Gao, D.; Yang, C. Genome of extreme halophyte Puccinellia tenuiflora. BMC Genom. 2020, 21, 311. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Zhu, Y.; Zhao, Y.; Wang, Y.; Li, J.; Wang, Q.; Liu, Y. De novo transcriptome sequencing and analysis of salt-, alkali-, and drought-responsive genes in Sophora alopecuroides. BMC Genom. 2020, 21, 423. [Google Scholar] [CrossRef] [PubMed]
- Chookietwattana, K.; Yuwa-amornpitak, T. Data on soil properties and halophilic bacterial densities in the Na Si nuan secondary forest at Kantharawichai district, maha sarakham, Thailand. Data Brief 2019, 27, 104582. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.T.; Zhang, F.H. Reclamation of abandoned saline-alkali soil increased soil microbial diversity and degradation potential. Plant Soil 2022, 477, 521–538. [Google Scholar] [CrossRef]
- Li, F.S.; Ghanizadeh, H.; Cui, G.L.; Liu, J.Y.; Miao, S.; Liu, C.; Song, W.W.; Chen, X.L.; Cheng, M.Z.; Wang, P.W.; et al. Microbiome- based agents can optimize composting of agricultural wastes by modifying microbial communities. Bioresour. Technol. 2016, 374, 128765. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.Y.; Ma, W.R.; Qiang, B.B.; Jin, X.J.; Zhang, Y.X.; Wang, M.X. Effect of chemical fertilizer with compound microbial fertilizer on soil physical properties and soybean yield. Agronomy 2023, 13, 2488. [Google Scholar] [CrossRef]
- Qin, Y.; Druzhinina, I.S.; Pan, X.Y.; Yuan, Z.L. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol. Adv. 2016, 34, 1245–1259. [Google Scholar] [CrossRef]
- Dodd, I.C.; Pérez-Alfocea, F. Microbial amelioration of crop salinity stress. J. Exp. Bot. 2012, 63, 3415–3428. [Google Scholar] [CrossRef]
- Liu, X.M.; Zhang, H.M. The effects of bacterial volatile emissions on plant abiotic stress tolerance. Front. Plant Sci. 2015, 6, 774. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, X.W.; Laipan, M.; Wei, T.; Guo, J.K. Soil health improvement by inoculation of indigenous microalgae in saline soil. Environ. Geochem. Health 2024, 46, 23. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.J.; Li, H.Q.; Yang, J.S.; Zhu, W.; Yin, C.Y.; Wang, X.P.; Xie, W.P.; Zhang, X. Combined application of biochar and N fertilizer shifted nitrification rate and amoA gene abundance of ammonia-oxidizing microorganisms in salt-affected anthropogenic-alluvial soil. Appl. Soil Ecol. 2022, 171, 104348. [Google Scholar] [CrossRef]
- Baloch, M.Y.J.; Zhang, W.J.; Sultana, T.; Akram, M.; Shoumik, B.A.; Khan, M.Z.; Farooq, M.A. Utilization of sewage sludge to manage saline-alkali soil and increase crop production: Is it safe or not? Environ. Technol. Inno. 2023, 32, 103266. [Google Scholar] [CrossRef]
- Wang, Z.Q. Chinese Saline Soil, 1st ed.; Science Press: Beijing, China, 1993. [Google Scholar]
- Zhang, W.Z. Calculation Method for Unstable Groundwater Flow and Evaluation of Groundwater Resources, 1st ed.; Wuhan University Press: Wuhan, China, 2013. [Google Scholar]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J. 2016, 15, 25. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, J.S.; Yao, R.J.; Xie, W.P.; Wang, X.P.; Liu, Y.Q. Soil water-salt control and yield improvement under the effect of compound control in saline soil of the Yellow River Delta, China. Agric. Water Manag. 2022, 263, 107455. [Google Scholar] [CrossRef]
- Hu, Q.L.; Zhao, Y.; Hu, X.L.; Qi, J.; Suo, L.Z.; Pan, Y.H.; Song, B.; Chen, X.B. Effect of saline land reclamation by constructing the "Raised Field-Shallow Trench" pattern on agroecosystems in Yellow River Delta. Agric. Water Manag. 2022, 261, 107345. [Google Scholar] [CrossRef]
- Feng, G.X.; Zhu, C.L.; Wu, Q.F.; Wang, C.; Zhang, Z.Y.; Mwiya, R.M.; Zhang, L. Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model. Sustainability 2019, 11, 6431. [Google Scholar] [CrossRef]
- Zeng, W.Z.; Lei, G.Q.; Zha, Y.Y.; Fang, Y.H.; Wu, J.W.; Huang, J.S. Sensitivity and uncertainty analysis of the HYDRUS-1D model for root water uptake in saline soils. Crop Pasture Sci. 2018, 69, 163–173. [Google Scholar] [CrossRef]
- Lu, P.R.; Yang, Y.J.; Luo, W.; Zhang, Y.; Jia, Z.H. Numerical Simulation of Soil Water-Salt Dynamics and Agricultural Production in Reclaiming Coastal Areas Using Subsurface Pipe Drainage. Agronomy 2023, 13, 588. [Google Scholar] [CrossRef]
- He, F.K.; Pu, S.Y.; Xiao, H.X.; Liu, S.B. Review of remote sensing application in soil degradation. J. Agric. Resour. Environ. 2021, 38, 10–19. (In Chinese) [Google Scholar]
- Yao, R.J.; Yang, J.S.; Wu, D.H.; Xie, W.P.; Gao, P.; Wang, X.P. Geostatistical monitoring of soil salinity for precision management using proximally sensed electromagnetic induction (EMI) method. Environ. Earth Sci. 2016, 75, 1362. [Google Scholar] [CrossRef]
- Gong, H.Z.; Shao, Y.; Brisco, B.; Hu, Q.R.; Tian, W. Modeling the dielectric behavior of saline soil at microwave frequencies. Can. J. Remote Sens. 2013, 39, 17–26. [Google Scholar] [CrossRef]
- Zheng, R.M.; Li, Z.Z.; Gong, Y.S. A Coated Helical Transmission Line Time Domain Transmission Sensor for Measuring Water Content in Saline Soils. Soil Sci. Soc. Am. J. 2011, 75, 397–407. [Google Scholar] [CrossRef]
- Liu, B.; Han, W.T.; Weckler, P.; Guo, W.C.; Wang, Y.; Song, K.X. Detection model for effect of soil salinity and temperature on FDR moisture content sensors. Appl. Eng. Agri. 2014, 30, 573–582. [Google Scholar]
- Chen, S.; Xu, B.; Jin, Y.X.; Huang, Y.L.; Zhang, W.B.; Guo, J.; Shen, G.; Yang, X.C. Remote sensing monitoring and spatial-temporal characteristics analysis of soil salinization in agricultural area of Northern Xinjiang. Sci. Geogr. Sin. 2015, 35, 1607–1615. (In Chinese) [Google Scholar]
- Li, Y. SWAP Model Distributed Simulation of Soil Water and Salt in Hetao Irrigation with Water-Saving Irrigation. Master‘s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2012. (In Chinese). [Google Scholar]
- Xie, W.P.; Yang, J.S.; Yao, R.J.; Wang, X.P. Spatial and temporal variability of soil salinity in the Yangtze River estuary using electromagnetic induction. Remote Sens. 2021, 13, 1875. [Google Scholar] [CrossRef]
- Wu, Y.K.; Yang, J.S.; Liu, G.M. Spatial variability of soil salinity using data from remote sensing and electromagnetic induction instruments. Trans. Chin. Soc. Agric. Eng. 2009, 25, 148–152. (In Chinese) [Google Scholar]
- Chen, J.Y.; Wang, X.T.; Zhang, Z.T.; Han, J.; Yao, Z.H.; Wei, G.F. Soil salinization monitoring method based on UAV-satellite remote sensing scale-up. Trans. Chin. Soc. Agric. Mach. 2019, 50, 161–169. [Google Scholar]
- Chen, W.J.; Li, M.S.; Li, Q.L. The influence of winter irrigation amount on the characteristics of water and salt distribution and WUE in different saline-alkali farmlands in northwest China. Sustainability 2023, 15, 15428. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Zhang, G.X.; Xu, Y.J.; Wu, L.L.; Huang, Z.G. Changes in root zone salt content and rice yield on saline-sodic soils across a salinity gradient under different irrigation schedules. J. Food Agric. Environ. 2013, 11, 1499–1505. [Google Scholar]
- Chen, L.J.; Feng, Q.; Li, F.R.; Li, C.S. Simulation of soil water and salt transfer under mulched furrow irrigation with saline water. Geoderma 2015, 241, 87–96. [Google Scholar] [CrossRef]
- Chu, L.L.; Kang, Y.H.; Wan, S.Q. Influence of microsprinkler irrigation amount on water, soil, and pH profiles in a coastal saline soil. Sci. World J. 2014, 2014, 279895. [Google Scholar] [CrossRef] [PubMed]
- Hamani, A.K.; Xu, C.P.; Dang, H.K.; Cao, C.Y.; Wang, G.S.; Sun, J.S. Impacts of Saline Water Irrigation on Soil Respiration from Cotton Fields in the North China Plain. Agronomy 2023, 13, 1197. [Google Scholar] [CrossRef]
- Gao, H.; Fu, T.G.; Tang, S.P.; Liu, J.T. Effects of saline water irrigation on winter wheat and its safe utilization under a subsurface drainage system in coastal saline-alkali land of Hebei Province, China. Irrig. Sci. 2023, 41, 251–260. [Google Scholar] [CrossRef]
- Li, X.B.; Kang, Y.H.; Wan, S.Q.; Chen, X.L.; Liu, S.P.; Xu, J.C. Effect of ridge planting on reclamation of coastal saline soil using drip-irrigation with saline water. Catena 2017, 150, 24–31. [Google Scholar] [CrossRef]
- Li, C.J.; Lei, J.Q.; Zhao, Y.; Xu, X.W.; Li, S.Y. Effect of saline water irrigation on soil development and plant growth in the Taklimakan Desert Highway shelterbelt. Soil Till. Res. 2015, 146, 99–107. [Google Scholar] [CrossRef]
- Li, X.B. Vegetation establishment in coastal salt-affected wasteland using drip-irrigation with saline water. Land Degrad. Dev. 2019, 30, 1423–1436. [Google Scholar] [CrossRef]
- Chen, W.P.; Hou, Z.N.; Wu, L.S.; Liang, Y.C.; Wei, C.Z. Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China. Agric. Water Manag. 2010, 97, 2001–2008. [Google Scholar] [CrossRef]
- Zhang, J.; Lai, Y.M.; Li, S.Y.; Zhang, M.Y.; You, Z.M.; Liang, T. Numerical study on the spatial-temporal distribution of solute and salt accumulation in saturated sulfate saline soil during freezing-thawing processes: Mechanism and feedback. Adv. Water Resour. 2023, 177, 104461. [Google Scholar] [CrossRef]
- Tian, R.Z.; Zhang, Y.; Xu, A.H.; Li, X.M.; Hou, Y.L.; Tai, B.W. Impact of cooling on water and salt migration of high-chlorine saline soils. Geofluids 2021, 2021, 8612762. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.S.; Yao, R.J. Effects of Saline Ice Water Irrigation on Distribution of Moisture and Salt Content in Coastal Saline Soil. Aata Pedol. Sin. 2016, 53, 388–400. (In Chinese) [Google Scholar]
- Wu, D.Y.; Zhou, X.Y.; Jiang, X.Y. Water and Salt Migration with Phase Change in Saline Soil during Freezing and Thawing Processes. Groundwater 2018, 56, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Liu, X.J. Effect of initial soil water content and bulk density on the infiltration and desalination of melting saline ice water in coastal saline soil. Eur. J. Soil Sci. 2019, 70, 1249–1266. [Google Scholar] [CrossRef]
- Guo, K.; Liu, X.J. The successive infiltration of various saline waters accelerates the infiltration processes and enhances the salt leaching in a coastal saline soil. Land Degrad. Dev. 2023, 34, 5083–5095. [Google Scholar] [CrossRef]
- Li, Z.G.; Liu, X.J.; Zhang, X.M.; Li, W.Q. Infiltration of melting saline ice water in soil columns: Consequences on soil moisture and salt content. Agric. Water Manag. 2008, 95, 498–502. [Google Scholar] [CrossRef]
- Guo, K.; Liu, X.J. Dynamics of meltwater quality and quantity during saline ice melting and its effects on the infiltration and desalinization of coastal saline soils. Agric. Water Manag. 2014, 139, 1–6. [Google Scholar] [CrossRef]
- Wan, X.S.; Liu, E.L.; Qiu, E.X.; Qu, M.F.; Zhao, X.; Nkiegaing, F.J. Study on phase changes of ice and salt in saline soils. Cold Reg. Sci. Technol. 2020, 172, 102988. [Google Scholar] [CrossRef]
- Yang, M.; Yang, R.Y.; Li, Y.N.; Pan, Y.H.; Sun, J.N.; Zhang, Z.H. Effects of different biomass materials as a salt-isolation layer on water and salt migration in coastal saline soil. PeeJ 2021, 9, 11766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Kong, D.G.; Chang, X.H.; Zhai, L.M. Effect of straw deep application on soil water storage capacity. J. Northeast Agric. Univ. 2010, 41, 127–129. (In Chinese) [Google Scholar]
- Wang, R.L.; Huang, Y.; Wei, F.L.; Bai, X.W.; Li, E.; Zhang, Y.L. Design and testing of plough for deep furrowing and riding of straw amendment fields. J. Shenyang Agric. Univ. 2011, 42, 231–234. (In Chinese) [Google Scholar]
- Zhao, Y.G.; Li, Y.; Wang, S.J.; Wang, J.; Xu, L.Z. Combined application of a straw layer and flue gas desulphurization gypsum to reduce soil salinity and alkalinity. Pedosphere 2020, 30, 226–235. [Google Scholar] [CrossRef]
- Song, X.L.; Sun, R.J.; Chen, W.F.; Wang, M.H. Effects of surface straw mulching and buried straw layer on soil water content and salinity dynamics in saline soils. Can. J. Soil Sci. 2020, 100, 58–68. [Google Scholar] [CrossRef]
- Yang, M.; Yang, R.Y.; Li, Y.N.; Pan, Y.H.; Sun, J.N.; Zhang, Z.H. Effects of different peat application methods on water and salt migration in a coastal saline soil. J. Soil Sci. Plant Nutr. 2022, 22, 791–800. [Google Scholar] [CrossRef]
- Shen, R.F.; Wang, C.; Sun, B. Soil related scientific and technological problems in implementing strategy of “Storing Grain in Land and Technology”. China Acad. J. 2018, 33, 135–144. (In Chinese) [Google Scholar]
- Zhu, H.; Yang, J.S.; Yao, R.J.; Gao, S.; Cao, Y.F.; Sun, Y.P. Effects of partial substitution of organic nitrogen for inorganic nitrogen in fertilization on salinity and nitrogen utilization in salinized coastal soil. Chin. J. Eco-Agric. 2019, 27, 441–450. (In Chinese) [Google Scholar]
- Song, J.S.; Zhang, H.Y.; Chang, F.D.; Yu, R.; Zhang, X.Q.; Wang, X.Q.; Wang, W.N.; Liu, J.M.; Zhou, J.; Li, Y.Y. Humic acid plus manure increases the soil carbon pool by inhibiting salinity and alleviating the microbial resource limitation in saline soils. Catena 2023, 233, 107527. [Google Scholar] [CrossRef]
- Li, S.P.; Zhao, L.; Wang, C.; Huang, H.Y.; Zhuang, M.H. Synergistic improvement of carbon sequestration and crop yield by organic material addition in saline soil: A global meta-analysis. Sci. Total Environ. 2023, 891, 164530. [Google Scholar] [CrossRef]
- Bai, J.; Cui, B.; Deng, W.; Yang, Z.; Wang, Q.; Ding, Q. Soil organic carbon contents of two natural inland saline–alkalined wetlands in northeastern China. J. Soil Water Conserv. 2007, 62, 447–452. [Google Scholar]
- Qu, Y.K.; Tang, J.; Liu, B.; Lyu, H.; Duan, Y.C.; Yang, Y.; Wang, S.N.; Li, Z.Y. Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline-alkali soil region. Sci. Rep. 2022, 12, 1314. [Google Scholar] [CrossRef]
- Zhao, X.M.; Zhu, M.L.; Guo, X.X.; Wang, H.B.; Sui, B.; Zhao, L.P. Organic carbon content and humus composition after application aluminum sulfate and rice straw to soda saline–alkaline soil. Environ. Sci. Pollut. Res. 2019, 26, 13746–13754. [Google Scholar] [CrossRef]
- Chen, X.D.; Wu, J.G.; Opoku-Kwanowaa, Y. Effects of organic wastes on soil organic carbon and surface charge properties in primary saline-alkali soil. Sustainability 2019, 11, 7088. [Google Scholar] [CrossRef]
- Xu, T.T.; Xu, M.; Zhang, M.N.; Letnic, M.; Wang, J.Y.; Wang, L. Spatial effects of nitrogen deposition on soil organic carbon stocks in patchy degraded saline–alkaline grassland. Geoderma 2023, 432, 116408. [Google Scholar] [CrossRef]
- Zhang, P.F.; Jiang, Z.W.; Wu, X.D.; Lu, Q.; Lin, Y.; Zhang, Y.Y.; Zhang, X.; Liu, Y.; Wang, S.Y.; Zang, S.Y. Effects of biochar and organic additives on CO2 emissions and the microbial community at two water saturations in saline–alkaline soil. Agronomy 2023, 13, 1745. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Shao, T.Y.; Men, G.T.; Chen, J.H.; Li, N.; Gao, X.M.; Long, X.H.; Rengel, Z.; Zhu, M. Application of malrstone-based conditioner and plantation of Jerusalem artichoke improved properties of saline–alkaline soil in Inner Mongolia. J. Environ. Manag. 2023, 329, 117083. [Google Scholar] [CrossRef]
- Ding, Z.L.; Kheir, A.M.S.; Ali, O.A.M.; Hafez, E.M.; ElShamey, E.A.; Zhou, Z.X.; Wang, B.Z.; Lin, X.E.; Ge, Y.; Fahmy, A.E.; et al. A vermicompost and deep tillage system to improve saline-sodic soil quality and wheat productivity. J. Environ. Manag. 2021, 277, 111388. [Google Scholar] [CrossRef]
- Zhang, R.X.; Qu, Z.Y.; Liu, L.; Yang, W.; Wang, L.P.; Li, J.J.; Zhang, D.L. Soil respiration and organic carbon response to biochar and their influencing factors. Atmosphere 2022, 13, 2038. [Google Scholar] [CrossRef]
- Xu, Z.K.; Shao, T.Y.; Lv, Z.X.; Yue, Y.; Liu, A.H.; Long, X.H.; Zhou, Z.S.; Gao, X.M.; Rengel, Z. The mechanisms of improving coastal saline soils by planting rice. Sci. Total Environ. 2020, 703, 135529. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tang, J. Effects of different rice planting duration on organic carbon components and components and carbon pool management index of saline alkaline soil in western Jilin province, China. Appl. Ecol. Env. Res. 2021, 19, 2213–2226. [Google Scholar] [CrossRef]
- Dong, X.L.; Wang, J.T.; Zhang, X.J.; Dang, H.K.; Singh, B.P.; Liu, X.J.; Sun, H.Y. Long-term saline water irrigation decreased soil organic carbon and inorganic carbon contents. Agric. Water Manag. 2022, 270, 107760. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, J.; He, C.S.; Long, Y.; Wu, C.C. Effects of freeze-thaw cycles on soil properties and carbon distribution in saline–alkaline soil of wetland. Sensor. Mater. 2021, 33, 285–300. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Pang, H.C.; Song, J.S.; Chang, F.D.; Wang, J.; Wang, X.; Zhang, Y.T.; Peixoto, L.; Li, Y.Y. Subsurface organic ameliorant plus polyethylene mulching strengthened soil organic carbon by altering saline soil aggregate structure and regulating the fungal community. Land Degrad. Dev. 2022, 33, 2543–2553. [Google Scholar] [CrossRef]
- Li, X.R.; Liu, Z.; Li, J.; Gong, H.R.; Zhang, Y.T.; Sun, Z.G.; Ouyang, Z. Increase in soil carbon pool stability rather than its stock in coastal saline-alkali ditches following reclamation time. Agronomy 2023, 13, 2843. [Google Scholar] [CrossRef]
- Xie, H.Y.; Li, J.; Zhang, Y.T.; Xu, X.B.; Wang, L.Q.; Ouyang, Z. Evaluation of coastal farming under salinization and optimized fertilization strategies in China. Sci. Total Environ. 2021, 797, 149038. [Google Scholar] [CrossRef] [PubMed]
- Heng, T.; He, X.L.; Yang, G.; Tian, L.J.; Li, F.D.; Yang, L.L.; Zhao, L.; Feng, Y.; Xu, X. Growth and nitrogen status of cotton (Gossypium hirsutum L.) under salt stress revealed using 15N-labeled fertilizer. J. Plant Ecol. 2022, 15, 1213–1226. [Google Scholar] [CrossRef]
- Li, H.Q.; Yao, R.J.; Yang, J.S.; Wang, X.P.; Zheng, F.L.; Chen, Q.; Xie, W.P.; Zhang, X. Influencing mechanism of soil salinization on nitrogen transformation processes and efficiency improving methods for high efficient utilization of nitrogen in salinized farmland. Chin. J. Appl. Ecol. 2020, 31, 3915–3924. (In Chinese) [Google Scholar]
- Li, Y.; Xu, X.; Hu, M.; Chen, Z.J.; Tan, J.W.; Liu, L.; Xiong, Y.W.; Huang, Q.Z.; Huang, G.H. Modeling water-salt-nitrogen dynamics and crop growth of saline maize farmland in Northwest China: Searching for appropriate irrigation and N fertilization strategies. Agric. Water Manag. 2023, 282, 108271. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, J.S.; Yao, R.J.; Wang, X.P.; Xie, W.P.; Li, P.G. Nitrate leaching and NH3 volatilization during soil reclamation in the Yellow River Delta, China. Environ. Pollut. 2021, 286, 117330. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.M.; Xu, R.; Lin, Z.Y.; Xi, D.; Wang, Y.; Wen, J.L.; Nie, S.A.; Zhong, F.L. Vertical characteristics of anaerobic oxidation of ammonium (anammox) in a coastal saline-alkali field. Soil Till. Res. 2020, 198, 104531. [Google Scholar] [CrossRef]
- Yang, W.Z.; Jiao, Y.; Yang, M.D.; Wen, H.Y. N2O emissions from saline–alkaline soil with different saline–alkaline levels in the Hetao Irrigation District of Inner Mongolia, China. China Environ. Sci. 2019, 39, 948–953. (In Chinese) [Google Scholar]
- Yao, R.; Yang, J.S.; Zhu, W.; Li, H.Q.; Yin, C.Y.; Jing, Y.P.; Wang, X.P.; Xie, W.P.; Zhang, X. Impact of crop cultivation, nitrogen and fulvic acid on soil fungal community structure in salt-affected alluvial fluvo-aquic soil. Plant Soil 2021, 462, 539–558. [Google Scholar] [CrossRef]
- Yin, C.Y.; Li, L.J.; Li, L.J.; Zhao, J.; Yang, J.S.; Zhao, H.G. Impacts of returning straw and nitrogen application on the nitrification and mineralization of nitrogen in saline soil. Water 2023, 15, 564. [Google Scholar] [CrossRef]
- Pan, Y.C.; She, D.L.; Shi, Z.Q.; Chen, X.Y.; Xia, Y.Q. Do biochar and polyacrylamide have synergistic effect on net denitrification and ammonia volatilization in saline soils? Environ. Sci. Pollut. Res. 2021, 28, 59974–59987. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.N. Soil nitrogen transformation and functional microbial abundance in an agricultural soil amended with biochar. Rev. Bras. Cienc. Solo 2023, 47, e0220156. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, J.S.; Yao, R.J.; Wang, X.P.; Xie, W.P.; Zhu, W.; Liu, X.Y.; Cao, Y.F.; Tao, J. Interactive effects of soil amendments (biochar and gypsum) and salinity on ammonia volatilization in coastal saline soil. Catena 2020, 190, 104527. [Google Scholar] [CrossRef]
- Yue, Y.; Lin, Q.M.; Li, G.T.; Zhao, X.R.; Chen, H. Biochar amends saline soil and enhances maize growth: Three-year field experiment findings. Agronomy 2023, 13, 1111. [Google Scholar] [CrossRef]
- Liu, M.L.; Wang, C.; Liu, X.L.; Lu, Y.C.; Wang, Y.F. Saline-alkali soil applied with vermicompost and humic acid fertilizer improved macroaggregate microstructure to enhance salt leaching and inhibit nitrogen losses. Appl. Soil Ecol. 2020, 156, 103705. [Google Scholar] [CrossRef]
- Yang, H.J.; Xia, J.B.; Xie, W.J.; Wei, S.C.; Cui, Q.; Shao, P.S.; Sun, J.K.; Dong, K.K.; Qi, X.C. Effects of straw returning and nitrogen addition on soil quality of a coastal saline soil: A field study of four consecutive wheat-maize cycles. Land Degrad. Dev. 2023, 34, 2061–2072. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Cao, X.W.; Zhou, Y.A.; Li, Z.; Yang, Y.Z.; Zhao, D.L.; Li, Y.Q.; Xu, Z.C.; Zhang, C.S. Effect of planting salt-tolerant legumes on coastal saline soil nutrient availability and microbial communities. J. Environ. Manag. 2023, 345, 118574. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.C.; Hu, G.Q.; Wang, H.; Fu, W.Z. Leaching and migration characteristics of nitrogen during coastal saline soil remediation by combining humic acid with gypsum and bentonite. Ann. Agr. Sci. 2023, 68, 1–11. [Google Scholar] [CrossRef]
- Zhang, W.W.; Wang, C.; Liu, M.L.; Yu, Y.C. Integrated reclamation of saline soil nitrogen transformation in the hyphosphere by earthworms and arbuscular mycorrhizal fungus. Appl. Soil Ecol. 2019, 135, 137–146. [Google Scholar] [CrossRef]
- Lu, J.Y.; Qu, Z.; Li, M.J.; Wang, Q.J. Effects of ionized water irrigation on organic nitrogen mineralization in saline-alkali soil in China. Agronomy 2023, 13, 2285. [Google Scholar] [CrossRef]
- Ma, L.J.; Guo, H.J.; Min, W. Nitrous oxide emission and denitrifier bacteria communities in calcareous soil as affected by drip irrigation with saline water. Appl. Soil Ecol. 2019, 143, 222–235. [Google Scholar] [CrossRef]
- Ma, J.C.; He, P.; Xu, X.P.; He, W.T.; Liu, Y.X.; Yang, F.Q.; Chen, F.; Li, S.T.; Tu, S.H.; Jin, J.Y.; et al. Temporal and spatial changes in soil available phosphorus in China (1990–2012). Field Crops Res. 2016, 192, 13–20. [Google Scholar] [CrossRef]
- Huang, C.Y.; Roessner, U.; Eickmeier, I.; Genc, Y.; Callahan, D.L.; Shirley, N.; Langridge, P.; Bacic, A. Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.). Plant Cell Physiol. 2008, 49, 691–703. [Google Scholar] [CrossRef]
- Shen, J.B.; Yuan, L.X.; Zhang, J.L.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus dynamics: From soil to plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.R. Role of Root Morphological and Physiological Characteristics in Drought Resistance of Plants; Plant-Environment Interactions; CRC Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Girsova, M.A.; Golovina, G.F.; Drozdova, I.A.; Polyakova, I.G.; Antropova, T.V. Infrared studies and spectral properties of photochromic high silica glasses. Opt. Appl. 2014, 44, 337–344. [Google Scholar]
- Papadopoulos, I.; Rendig, V.V. Interactive effects of salinity and nitrogen on growth and yield of tomato plants. Plant Soil 1983, 73, 47–57. [Google Scholar] [CrossRef]
- Gao, S.; Yang, J.S.; Yao, R.J.; Cao, Y.F.; Tang, C. Effects of soil amelioration measures mitigating soil salinity and improving crop P uptake in coastal area of north Jiangsu. Acta Pedol. Sin. 2020, 57, 1219–1229. (In Chinese) [Google Scholar]
- Su, R.; Zhang, Z.K.; Chang, C.; Peng, Q.; Cheng, X.; Pang, J.Y.; He, H.H.; Lambers, H. Interactive effects of phosphorus fertilization and salinity on plant growth, phosphorus and sodium status, and tartrate exudation by roots of two alfalfa cultivars. Ann. Bot. 2022, 129, 53–64. [Google Scholar] [CrossRef]
- Hu, Y.C.; Schmidhalter, U. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 2005, 168, 541–549. [Google Scholar] [CrossRef]
- Xian, J.T.; Chen, X.B.; Wang, S.; Zhang, X.L.; Xu, G. Phosphorus availability in saline soil: A review. Soils 2023, 55, 474–486. [Google Scholar]
- Yang, L.L.; Li, J.H. Nutrition and fertilizer effect of saline in China. Chin. J. Eco-Agric. 2001, 9, 79–81. (In Chinese) [Google Scholar]
- Ding, Z.L.; Kheir, A.M.S.; Ali, M.G.M.; Ali, O.A.M.; Abdelaal, A.I.N.; Lin, X.E.; Zhou, Z.X.; Wang, B.Z.; Liu, B.B.; He, Z.L. The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci. Rep. 2020, 10, 2736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.M.; Chen, C.; Liu, G.M.; Yang, J.S.; Yu, S.P. Suitable utilization of fertilizer and soil modifier to ameliorate physicochemical characteristics of saline-alkali soil and increase crop yields. Trans. Chin. Soc. Agric. Eng. 2014, 30, 91–98. (In Chinese) [Google Scholar]
- Liu, X.Y.; Yang, J.S.; Tao, J.Y.; Yao, R.J.; Wang, X.P.; Xie, W.P.; Zhu, H. Elucidating the effect and interaction mechanism of fulvic acid and nitrogen fertilizer application on phosphorus availability in a salt-affected soil. J. Soil. Sediment. 2021, 21, 2525–2539. [Google Scholar] [CrossRef]
- Liu, X.Y.; Yang, J.S.; Tao, J.Y.; Yao, R.J. Integrated application of inorganic fertilizer with fulvic acid for improving soil nutrient supply and nutrient use efficiency of winter wheat in a salt-affected soil. Appl. Soil Ecol. 2022, 170, 104255. [Google Scholar] [CrossRef]
- Liu, X.Y.; Yang, J.S.; Yao, R.J. Synergistic effects of fertilizer reduction and fulvic acid application on decreasing NaCl content and N, P availability of salinized soil. Plant Nutr. Fertil. Sci. 2021, 27, 1339–1350. (In Chinese) [Google Scholar]
- Gao, S.; Yang, J.S.; Yao, R.J.; Cao, Y.F.; Zhu, H.; Sun, Y.P.; Wang, X.P.; Xie, W.P. Effects of different management on phosphorus fractions in coastal saline soil and phosphorus absorption and utilization by crops. Soils 2020, 52, 691–698. (In Chinese) [Google Scholar]
- Li, Z.; Liu, Z.; Wang, Y.; Wang, X.F.; Liu, P.; Han, M.Y.; Zhou, W.Z. Improving soil phosphorus availability in saline areas by marine bacterium Bacillus paramycoides. Environ. Sci. Pollut. Res. 2023, 30, 112385–112396. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Liu, Z.; Han, F.; Chen, S.G.; Zhou, W.Z. Integrated application of phosphorus-accumulating bacteria and phosphorus-solubilizing bacteria to achieve sustainable phosphorus management in saline soils. Sci. Total Environ. 2023, 885, 163971. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lang, L.N.; Sun, Z.X.; Li, M.T. Potential application of paenibacillus sp. C1 to the amelioration of Soda saline–alkaline soil. Geomicrobiol. J. 2023, 40, 172–182. [Google Scholar] [CrossRef]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance: Current assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Wang, W.C.; Yuan, W.; Zhang, R.H.; Xi, X.B. Cattle manure application and combined straw mulching enhance maize (Zea mays L.) growth and water use for rain-fed cropping system of coastal saline soils. Agriculture 2021, 11, 745. [Google Scholar] [CrossRef]
- Pang, H.C.; Li, Y.Y.; Yang, J.S.; Liang, Y.S. Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions. Agric. Water Manag. 2010, 97, 1971–1977. [Google Scholar] [CrossRef]
- Chen, W.L.; Jin, M.G.; Ferré, T.P.A.; Liu, Y.F.; Huang, J.N.; Xian, Y. Soil conditions affect cotton root distribution and cotton yield under mulched drip irrigation. Field Crop Res. 2021, 249, 107743. [Google Scholar] [CrossRef]
- Hou, X.H.; Xiang, Y.Z.; Fan, J.L.; Zhang, F.C.; Hu, W.H.; Yan, F.L.; Xiao, C.; Li, Y.P.; Cheng, H.L.; Li, Z.J. Spatial distribution and variability of soil salinity in film-mulched cotton fields under various drip irrigation regimes in southern Xinjiang of China. Soil Till. Res. 2022, 223, 105470. [Google Scholar] [CrossRef]
- Ren, F.T.; Yang, G.; Li, W.J.; He, X.L.; Gao, Y.L.; Tian, L.J.; Li, F.D.; Wang, Z.L.; Liu, S.H. Yield-compatible salinity level for growing cotton (Gossypium hirsutum L.) under mulched drip irrigation using saline water. Agric. Water Manag. 2021, 250, 106859. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Yuan, W.; Han, L.J. Residue mulching alleviates coastal salt accumulation and stimulates post-fallow crop biomass under a fallow-maize (Zea mays L.) rotation system. Agriculture 2022, 14, 509. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Pang, H.C.; Wang, J.; Huo, L.; Li, Y.Y. Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crop. Res. 2014, 161, 16–25. [Google Scholar] [CrossRef]
- Bai, Z.T.; Liu, H.G.; Wang, T.A.; Gong, P.; Li, H.Q.; Li, L.; Xue, B.; Cao, M.H.; Feng, J.P.; Xu, Y.B. Effect of smashing ridge tillage depth on soil water, salinity, and yield in saline cotton fields in South Xinjiang, China. Water 2021, 13, 3592. [Google Scholar] [CrossRef]
- Zhang, T.B.; Zhan, X.Y.; Kang, Y.H.; Wan, S.Q.; Feng, H. Improvements of soil salt characteristics and nutrient status in an impermeable saline-sodic soil reclaimed with an improved drip irrigation while ridge planting Lycium barbarum L. J. Soil. Sediment. 2017, 17, 1126–1139. [Google Scholar] [CrossRef]
- Chi, C.M.; Zhao, C.W.; Sun, X.J.; Wang, Z.C. Reclamation of saline-sodic soil properties and improvement of rice (Oriza sativa L.) growth and yield using desulfurized gypsum in the west of Songnen Plain, northeast China. Geoderma 2012, 187, 24–30. [Google Scholar] [CrossRef]
- Yuan, J.; Feng, W.Z.; Jiang, X.M.; Wang, J.L. Saline-alkali migration in soda saline soil based on sub-soiling technology. Desalin. Water Treat. 2019, 149, 352–362. [Google Scholar] [CrossRef]
- Cui, L.Q.; Liu, Y.M.; Yan, J.L.; Hina, K.; Hussain, Q.; Qiu, T.J.; Zhu, J.Y. Revitalizing coastal saline-alkali soil with biochar application for improved crop growth. Ecol. Eng. 2022, 179, 106594. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, Q.; Tian, Z.Z.; Cui, Y.T.; Liang, Y.; Wang, H.Y. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci. Total Environ. 2020, 722, 137428. [Google Scholar] [CrossRef]
- Wang, Z.H.; Yin, D.W.; Wang, H.Y.; Zhao, C.J.; Li, Z.T. Effects of biochar on waterlogging and the associated change in micro-ecological environment of maize rhizosphere soil in saline-alkali land. Bioresources 2020, 15, 9303–9323. [Google Scholar] [CrossRef]
- Xiao, L.; Yuan, G.; Feng, L.; Bi, D.; Wei, J. Soil properties and the growth of wheat (Tri aestivum L.) and maize (Zea mays L.) in response to reed (phragmites communis) biochar use in a salt-affected soil in the Yellow River Delta. Agric. Ecosyst. Environ. 2020, 303, 107124. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Wang, S.J.; Li, Y.; Zhuo, Y.Q.; Liu, J. Effects of straw layer and flue gas desulfurization gypsum treatments on soil salinity and sodicity in relation to sunflower yield. Geoderma 2019, 352, 13–21. [Google Scholar] [CrossRef]
- Wang, X.B.; Zhao, Q.S.; Hu, Y.J.; Zheng, Y.; Wu, X.P.; Wu, H.J.; Zhang, G.X.; Cai, D.X.; Manzur, C.L. An alternative water source and combined agronomic practices for cotton irrigation in coastal saline soils. Irrig. Sci. 2012, 30, 221–232. [Google Scholar] [CrossRef]
Measures | Advantages | Disadvantages |
---|---|---|
Physical measures | Strong operability, simple method, Strong applicability, etc. | Water source demand, large engineering quantity, costly, etc. |
Chemical measures | Material variety, producing effects quickly, etc. | Short duration, secondary pollution, etc. |
Biological measures | Eco-friendly, sustainable, etc. | Time-consuming, regional specificity, etc. |
Measures | Yield | Location | Crop | Reference |
---|---|---|---|---|
Brackish water irrigation | 6.0–8.0 Mg/ha | 37°31′ N, 116°30′ E | Winter wheat | [195] |
Brackish water irrigation | 3.0–9.0 Mg/ha | 37°31′ N, 116°30′ E | Summer maize | [195] |
Brackish water irrigation | 11.7–15.5 g/plant | 41°35′ N, 86°10′ E | Lint yield | [196] |
Drip irrigation | 5100–6200 kg/ha | 40°53′ N, 86°56′ E | Seed cotton | [197] |
Drip irrigation with saline water | 1250–3100 kg/ha | 44°19′ N, 85°59′ E | Seed cotton | [198] |
Cattle manure | 5124–6197 kg/ha | 38°46′ N, 117°13′ E | Maize | [194] |
Wood fibre layer | 1000–1232.7 kg/ha | 37°45′ N, 118°59′ E | Seed cotton | [93] |
Measures | Yield | Location | Crop | Reference |
---|---|---|---|---|
Traditional tillage and mulch | 4655–5331 kg/ha | 36°46′ N, 117°13′ E | Maize | [199] |
Deep tillage | 10,168–12,288 kg/ha (shoot biomass) | 41°04′ N, 108°00′ E | Sunflower | [200] |
Conventional tillage | 2700–5100 kg/ha | 79°25′ N, 40°01′ E | Seed cotton | [201] |
Tillage with irrigation amount | 45–908 kg/ha | 38°47′ N, 106°20′ E | L. barbarum L. | [202] |
Measures | Yield | Location | Crop | Reference |
---|---|---|---|---|
Biochar | 19–35 t/ha (aboveground biomass) | 33°33′ N, 120°22′ E | Wheat | [205] |
Biochar | 20–39 t/ha (aboveground biomass) | 33°33′ N, 120°22′ E | Maize | [205] |
Corn straw biochar | 5.0–7.8 t/ha | 44°50′ N, 123°35′ E | Maize | [206] |
Biochar | 11–14 t/ha | 46°37′ N, 125°11′ E | Maize | [207] |
K-rich biochar | 3–3.5 t/ha | 37°55′ N, 118°48′ E | Wheat | [208] |
K-rich biochar | 5.5–7.5 t/ha | 37°55′ N, 118°48′ E | Maize | [208] |
Gas desulfurization gypsum | 776–1428 t/ha | 40°15′ N, 110°50′ E | Sunflower | [209] |
Polyacrylamide | 842–1531 kg/ha | 38°19′ N, 117°23′ E | Cotton | [210] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Gu, S.; Jiang, R.; Zhang, X.; Hatano, R. Saline–Alkali Soil Reclamation Contributes to Soil Health Improvement in China. Agriculture 2024, 14, 1210. https://doi.org/10.3390/agriculture14081210
Zhu W, Gu S, Jiang R, Zhang X, Hatano R. Saline–Alkali Soil Reclamation Contributes to Soil Health Improvement in China. Agriculture. 2024; 14(8):1210. https://doi.org/10.3390/agriculture14081210
Chicago/Turabian StyleZhu, Wei, Shiguo Gu, Rui Jiang, Xin Zhang, and Ryusuke Hatano. 2024. "Saline–Alkali Soil Reclamation Contributes to Soil Health Improvement in China" Agriculture 14, no. 8: 1210. https://doi.org/10.3390/agriculture14081210
APA StyleZhu, W., Gu, S., Jiang, R., Zhang, X., & Hatano, R. (2024). Saline–Alkali Soil Reclamation Contributes to Soil Health Improvement in China. Agriculture, 14(8), 1210. https://doi.org/10.3390/agriculture14081210