Analysis of Interactions among Greenhouse Gas Emissions, Carbon Sinks, and Food Security in China’s Agricultural Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Variable Definition
2.1.1. Calculation of GHG Emissions from Agricultural Systems
2.1.2. Calculation of Carbon Sinks in Agricultural Systems
2.1.3. Calculation of Food Security Index
2.1.4. Agricultural Policy Dummy Variable
2.1.5. Control Variables
2.2. Research Methods
2.2.1. Baseline Regression Model
2.2.2. Panel-VAR Model
2.3. Data Source
3. Results
3.1. The Trend and Correlation between GHGs, Carbon Sinks, and Food Security
3.1.1. GHGs, Carbon Sinks, and Food Security Trends
3.1.2. Emissions and Trends of Three GHGs
3.1.3. Correlation Analysis of GHGs, Carbon Sinks, and Food Security
3.2. Analysis of Fixed Effects Regression Results
3.3. Interactions among GHGs, Carbon Sinks, and Food Security
3.3.1. Stability Test
3.3.2. GMM Estimation
3.3.3. Granger Causality Test
3.3.4. Impulse Response Function (IRF)
3.3.5. Variance Decomposition
4. Discussion
4.1. Non-CO2 Greenhouse Gases from Agricultural Systems
4.2. Effect of Agricultural Policies on GHGs, Carbon Sinks, and Food Security
4.3. The Relationship among GHGs, Carbon Sinks, and Food Security
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Balwinder, S.; Shirsath, P.B.; Jat, M.L.; McDonald, A.J.; Srivastava, A.K.; Craufurd, P.; Rana, D.S.; Singh, A.K.; Chaudhari, S.K.; Sharma, P.C.; et al. Agricultural labor, COVID-19, and potential implications for food security and air quality in the breadbasket of India. Agric. Syst. 2020, 185, 102954. [Google Scholar] [CrossRef]
- Mauricio Galeana-Pizana, J.; Couturier, S.; Figueroa, D.; Daniel Jimenez, A. Is rural food security primarily associated with smallholder agriculture or with commercial agriculture?: An approach to the case of Mexico using structural equation modeling. Agric. Syst. 2021, 190, 103091. [Google Scholar] [CrossRef]
- Song, S.; Goh, J.C.L.; Tan, H.T.W. Is food security an illusion for cities? A system dynamics approach to assess disturbance in the urban food supply chain during pandemics. Agric. Syst. 2021, 189, 103045. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). The State of the World’s Land and Water Resources for Food and Agriculture–Systems at Breaking Point; Food and Agriculture Organization: Rome, Italy, 2021. [Google Scholar]
- Luo, Y.; Long, X.; Wu, C.; Zhang, J. Decoupling CO2 emissions from economic growth in agricultural sector across 30 Chinese provinces from 1997 to 2014. J. Clean. Prod. 2017, 159, 220–228. [Google Scholar] [CrossRef]
- Olayide, O.E.; Tetteh, I.K.; Popoola, L. Differential impacts of rainfall and irrigation on agricultural production in Nigeria: Any lessons for climate-smart agriculture? Agric. Water Manag. 2016, 178, 30–36. [Google Scholar] [CrossRef]
- Thiault, L.; Mora, C.; Cinner, J.E.; Cheung, W.W.L.; Graham, N.A.J.; Januchowski-Hartley, F.A.; Mouillot, D.; Sumaila, U.R.; Claudet, J. Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. Sci. Adv. 2019, 5, eaaw9976. [Google Scholar] [CrossRef]
- Frank, S.; Havlík, P.; Soussana, J.-F.; Levesque, A.; Valin, H.; Wollenberg, E.; Kleinwechter, U.; Fricko, O.; Gusti, M.; Herrero, M.; et al. Reducing greenhouse gas emissions in agriculture without compromising food security? Environ. Res. Lett. 2017, 12, 105004. [Google Scholar] [CrossRef]
- Smith, P.; Haberl, H.; Popp, A.; Erb, K.H.; Lauk, C.; Harper, R.; Tubiello, F.N.; de Siqueira Pinto, A.; Jafari, M.; Sohi, S.; et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Chang. Biol. 2013, 19, 2285–2302. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Shin, Y.; Tanaka, A.; Takahashi, K.; Masui, T. Consequence of climate mitigation on the risk of hunger. Environ. Sci. Technol. 2015, 49, 7245–7253. [Google Scholar] [CrossRef]
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.; Peuelas, J. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Field, C.B. Estimation of the carbon dioxide (CO2) fertilization effect using growth rate anomalies of CO2 and crop yields since 1961. Glob. Chang. Biol. 2008, 14, 39–45. [Google Scholar] [CrossRef]
- Bloom, A.J.; Burger, M.; Kimball, B.A.; Pinter, J.P.J. Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat. Nat. Clim. Chang. 2014, 4, 477–480. [Google Scholar] [CrossRef]
- Myers, S.S.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A.D.; Bloom, A.J.; Carlisle, E.; Dietterich, L.H.; Fitzgerald, G.; Hasegawa, T.; et al. Increasing CO2 threatens human nutrition. Nature 2014, 510, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Long, W.; Wang, H.; Long, P.; Xu, Y.; Zhong, K.; Xiong, R.; Xie, F.; Chen, F.; Fu, Z. Reducing carbon footprints and increasing net ecosystem economic benefits through dense planting with less nitrogen in double-cropping rice systems. Sci. Total Environ. 2023, 891, 164756. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Sitch, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Wang, X.; Ahlstrom, A.; Anav, A.; Canadell, J.G.; Cong, N.; et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob. Chang. Biol. 2013, 19, 2117–2132. [Google Scholar] [CrossRef]
- Schimel, D.; Stephens, B.B.; Fisher, J.B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA 2015, 112, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.F.; Luo, X.; De Kauwe, M.G.; Medlyn, B.E.; Prentice, I.C.; Stocker, B.D.; Smith, N.G.; Terrer, C.; Wang, H.; Zhang, Y.; et al. Retraction Note: A constraint on historic growth in global photosynthesis due to increasing CO2. Nature 2022, 606, 420. [Google Scholar] [CrossRef]
- Terrer, C.; Jackson, R.B.; Prentice, I.C.; Keenan, T.F.; Kaiser, C.; Vicca, S.; Fisher, J.B.; Reich, P.B.; Stocker, B.D.; Hungate, B.A.; et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Chang. 2019, 9, 684–689. [Google Scholar] [CrossRef]
- Winkler, A.J.; Myneni, R.B.; Hannart, A.; Sitch, S.; Haverd, V.; Lombardozzi, D.; Arora, V.K.; Pongratz, J.; Nabel, J.E.M.S.; Goll, D.S.; et al. Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2. Biogeosciences 2021, 18, 4985–5010. [Google Scholar] [CrossRef]
- Ashraf, J.; Javed, A. Food security and environmental degradation: Do institutional quality and human capital make a difference? J. Environ. Manag. 2023, 331, 117330. [Google Scholar] [CrossRef] [PubMed]
- Sarker, A. Ecological perspectives on water, food, and health security linkages: The Minamata case in Japan. Environ. Sci. Pollut. Res. 2021, 28, 32177–32189. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Fan, Y.; Tian, Z.; Li, X.; Jiang, M.; Sun, L.; Zhong, H.; Wang, K.; Wang, X.; Jiang, L. A vital option for food security and greenhouse gases mitigation: Planting elite super rice in double- to single-rice cropping fields in China. Environ. Res. Lett. 2021, 16, 094038. [Google Scholar] [CrossRef]
- Fujimori, S.; Wu, W.; Doelman, J.; Frank, S.; Hristov, J.; Kyle, P.; Sands, R.; van Zeist, W.J.; Havlik, P.; Dominguez, I.P.; et al. Land-based climate change mitigation measures can affect agricultural markets and food security. Nat. Food 2022, 3, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Al-mulali, U.; Fereidouni, H.G.; Bin Mohammed, M.A.H.; Lee, J.Y.M. Agriculture investment, output growth, and CO2emissions relationship. Energy Sources Part B Econ. Plan. Policy 2016, 11, 665–671. [Google Scholar] [CrossRef]
- Cheng, P.; Tang, H.; Lin, F.; Kong, X. Bibliometrics of the nexus between food security and carbon emissions: Hotspots and trends. Environ. Sci. Pollut. Res. Int. 2023, 30, 25981–25998. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.D.; Zhu, X.Y.; Wang, Y.F. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Inubushi, K.; Cheng, W.G.; Aonuma, S.; Hoque, M.M.; Kobayashi, K.; Miura, S.; Kim, H.Y.; Okada, M. Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Glob. Chang. Biol. 2003, 9, 1458–1464. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Min, J.; Hu, H. Calculation of Greenhouse Gases Emission from Agricultural Production in China. China Popul. Resour. Environ. 2012, 22, 21–27. (In Chinese) [Google Scholar]
- Huang, X.; Xu, X.; Wang, Q.; Zhang, L.; Gao, X.; Chen, L. Assessment of Agricultural Carbon Emissions and Their Spatiotemporal Changes in China, 1997-2016. Int. J. Environ. Res. Public Health 2019, 16, 3105. [Google Scholar] [CrossRef]
- Yue, Q.; Wu, H.; Sun, J.F.; Cheng, K.; Smith, P.; Hillier, J.; Xu, X.R.; Pan, G.X. Deriving Emission Factors and Estimating Direct Nitrous Oxide Emissions for Crop Cultivation in China. Environ. Sci. Technol. 2019, 53, 10246–10257. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, J.; Wang, Y.; Zheng, N. Variation characteristics analysis of major crop carbon fixation in SanjiangPlain during 1980~2007. J. Arid Land Resour. Environ. 2011, 25, 179–183. [Google Scholar]
- Zhang, M.; Chen, Y.; Yu, C.; Pan, Z.; Fan, D.; Luo, Y.; Wang, X. Dynamic assessments of plant biomass and carbon storage during the production cycle of tea gardens. J. Zhejiang Univ. 2013, 39, 687–694. (In Chinese) [Google Scholar] [CrossRef]
- Li, K. Land Use Change and Net Greenhouse Gas Emissions and Terrestrial Ecosystem Carbon Cycle; China Meteorological Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Johnson, J.D.; Allmaras, D.; Reicosky, R. Estimating source carbon residues, roots and rhizodeposits using the nation grain-yield database. Agron. J. 2006, 98, 622–636. [Google Scholar] [CrossRef]
- Shi, P.; Feng, Z.H.; Gao, H.D.; Li, P.; Zhang, X.M.; Zhu, T.; Li, Z.B.; Xu, G.C.; Ren, Z.P.; Xiao, L. Has “Grain for Green” threaten food security on the Loess Plateau of China? Ecosyst. Health Sustain. 2020, 6, 1709560. [Google Scholar] [CrossRef]
- Cai, Y.; Fu, Z.; Dai, E. The minimum area per capita of cultivated land and its implication for the optimization of land resource allocation. Acta Geogr. Sin. 2002, 57, 127–134. (In Chinese) [Google Scholar]
- Holtz-Eakin, D.; Newey, W.; Rosen, H.S. Estimating Vector Autoregressions with Panel Data. Econometrica 1988, 56, 1371–1395. [Google Scholar] [CrossRef]
- Shao, Q.; Liu, X.; Zhao, W. An alternative method for analyzing dimensional interactions of urban carrying capacity: Case study of Guangdong-Hong Kong-Macao Greater Bay Area. J. Environ. Manag. 2020, 273, 111064. [Google Scholar] [CrossRef] [PubMed]
- Abrigo, M.R.M.; Love, I. Estimation of panel vector autoregression in Stata. Stata J. 2016, 16, 778–804. [Google Scholar] [CrossRef]
- Bakirtas, I.; Cetin, M.A. Revisiting the environmental Kuznets curve and pollution haven hypotheses: MIKTA sample. Environ. Sci. Pollut. Res. 2017, 24, 18273–18283. [Google Scholar] [CrossRef] [PubMed]
- Kumeka, T.T.; Uzoma-Nwosu, D.C.; David-Wayas, M.O. The effects of COVID-19 on the interrelationship among oil prices, stock prices and exchange rates in selected oil exporting economies. Resour. Policy 2022, 77, 102744. [Google Scholar] [CrossRef] [PubMed]
- Andreoni, V.; Duriavig, M. The responsibility of CO2 embodied in Italy–China trade: A consumption-based approach. Int. J. Sustain. Econ. 2011, 3, 44–62. [Google Scholar]
- Yan, C.; Han, M.; Liu, Y.; Zhang, B. Household CH4 and N2O Footprints of Major Economies. Earths Future 2021, 9, e2021EF002143. [Google Scholar] [CrossRef]
- Li, D. Analysis of Agricultural Biomass Energy Use and Greenhouse Gas Reduction Evidence from China. J. Environ. Public Health 2022, 2022, 6126944. [Google Scholar] [CrossRef] [PubMed]
- World Meteorological Organization (WMO). State of the Global Climate 2022; World Meteorological Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Linquist, B.; Groenigen, K.J.; Adviento-Borbe, M.A.; Pittelkow, C.; Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Chang. Biol. 2012, 18, 194–209. [Google Scholar] [CrossRef]
- Pathak, H.; Jain, N.; Bhatia, A.; Patel, J.; Aggarwal, P.K. Carbon footprints of Indian food items. Agriculture, Ecosyst. Environ. 2010, 139, 66–73. [Google Scholar] [CrossRef]
- Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, C.; Wang, F.; et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature 2015, 523, 602–606. [Google Scholar] [CrossRef]
- Zang, W.R.; Fu, X.H.; Xiong, D.P. The effect evaluation of direct financial subsidy policy on the food amount security. J. Agrotech. Econ. 2010, 12, 84–93. (In Chinese) [Google Scholar]
- Ratnatunga, J.; Murad, M.W. Carbonomics of Japan’s agricultural output: Causality and long-run sustainability. Int. J. Sustain. Dev. World Ecol. 2012, 19, 482–489. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, H.; Shi, H.; Zhang, J.; Wang, X.; Pan, S.; Yang, J. Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation. Glob. Chang. Biol. 2020, 26, 6116–6133. [Google Scholar] [CrossRef] [PubMed]
Variable | Definition | Obs. | Mean | Std. | Min | Max |
---|---|---|---|---|---|---|
CO2 | Carbon dioxide emissions (104 Mg) | 651 | 253.996 | 193.427 | 3.467 | 870.981 |
CH4 | Methane emissions (104 Mg) | 651 | 30.498 | 42.650 | 0.000 | 145.773 |
N2O | Nitrous oxide emissions (104 Mg) | 651 | 1.513 | 1.277 | 0.012 | 5.566 |
sink | Carbon sinks (104 Mg) | 651 | 3411.399 | 3000.900 | 46.837 | 12,537.790 |
GHG | Greenhouse gas emissions (104 Mg) | 651 | 1467.379 | 1296.201 | 8.599 | 4438.733 |
food | Food security index | 651 | 0.256 | 0.119 | 0.068 | 0.874 |
fsp | Food subsidy policy (Yes = 1, no = 0) | 651 | 0.849 | 0.358 | 0.000 | 1.000 |
tsp | Agricultural “three subsidies” reform (Yes = 1, no = 0) | 651 | 0.246 | 0.431 | 0.000 | 1.000 |
pop | Population density (Person/hm2) | 651 | 4.262 | 6.276 | 0.021 | 39.492 |
szl | Disaster-affected rate | 651 | 0.228 | 0.161 | 0.000 | 0.936 |
stru | Value added of the primary industry/GDP | 651 | 0.120 | 0.065 | 0.003 | 0.364 |
lnmac | Logarithm of total power of agricultural machinery | 651 | 7.431 | 1.104 | 4.543 | 9.499 |
urban | Urbanization rate of population | 651 | 0.488 | 0.181 | 0.131 | 0.896 |
lnae | Logarithm of agricultural output value/population | 651 | 7.672 | 0.697 | 6.147 | 9.454 |
ec | Engel’s coefficient | 651 | 0.347 | 0.051 | 0.197 | 0.490 |
rain | Logarithm of precipitation | 651 | 6.722 | 0.513 | 4.954 | 7.711 |
Area | GHG (104 Mg) | Sink (104 Mg) | Food | |||
---|---|---|---|---|---|---|
2000 | 2020 | 2000 | 2020 | 2000 | 2020 | |
Hebei | 1465 | 1261 | 4451 | 6435 | 0.187 | 0.322 |
Inner Mongolia | 533 | 1107 | 2081 | 6350 | 0.193 | 0.614 |
Liaoning | 722 | 772 | 1676 | 3745 | 0.165 | 0.365 |
Jilin | 751 | 989 | 2534 | 5998 | 0.283 | 0.690 |
Heilongjiang | 1351 | 2534 | 4067 | 11,515 | 0.257 | 0.874 |
Jiangsu | 4188 | 4138 | 4934 | 5662 | 0.292 | 0.342 |
Anhui | 3387 | 4104 | 4143 | 6430 | 0.207 | 0.351 |
Jiangxi | 2887 | 3868 | 2456 | 3108 | 0.239 | 0.304 |
Shandong | 2119 | 1800 | 7077 | 9527 | 0.266 | 0.358 |
Henan | 2077 | 2560 | 7574 | 12,178 | 0.239 | 0.396 |
Hubei | 3176 | 4093 | 3749 | 4406 | 0.260 | 0.309 |
Hunan | 3554 | 4408 | 4056 | 4457 | 0.276 | 0.322 |
Sichuan | 2279 | 2243 | 5015 | 5445 | 0.246 | 0.280 |
PA mean | 2192 | 2606 | 4140 | 6558 | 0.239 | 0.425 |
Shanxi | 428 | 425 | 1252 | 2138 | 0.106 | 0.231 |
Guangxi | 2404 | 2208 | 5982 | 11,704 | 0.189 | 0.203 |
Chongqing | 827 | 826 | 1493 | 1494 | 0.201 | 0.245 |
Guizhou | 768 | 884 | 1782 | 1539 | 0.164 | 0.159 |
Yunnan | 669 | 1013 | 3868 | 4914 | 0.166 | 0.229 |
Tibet | 9 | 15 | 67 | 47 | 0.230 | 0.238 |
Shaanxi | 678 | 774 | 1726 | 2052 | 0.125 | 0.192 |
Gansu | 300 | 449 | 1095 | 1859 | 0.107 | 0.254 |
Qinghai | 26 | 31 | 130 | 166 | 0.068 | 0.124 |
Ningxia | 105 | 145 | 376 | 569 | 0.186 | 0.314 |
Xinjiang | 377 | 852 | 2528 | 6479 | 0.270 | 0.404 |
BA mean | 599 | 693 | 1845 | 2997 | 0.165 | 0.236 |
Beijing | 103 | 26 | 243 | 50 | 0.141 | 0.165 |
Tianjin | 113 | 76 | 215 | 362 | 0.101 | 0.239 |
Shanghai | 325 | 182 | 268 | 124 | 0.229 | 0.258 |
Zhejiang | 1941 | 1186 | 1802 | 930 | 0.217 | 0.198 |
Fujian | 1456 | 990 | 1201 | 703 | 0.187 | 0.203 |
Guangdong | 2725 | 2278 | 3984 | 3607 | 0.200 | 0.185 |
Hainan | 393 | 321 | 703 | 336 | 0.146 | 0.183 |
CA mean | 1008 | 723 | 1202 | 873 | 0.174 | 0.204 |
ALL mean | 1359.226 | 1501.871 | 2662.194 | 4010.613 | 0.198 | 0.308 |
Areas | Variables | CO2 | CH4 | N2O | Sink | GHG | Areas | CO2 | CH4 | N2O | Sink | GHG |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PA | CH4 | −0.064 | BA | 0.509 * | ||||||||
N2O | 0.811 * | −0.319 * | 0.864 * | 0.615 * | ||||||||
sink | 0.772 * | −0.200 * | 0.866 * | 0.929 * | 0.606 * | 0.837 * | ||||||
GHG | 0.323 * | 0.888 * | 0.013 | 0.102 * | 0.778 * | 0.857 * | 0.864 * | 0.823 * | ||||
food | 0.052 | −0.104 * | 0.152 * | 0.433 * | −0.079 | 0.138 * | 0.108 | −0.112 * | 0.134 * | 0.019 * | ||
CA | CH4 | 0.929 * | ALL | 0.527 * | ||||||||
N2O | 0.929 * | 0.851 * | 0.897 * | 0.398 * | ||||||||
sink | 0.928 * | 0.929 * | 0.926 * | 0.897 * | 0.469 * | 0.904 * | ||||||
GHG | 0.949 * | 0.991 * | 0.876 * | 0.925 * | 0.839 * | 0.861 * | 0.726 * | 0.772 * | ||||
food | 0.176 * | 0.314 * | 0.027 | 0.122 | 0.275 * | 0.574 * | 0.287 * | 0.560 * | 0.616 * | 0.492 * |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
lnsink | lnsink | lnGHG | lnGHG | lnfood | lnfood | |
lnsink | 0.381 *** | 0.361 *** | −0.197 | −0.117 | ||
(3.901) | (3.810) | (−1.608) | (−0.899) | |||
lnfood | 0.276 | 0.352 | 0.052 | 0.063 | ||
(0.531) | (0.627) | (0.143) | (0.179) | |||
lnGHG | 0.829 *** | 0.813 *** | −0.751 *** | −0.559 *** | ||
(4.194) | (3.608) | (−5.530) | (−3.732) | |||
c.lnfood×c.lnGHG | 0.058 | 0.045 | ||||
(0.764) | (0.572) | |||||
c.lnfood×c.lnsink | −0.021 | −0.011 | ||||
(−0.518) | (−0.281) | |||||
c.lnsink×c.lnGHG | 0.105 *** | 0.084 *** | ||||
(7.055) | (4.661) | |||||
fsp | −0.009 | −0.038 | −0.019 | 0.006 | 0.022 | 0.001 |
(−0.557) | (−1.286) | (−1.276) | (0.213) | (1.322) | (0.022) | |
L.fsp | −0.041 | −0.057 ** | 0.029 ** | 0.027 | 0.035 ** | −0.003 |
(−1.648) | (−2.161) | (2.053) | (1.378) | (2.358) | (−0.126) | |
tsp | −0.019 | 0.042 | 0.036 * | −0.053 *** | 0.015 | −0.028 |
(−0.722) | (1.442) | (1.897) | (−3.122) | (0.696) | (−1.195) | |
L.tsp | 0.010 | 0.048 | −0.037 *** | −0.071 *** | 0.002 | −0.024 |
(0.653) | (1.215) | (−3.957) | (−2.839) | (0.144) | (−0.941) | |
pop | 0.004 | 0.007 | −0.018 * | 0.000 | 0.001 | −0.021 *** |
(0.592) | (0.323) | (−1.985) | (0.015) | (0.213) | (−2.800) | |
szl | 0.015 | 0.012 | 0.057 * | 0.065 ** | −0.194 *** | −0.191 *** |
(0.353) | (0.284) | (1.790) | (2.068) | (−5.276) | (−5.652) | |
stru | 0.501 | 0.554 | 0.027 | −0.602 | 0.044 | 0.781 |
(0.890) | (0.582) | (0.069) | (−1.257) | (0.085) | (1.196) | |
lnmac | −0.079 | −0.085 | 0.221 *** | 0.203 *** | −0.075 | −0.073 |
(−1.220) | (−1.288) | (3.164) | (2.946) | (−1.242) | (−1.310) | |
urban | 0.280 | 0.265 | −0.451 *** | −0.382 *** | −0.089 | −0.267 |
(1.034) | (0.823) | (−4.707) | (−3.163) | (−0.611) | (−1.433) | |
lnae | 0.005 | 0.024 | 0.079 | 0.170 ** | 0.114 ** | −0.001 |
(0.075) | (0.160) | (1.359) | (2.185) | (2.345) | (−0.011) | |
ec | 0.994 * | 1.082 * | 0.148 | 0.444 | −0.163 | 0.056 |
(2.033) | (1.724) | (0.538) | (1.093) | (−0.633) | (0.134) | |
lnrain | −0.021 | −0.021 | 0.004 | 0.006 | 0.042 * | 0.052 ** |
(−0.754) | (−0.682) | (0.212) | (0.254) | (1.834) | (2.117) | |
cons | 3.126 ** | 3.102 ** | 1.575 * | 1.129 | −0.939 ** | −0.842 * |
(2.315) | (2.149) | (1.707) | (1.235) | (−2.102) | (−1.780) | |
Province-fixed effects | Yes | Yes | Yes | Yes | Yes | Yes |
Time-fixed effects | No | Yes | No | Yes | No | Yes |
N | 620 | 620 | 620 | 620 | 620 | 620 |
R2 | 0.995 | 0.995 | 0.997 | 0.998 | 0.967 | 0.970 |
Variables | IPS Inspection | HT Test | ||
---|---|---|---|---|
Z-t-Tilder-Bar | p | z | p | |
lnfood | −8.004 | 0.000 | −9.406 | 0.000 |
lnGHG | −0.206 | 0.419 | 0.499 | 0.691 |
lnsink | −5.980 | 0.000 | 0.280 | 0.610 |
D_lnfood | −15.228 | 0.000 | −23.942 | 0.000 |
D_lnGHG | −12.363 | 0.000 | −13.347 | 0.000 |
D_lnsink | −13.617 | 0.000 | −14.036 | 0.000 |
Variable | Area | D_lnfood | D_lnGHG | D_lnsink |
---|---|---|---|---|
L1. D_lnfood | ALL | −0.3448 *** | −0.0959 | −0.3275 *** |
(0.1005) | (0.0728) | (0.1121) | ||
PA | −0.5040 * | −0.0040 | −0.4976 ** | |
(0.3032) | (0.1480) | (0.2364) | ||
BA | −0.2368 * | −0.0866 | −0.1236 | |
(0.0750) | (0.1087) | (0.0990) | ||
CA | −0.4109 *** | −0.0676 | −0.3415 | |
(0.1412) | (0.061) | (0.2809) | ||
L1.D_lnGHG | ALL | 0.1539 * | 0.0505 | 0.2374 ** |
(0.0798) | (0.1086) | (0.0960) | ||
PA | 0.1861 | 0.0153 | 0.2554 * | |
(0.1709) | (0.1711) | (0.1487) | ||
BA | 0.1216 | 0.0709 | 0.2414 *** | |
(0.2120) | (0.1276) | (0.0880) | ||
CA | 0.1771 | 0.2144 | −0.0272 | |
(0.3911) | (0.3702) | (0.5924) | ||
L1.D_lnsink | ALL | 0.0825 | 0.1307 * | 0.2561 ** |
(0.1049) | (0.0723) | (0.1262) | ||
PA | 0.2647 | 0.0554 | 0.2893 | |
(0.3788) | (0.1886) | (0.2912) | ||
BA | −0.1026 | 0.0362 | −0.0499 | |
(0.4690) | (0.1141) | (0.1350) | ||
CA | 0.1721 | 0.1335 *** | 0.5234 *** | |
(0.1358) | (0.0479) | (0.1869) |
Equation | Excluded | All | PA | BA | CA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
chi2 | df | p | chi2 | df | p | chi2 | df | p | chi2 | df | p | ||
D_lnfood | D_lnGHG | 3.713 | 1 | 0.054 | 1.186 | 1 | 0.276 | 1.557 | 1 | 0.212 | 0.205 | 1 | 0.651 |
D_lnsink | 0.618 | 1 | 0.432 | 0.488 | 1 | 0.485 | 0.524 | 1 | 0.469 | 1.605 | 1 | 0.205 | |
ALL | 4.405 | 2 | 0.111 | 3.580 | 2 | 0.167 | 1.660 | 2 | 0.436 | 1.741 | 2 | 0.419 | |
D_lnGHG | D_lnfood | 1.732 | 1 | 0.188 | 0.001 | 1 | 0.978 | 0.635 | 1 | 0.426 | 1.226 | 1 | 0.268 |
D_lnsink | 3.264 | 1 | 0.071 | 0.086 | 1 | 0.769 | 0.101 | 1 | 0.751 | 7.778 | 1 | 0.005 | |
ALL | 4.426 | 2 | 0.109 | 1.566 | 2 | 0.457 | 1.180 | 2 | 0.554 | 7.975 | 2 | 0.019 | |
D_lnsink | D_lnfood | 8.533 | 1 | 0.003 | 4.430 | 1 | 0.035 | 1.560 | 1 | 0.212 | 1.478 | 1 | 0.224 |
D_lnGHG | 6.111 | 1 | 0.013 | 2.949 | 1 | 0.086 | 7.522 | 1 | 0.006 | 0.002 | 1 | 0.963 | |
ALL | 11.026 | 2 | 0.004 | 12.963 | 2 | 0.002 | 8.025 | 2 | 0.018 | 1.579 | 2 | 0.454 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Mo, X. Analysis of Interactions among Greenhouse Gas Emissions, Carbon Sinks, and Food Security in China’s Agricultural Systems. Agriculture 2024, 14, 703. https://doi.org/10.3390/agriculture14050703
Yang W, Mo X. Analysis of Interactions among Greenhouse Gas Emissions, Carbon Sinks, and Food Security in China’s Agricultural Systems. Agriculture. 2024; 14(5):703. https://doi.org/10.3390/agriculture14050703
Chicago/Turabian StyleYang, Wenjie, and Xiaoyun Mo. 2024. "Analysis of Interactions among Greenhouse Gas Emissions, Carbon Sinks, and Food Security in China’s Agricultural Systems" Agriculture 14, no. 5: 703. https://doi.org/10.3390/agriculture14050703
APA StyleYang, W., & Mo, X. (2024). Analysis of Interactions among Greenhouse Gas Emissions, Carbon Sinks, and Food Security in China’s Agricultural Systems. Agriculture, 14(5), 703. https://doi.org/10.3390/agriculture14050703