Energy and Environmental Assessment of Bacteria-Inoculated Mineral Fertilizer Used in Spring Barley Cultivation Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Phosphorus Solubility in the Laboratory
2.2. Experimental Field Studies on the Efficiency of Spring Barley Production Technologies
2.2.1. Site Description
2.2.2. Experimental Design and Agronomic Practice
2.2.3. Meteorological Conditions
2.2.4. Determination of Barley Grain Yield
2.2.5. Energy Input Indicators
- ED—direct energy inputs, MJ ha−1;
- EIN—indirect energy inputs, MJ ha−1;
- Ez—human labor energy inputs, MJ ha−1;
- Et—fuel energy inputs, MJ ha−1;
- E0—fertilizer, seed, pesticide, and other chemicals’ energy inputs, MJ ha−1;
- TW—machinery energy inputs, MJ ha−1.
Direct Energy Inputs
- Wk—productivity of the agricultural implement, h ha−1;
- —corresponding energy equivalents of human labor inputs, MJ h−1.
- —fuel inputs, kg ha−1;
- —fuel energy equivalent, MJ kg−1.
Indirect Energy Inputs
- Gp—the rate of fertilizers, seeds, and chemicals, kg ha−1;
- —fertilizer, seed, and chemicals’ energy equivalent, MJ kg−1;
- T0—duration of action, years.
- —energy equivalent of the tractor or implement, MJ kg−1;
- G—weight of the tractor or implement, kg;
- Wh—working time, h ha−1;
- T—the life of machinery as used in practice, h.
- EOF—energy produced from the grain yield, MJ ha−1;
- —grain energy equivalent, MJ kg−1;
- Y—grain yield, kg ha−1.
- EROI—energy use efficiency;
- EOF—energy obtained from the yield, MJ ha−1;
- EIF—energy inputs to grow the yield, MJ ha−1.
- EPR—energy productivity, kg MJ−1;
- Y—grain yield, kg ha−1;
- EIF—energy inputs to grow the yield, MJ ha−1.
- ESE—specific energy, MJ kg−1;
- EIF—energy inputs to grow the yield, MJ ha−1;
- Y—grain yield, kg ha−1.
- EB—energy balance, MJ ha−1;
- EOF—energy obtained from the yield, MJ ha−1;
- EIF—energy inputs to grow the yield, MJ ha−1.
- NUE—nitrogen use efficiency;
- —nitrogen fertilizer inputs, kg ha−1;
- Y—grain yield, kg ha−1.
- PUE—phosphorus use efficiency;
- —phosphorus fertilizer inputs, kg ha−1;
- Y—grain yield, kg ha−1.
- KUE—potassium use efficiency;
- —potassium fertilizer inputs, kg ha−1;
- Y—grain yield, kg ha−1.
2.2.6. Methodology for Evaluating the Efficiency of Bacterial Inoculant in Reducing Greenhouse Gas Emissions
2.2.7. Statistical Analysis
3. Results
3.1. Laboratory Tests for Phosphorus Solubility
3.2. Energy Assessment
3.3. Fertilizer Efficiency Studies
3.4. Environmental Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, S.N.; Beta, T. Polyamines in Canadian barley grains: Determination of their content and relationship with protein level. J. Cereal Sci. 2023, 114, 103781. [Google Scholar] [CrossRef]
- Official Statistics Portal. Available online: https://osp.stat.gov.lt/statistiniu-rodikliu-analize?indicator=S9R034#/ (accessed on 15 December 2023).
- Hussein, H.A.A. Influence of radio-grain priming on growth, antioxidant capacity, and yield of barley plants. Biotechnol. Rep. 2022, 34, e00724. [Google Scholar] [CrossRef] [PubMed]
- Griffey, C.; Brooks, W.; Kurantz, M.; Thomason, W.; Taylor, F.; Obert, D.; Moreau, R.; Flores, R.; Sohn, M.; Hicks, K. Grain composition of Virginia winter barley and implications for use in feed, food, and biofuels production. J. Cereal Sci. 2010, 51, 41–49. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; Edney, M. Barley: Grain-Quality Characteristics and Management of Quality Requirements. In Cereal Grains, 2nd ed.; Wrigley, C., Batey, I., Miskelly, D., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 195–234. [Google Scholar] [CrossRef]
- Cammarano, D.; Basso, B.; Holland, J.; Gianinetti, A.; Baronchelli, M.; Ronga, D. Modeling spatial and temporal optimal N fertilizer rates to reduce nitrate leaching while improving grain yield and quality in malting barley. Comput. Electron. Agric. 2021, 182, 105997. [Google Scholar] [CrossRef]
- Barłóg, P.; Grzebisz, W.; Łukowiak, R. Fertilizers and Fertilization Strategies Mitigating Soil Factors Constraining Efficiency of Nitrogen in Plant Production. Plants 2022, 11, 1855. [Google Scholar] [CrossRef] [PubMed]
- Osman, K.T. Plant Nutrients and Soil Fertility Management. In Soils: Principles, Properties and Management; Springer: Dordrecht, The Netherlands, 2013; pp. 129–159. [Google Scholar]
- Rawat, P.; Sharma, A.; Shankhdhar, D.; Shankhdhar, S.C. Improvement of phosphorus uptake, phosphorus use efficiency, and grain yield of upland rice (Oryza sativa L.) in response to phosphate-solubilizing bacteria blended with phosphorus fertilizer. Pedosphere 2022, 32, 752–763. [Google Scholar] [CrossRef]
- Jovarauskas, D.; Steponavičius, D.; Kemzūraitė, A.; Zinkevičius, R.; Venslauskas, K. Comparative analysis of the environmental impact of conventional and precision spring wheat fertilization under various meteorological conditions. J. Environ. Manag. 2021, 296, 113150. [Google Scholar] [CrossRef]
- Rivera, X.C.S.; Bacenetti, J.; Fusi, A.; Niero, M. The influence of fertiliser and pesticide emissions model on life cycle assessment of agricultural products: The case of Danish and Italian barley. Sci. Total Environ. 2017, 592, 745–757. [Google Scholar] [CrossRef]
- Tricase, C.; Amicarelli, V.; Lamonaca, E.; Rana, R. Economic analysis of the barley market and related uses. In Grasses as Food and Feed, 2nd ed.; Tadele, Z., Ed.; IntechOpen: London, UK, 2018; Volume 10, pp. 25–46. [Google Scholar] [CrossRef]
- Phares, C.A.; Amoakwah, E.; Danquah, A.; Afrifa, A.; Beyaw, L.R.; Frimpong, K.A. Biochar and NPK fertilizer co-applied with plant growth promoting bacteria (PGPB) enhanced maize grain yield and nutrient use efficiency of inorganic fertilizer. J. Agric. Food Res. 2022, 10, 100434. [Google Scholar] [CrossRef]
- Khan, M.N.; Mobin, M.; Abbas, Z.K.; Alamri, S.A. Fertilizers and Their Contaminants in Soils, Surface and Groundwater. In Encyclopedia of the Anthropocene, 2nd ed.; DellaSala, D.A., Goldstein, M.I., Eds.; Elsevier Inc.: Oxford, UK, 2018; Volume 5, pp. 225–240. [Google Scholar]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.C.; Ridoutt, B.G.; Wang, X.C.; Ren, P.A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Ministry of Agriculture of the Republic of Lithuania. Available online: https://zum.lrv.lt/lt/zaliasis-kursas (accessed on 15 December 2023).
- Compant, S.; Clément, C.; Sessitscha, A. Plant growth-promoting bacteria in the rhizo-and endosphere of plants: Role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 2010, 42, 669–678. [Google Scholar] [CrossRef]
- Santoyo, G.; Moreno-Hagelsiebb, G.; Orozco-Mosqueda, M.C.; Glick, B. Plant growth-promoting bacterial endophytes. Microbiol. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Gouda, S.; Kerry, R.G.; Das, G.; Paramithiotis, S.; Shin, H.S.; Patra, J.K. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 2018, 206, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, V.K.; Tripathi, V.; Singh, P.P.; Singh, A.K. Plant growth-promoting rhizobacteria (PGPR): Perspective in agriculture under biotic and abiotic stress. In Crop Improvement through Microbial Biotechnology, 2nd ed.; Prasad, R., Gill, S.S., Tuteja, N., Eds.; Elsevier Inc.: Oxford, UK, 2018; pp. 333–342. [Google Scholar]
- Barrow, N.; Lambers, H. Phosphate-solubilising microorganisms mainly increase plant phosphate uptake by effects of pH on root physiology. Plant Soil 2022, 476, 397–402. [Google Scholar] [CrossRef]
- Alzoubi, M.M.; Gaibore, M. The effect of phosphate solubilizing bacteria and organic fertilization on availability of Syrian rock phosphate and increase of triple superphosphate efficiency. World J. Agric. Sci. 2012, 8, 473–478. [Google Scholar] [CrossRef]
- Ribaudo, C.; Zaballa, J.I.; Golluscio, R. Effect of the Phosphorus-Solubilizing Bacterium Enterobacter Ludwigii on Barley Growth Promotion. Am. Sci. Res. J. Eng. Technol. Sci. 2020, 63, 144–157. [Google Scholar]
- Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System. Front. Microbiol. 2018, 9, 1606. [Google Scholar] [CrossRef]
- Batool, S.; Iqbal, A. Phosphate solubilizing rhizobacteria as alternative of chemical fertilizer for growth and yield of Triticum aestivum (Var. Galaxy 2013). Saudi J. Biol. Sci. 2019, 26, 1400–1410. [Google Scholar] [CrossRef]
- Franco-Correa, M.; Quintana, A.; Duque, C.; Suarez, C.; Rodríguez, M.X.; Barea, J.M. Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl. Soil Ecol. 2010, 45, 209–217. [Google Scholar] [CrossRef]
- Mahanta, D.; Rai, R.K.; Dhar, S.; Varghese, E.; Raja, A.; Purakayastha, T.J. Modification of root properties with phosphate solubilizing bacteria and arbuscular mycorrhiza to reduce rock phosphate application in soybean-wheat cropping system. Ecol. Eng. 2018, 111, 31–43. [Google Scholar] [CrossRef]
- Ahmad, A.; Imran, M.; Hussain, S.; Mahmood, S.; Houssein, S. Bacterial impregnation of mineral fertilizers improves yield and nutrient use efficiency of wheat. J. Sci. Food Agric. 2017, 97, 3685–3690. [Google Scholar] [CrossRef] [PubMed]
- Anušauskas, J.; Steponavičius, D.; Romaneckas, K.; Lekavičienė, K.; Zaleckas, E.; Sendžikienė, E. The Influence of Bacteria-Inoculated Mineral Fertilizer on the Productivity and Profitability of Spring Barley Cultivation. Plants 2023, 12, 1227. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, H.; Xu, C.; Yuan, J.; Xu, X.; Jidong, J.; Zhang, Y. Long-term nitrogen fertilization and sweet potato cultivation in the wheat-sweet potato rotation system decrease alkaline phosphomonoesterase activity by regulating soil phoD-harboring bacteria communities. Sci. Total Environ. 2023, 900, 165916. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Bonilla, G.A.; Durrer, A.; Cardoso, E.J. Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Appl. Soil Ecol. 2021, 157, 103760. [Google Scholar] [CrossRef]
- Romaneckas, K.; Pilipavičius, V.; Trečiokas, K.; Šarauskis, E.; Liakas, V. Agronomy Basics; Aleksandras Stulginskis University: Akademija, Lithuania, 2017; pp. 403–405. [Google Scholar]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Mousavi-Avval, S.H.; Mohammadi, A.; Rafiee, S.; Tabatabaeefar, A. Assessing the technical efficiency of energy use in different barberry production systems. J. Clean. Prod. 2012, 27, 126–132. [Google Scholar] [CrossRef]
- Šiaudinis, G.; Jasinskas, A.; Šarauskis, E.; Steponavičius, D.; Karčiauskienė, D.; Liaudanskienė, I. The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physicoemechanical properties and energy expenses. Energy 2015, 93, 606–612. [Google Scholar] [CrossRef]
- Mohammadi, A.; Tabatabaeefar, A.; Shahin, S.; Rafiee, S.; Keyhani, A. Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energy Convers. Manag. 2008, 49, 3566–3570. [Google Scholar] [CrossRef]
- Ozkan, B.; Akcaoz, H.; Fert, C. Energy input-output analysis in Turkish agriculture. Renew. Energy 2004, 29, 39–51. [Google Scholar] [CrossRef]
- Šarauskis, E.; Buragienė, S.; Masilionytė, L.; Romaneckas, K.; Avižienytė, D.; Sakalauskas, A. Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation. Energy 2014, 69, 227–235. [Google Scholar] [CrossRef]
- Yilmaz, I.; Akcaoz, H.; Ozkan, B. An analysis of energy use and input costs for cotton production in Turkey. Renew. Energy 2005, 30, 145–155. [Google Scholar] [CrossRef]
- Deike, S.; Pallutt, B.; Christen, O. Investigations on the energy efficiency of organic and integrated farming with specific emphasis on pesticide use intensity. Eur. J. Agron. 2008, 28, 461–470. [Google Scholar] [CrossRef]
- Sarkar, D.; Sankar, A.; Devika, O.S.; Singh, S.; Shikha; Parihar, M.; Rakshit, A.; Sayyed, R.Z.; Gafur, A.; Ansari, M.J.; et al. Optimizing nutrient use efficiency, productivity, energetics, and economics of red cabbage following mineral fertilization and biopriming with compatible rhizosphere microbes. Sci. Rep. 2021, 11, 15680. [Google Scholar] [CrossRef] [PubMed]
- Pellizzi, G. Use of energy and labour in Italian agriculture. J. Agric. Eng. Res. 1992, 52, 111–119. [Google Scholar] [CrossRef]
- Mandal, K.G.; Saha, K.P.; Ghosh, P.K.; Hati, K.M.; Bandyopadhyay, K.K. Bioenergy and economic analysis of soybean-based crop production systems in central India. Biomass Bioenergy 2002, 23, 337–345. [Google Scholar] [CrossRef]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H. Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach. Energy 2013, 55, 676–682. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Omid, M.; Heidari, M.D. On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province. Energy 2013, 59, 63–71. [Google Scholar] [CrossRef]
- Moghimi, M.R.; Pooya, M.; Mohammadi, A. Study on energy balance, energy forms and greenhouse gas emission for wheat production in Gorve city, Kordestan province of Iran. Eur. J. Exp. Biol. 2014, 4, 234–239. [Google Scholar]
- Biograce. Available online: https://biograce.net/content/ghgcalculationtools/standardvalues (accessed on 20 December 2023).
- Gong, H.; Li, J.; Sun, M.; Xu, X.; Ouyang, Z. Lowering carbon footprint of wheat-maize cropping system in North China Plain: Through microbial fertilizer application with adaptive tillage. J. Clean. Prod. 2020, 268, 122255. [Google Scholar] [CrossRef]
- Soltani, A.; Maleki, M.H.M.; Zeinali, E. Optimal crop management can reduce energy use and greenhouse gases emissions in rainfed canola production. Int. J. Plant Prod. 2014, 8, 587–604. [Google Scholar]
- Olsson, U.; Engstrand, U.; Rupšys, P. Statistical Methods Using SAS and MINITAB; Lithuanian University of Agriculture: Akademija, Lithuania, 2000. [Google Scholar]
- Xiao, X.; Zhu, Y.; Gao, C.; Zhang, Y.; Gao, Y.; Zhao, Y. Microbial inoculations improved rice yields by altering the presence of soil rare bacteria. Microbiol. Res. 2022, 254, 126910. [Google Scholar] [CrossRef] [PubMed]
- Jat, M.L.; Chaplot, P.C.; Bairwa, D.D.; Meena, S.N.; Dhayal, B.C. Effects of integrated nutrient management on yield and economics of barley (Hordeum vulgare). Indian J. Agron. 2021, 66, 425–429. [Google Scholar] [CrossRef]
- Chamsing, A.; Salokhe, V.; Singh, G. Energy consumption analysis for selected crops in different regions of Thailand. Agric. Eng. Int. CIGR J. 2006, 8, 1–18. Available online: https://ecommons.cornell.edu/server/api/core/bitstreams/691025b4-51cf-4dc7-a499-4a0db060fa1e/content (accessed on 15 December 2023).
- Egle, R.B.; Mendoza, T.C. Energy Use of Sugarcane (Saccharum officinarum L.) Grown in Various Nutrient Supply Options. Philipp. J. Crop Sci. (PJCS) 2013, 38, 43–51. [Google Scholar]
- Stępień, A.; Wojtkowiak, K.; Kolankowska, E. Effect of Commercial Microbial Preparations Containing Paenibacillus azotofixans, Bacillus megaterium and Bacillus subtilis on the Yield and Photosynthesis of Winter Wheat and the Nitrogen and Phosphorus Content in the Soil. Appl. Sci. 2022, 12, 12541. [Google Scholar] [CrossRef]
- Adnan, M.; Fahad, S.; Zamin, M.; Shah, S.; Mian, I.A.; Danish, S.; Zafar-ul-Hye, M.; Battaglia, M.L.; Naz, R.M.M.; Saeed, B.; et al. Coupling Phosphate-Solubilizing Bacteria with Phosphorus Supplements Improve Maize Phosphorus Acquisition and Growth under Lime Induced Salinity Stress. Plants 2020, 9, 900. [Google Scholar] [CrossRef] [PubMed]
- Hye, M.Z.; Zahra, M.B.; Danish, S.; Abbas, M.; Rehim, A.; Akbar, M.N.; Iftikhar, A.; Gul, M.; Nazir, I.; Abid, M.; et al. Multi-strain inoculation with PGPR producing ACC deaminase is more effective than single-strain inoculation to improve wheat (Triticum aestivum) growth and yield. Phyton-Int. J. Exp. Bot. 2020, 89, 405–413. [Google Scholar] [CrossRef]
- Emami, S.; Alikhani, H.A.; Pourbabaei, A.A.; Etesami, H.; Zadeh, B.M.; Sarmadian, F. Improved growth and nutrient acquisition of wheat genotypes in phosphorus deficient soils by plant growth-promoting rhizospheric and endophytic bacteria. Soil Sci. Plant Nutr. 2018, 64, 719–727. [Google Scholar] [CrossRef]
- Çağlar, Ö.; Bulut, S. Determination of Efficiency Parameters of Barley Inoculated with Phosphorous-solubilizing and Nitrogen-fixing Bacteria. Gesunde Pflanz. 2023, 75, 1325–1333. [Google Scholar] [CrossRef]
- Khan, M.S.; Zaidi, A.; Ahemad, M.; Oves, M.; Wani, P.A. Plant growth promotion by phosphate solubilizing fungi—Current perspective. Arch. Agron. Soil Sci. 2010, 26, 73–98. [Google Scholar] [CrossRef]
- Wu, Y.; He, Y.; Yin, H.; Chen, W.; Wang, Z.; Xu, L.; Zhang, A. Isolation of phosphate-solubilizing fungus and its application in solubilization of rock phosphates. Pak. J. Biol. Sci. 2012, 15, 1144–1151. [Google Scholar] [CrossRef]
- Sawers, R.J.H.; Svane, S.F.; Quan, C.; Grønlund, M.; Wozniak, B.; Gebreselassie, M.N.; González-Muñoz, E.; Montes, R.A.C.; Baxter, I.; Goudet, J.; et al. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytol. 2017, 214, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Gang, S.; Sharma, S.; Saraf, M.; Buck, M.; Schumacher, J. Bacterial Indole-3-acetic acid influences soil nitrogen acquisition in barley and chickpea. Plants 2021, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Meena, V.S.; Meena, S.K.; Verma, J.P.; Kumar, A.; Aeron, A.; Mishra, P.K.; Dotaniya, M.L. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecol. Eng. 2017, 107, 8–32. [Google Scholar] [CrossRef]
- Kumar, A.; Maurya, B.R.; Raghuwanshi, R.; Meena, V.S.; Tofazzal, I.M. Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic Plain of India. J. Plant Growth Regul. 2017, 36, 608–617. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, J.B.; Du, L.; Xu, H.; Zhang, Q.Y.; He, Y.Q. The application of phosphate solubilizing endophyte Pantoea dispersa triggers the microbial community in red acidic soil. Appl. Soil Ecol. 2014, 8, 235–244. [Google Scholar] [CrossRef]
- Zheng, B.X.; Zhang, D.P.; Wang, Y.; Hao, X.L.; Wadaan, M.A.; Hozzein, W.N.; Yang, X.R. Responses to soil pH gradients of inorganic phosphate solubilizing bacteria community. Sci. Rep. 2019, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Hasler, K.; Bröring, S.; Omta, S.W.F.; Olfs, H.W. Life cycle assessment (LCA) of different fertilizer product types. Eur. J. Agron. 2015, 69, 41–51. [Google Scholar] [CrossRef]
- Calvo, P.; Watts, D.B.; Kloepper, J.W.; Torbert, H.A. The influence of microbial-based inoculants on N2O emissions from soil planted with corn (Zea mays L.) under greenhouse conditions with different nitrogen fertilizer regimens. Can. J. Microbiol. 2016, 62, 1041–1056. [Google Scholar] [CrossRef]
Cultivation Technologies | Fertilizer Rate | Total Amount of Macroelement | |||
---|---|---|---|---|---|
At Sowing Time | At BBCH 25–30 | Nitrogen Ntot, kg ha−1 | Phosphorus Ptot, kg ha−1 | Potassium Ktot, kg ha−1 | |
SC–1 (control) | 0.0 | 200 kg ha−1 NH4NO3 N34.4 | 68.8 | 0.0 | 0.0 |
SC–2 | 300 kg ha−1 N5P20.5K36 | 83.8 | 61.5 | 108.0 | |
SC–3 | 150 kg ha−1 N5P20.5K36 + 0.5 kg ha−1 bacteria | 76.3 | 30.8 | 54.0 | |
SC–4 | 300 kg ha−1 N5P20.5K36 + 0.5 kg ha−1 bacteria | 83.8 | 61.5 | 108.0 |
2020 | 2021 | 2022 | ||||
---|---|---|---|---|---|---|
k (mm) | taverage (°C) | k (mm) | taverage (°C) | k (mm) | taverage (°C) | |
April | 4 | 6.9 | 33.7 | 6.2 | 38.4 | 6.2 |
May | 94.4 | 10.5 | 121.7 | 11.4 | 84 | 11.0 |
June | 99.3 | 19.0 | 40.3 | 19.5 | 77.6 | 17.7 |
July | 60.4 | 17.3 | 48.4 | 22.5 | 100.5 | 18.0 |
August | 92.8 | 18.6 | 122.2 | 16.4 | 38.7 | 20.9 |
Barley Grain Yield Weight g m−2 | |||
---|---|---|---|
Cultivation Technology | 2020 | 2021 | 2022 |
SC–1 (control) | 520.9 ± 37.7 a | 229.4 ± 23.1 | 230.5 ± 40.8 |
SC–2 | 592.2 ± 53 bc | 357.8 ± 41.3 a | 462.85 ± 55.6 a |
SC–3 | 550.2 ± 42 ab | 311.4 ± 27.8 | 428.5 ± 76.3 a |
SC–4 | 639.9 ± 42.2 c | 382.2 ± 31.8 a | 542.7 ± 44.5 |
t-test | LSD05 (2020) = 60.4 g m−2 | LSD05 (2021) = 43.4 g m−2 | LSD05 (2022) = 61.4 g m−2 |
Inputs | Units | Energy Equivalent (MJ per Unit) | Source |
---|---|---|---|
1. Human labor | h | 1.96 | [37,38,39,40] |
2. Fuel inputs | L | 47.8 | [35] |
3. Machinery | kg | ||
(a) Tractors | 93.61 | [35] | |
(b) Self-propelled machines, combine harvesters | 87.63 | [35] | |
(c) Other machinery | 62.7 | [35] | |
4. Chemicals | kg | ||
(a) Herbicides | 151 | [36] | |
(b) Growth regulators | 151 | [36] | |
(c) Fungicides | 272.6 | [36] | |
(d) Insecticides | 237 | [38,41] | |
5. Fertilizers | kg | ||
(a) Nitrogen | 66.14 | [35,38] | |
(b) Phosphorus | 12.44 | [35] | |
(c) Potassium | 11.15 | [35,38] | |
6. Bacterial inoculant | kg | 2.98 | [42] |
7. Seeds | kg | 14 | [36] |
Inputs | Emission Equivalent | Units | Source |
---|---|---|---|
Fuel | 2.76 | kg CO2eq L−1 | [46,51] |
Machinery | 0.071 | kg CO2eq MJ−1 | [47,48] |
Fertilizers: | |||
N | 1.3 | kg CO2eq kg−1 | [45,46] |
P | 0.2 | kg CO2eq kg−1 | [45,46] |
K | 0.15 | kg CO2eq kg−1 | [45] |
Pesticides | |||
Herbicides | 6.3 | kg CO2eq L−1 | [45,46] |
Insecticides | 5.1 | kg CO2eq L−1 | [45,46] |
Fungicides | 3.9 | kg CO2eq L−1 | [45,46] |
Seeds | 0.28 | kg CO2eq kg−1 | [49] |
Bacterial inoculant | 4.3 | kg CO2eq kg−1 | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anušauskas, J.; Grigas, A.; Lekavičienė, K.; Zaleckas, E.; Paulikienė, S.; Steponavičius, D. Energy and Environmental Assessment of Bacteria-Inoculated Mineral Fertilizer Used in Spring Barley Cultivation Technologies. Agriculture 2024, 14, 569. https://doi.org/10.3390/agriculture14040569
Anušauskas J, Grigas A, Lekavičienė K, Zaleckas E, Paulikienė S, Steponavičius D. Energy and Environmental Assessment of Bacteria-Inoculated Mineral Fertilizer Used in Spring Barley Cultivation Technologies. Agriculture. 2024; 14(4):569. https://doi.org/10.3390/agriculture14040569
Chicago/Turabian StyleAnušauskas, Justinas, Andrius Grigas, Kristina Lekavičienė, Ernestas Zaleckas, Simona Paulikienė, and Dainius Steponavičius. 2024. "Energy and Environmental Assessment of Bacteria-Inoculated Mineral Fertilizer Used in Spring Barley Cultivation Technologies" Agriculture 14, no. 4: 569. https://doi.org/10.3390/agriculture14040569
APA StyleAnušauskas, J., Grigas, A., Lekavičienė, K., Zaleckas, E., Paulikienė, S., & Steponavičius, D. (2024). Energy and Environmental Assessment of Bacteria-Inoculated Mineral Fertilizer Used in Spring Barley Cultivation Technologies. Agriculture, 14(4), 569. https://doi.org/10.3390/agriculture14040569