Recognition of Plastic Film in Terrain-Fragmented Areas Based on Drone Visible Light Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.3. Research Methods
2.3.1. Technical Route
2.3.2. The U-Net Model
2.3.3. Training Environment
2.3.4. Building the Dataset
2.3.5. Fine-Tuning of Parameters
2.3.6. Accuracy Evaluation
3. Result Analysis
3.1. Analysis of Optimal Parameters
3.2. Analysis of Recognition Results
3.2.1. Accuracy Evaluation
3.2.2. Visual Analysis
3.3. Comparative Analysis of Methods
4. Discussion
4.1. Applicability of the Method
4.2. Differences from Existing Research
4.3. Limitations
5. Conclusions
5.1. Deep Learning Framework and Parameter Optimization
5.2. Validation of U-Net Model in Karst Highland Terrain
5.3. UAV Remote Sensing in Small-Scale Crop Recognition
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, Y.; Luan, L.; Jiang, X.; Xu, L.; Ye, Y.; Zhang, Q.; Jiang, Y. Effects of Film Mluching on Soil Quality, Garlic Yield, and Quality. Environ. Sci. 2024, 1–16. [Google Scholar]
- Zhang, B.; Wang, Z.; Jin, S. Current Situation and Prospect of Agricultural Film Pollution Treatment in China. World Environ. 2019, 6, 22–25. [Google Scholar]
- Lu, L.; Hang, D.; Di, L. Threshold Model for Detecting Transparent Plastic-Mulched Landcover Using Moderate-Resolution Imaging Spectroradiometer Time Series Data: A Case Study in Southern Xinjiang, China. J. Appl. Remote Sens. 2015, 9, 097094. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, Q.; Chen, X.; Bao, A.; Zhang, J.; Wang, Y. Large Scale Agricultural Plastic Mulch Detecting and Monitoring with Multi-Source Remote Sensing Data: A Case Study in Xinjiang, China. Remote Sens. 2019, 11, 2088. [Google Scholar] [CrossRef]
- Chen, J.; Shen, R.; Li, B.; Ti, C.; Yan, X.; Zhou, M.; Wang, S. The Development of Plastic Greenhouse Index Based on Logistic Regression Analysis. Remote Sens. Land Resources 2019, 31, 43–50. [Google Scholar]
- Picuno, P.; Tortora, A.; Capobianco, R.L. Analysis of Plasticulture Landscapes in Southern Italy through Remote Sensing and Solid Modelling Techniques. Landsc. Urban Plan. 2011, 100, 45–56. [Google Scholar] [CrossRef]
- Liu, F.; Liu, S.; Xiang, Y. Study on Monitoring Fractional Vegetation Cover of Garden Plots by Unmanned Aerial Vehicles. Trans. Chin. Soc. Agric. Mach. 2014, 45, 250–257. [Google Scholar]
- Han, W.; Guo, C.; Zhang, L.; Yang, J.; Lei, Y.; Wang, Z. Classification Method of Land Cover and Irrigated Farm Land Use Based on UAV Remote Sensing in Irrigation. Trans. Chin. Soc. Agric. Mach. 2016, 47, 270–277. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, M.; Zhang, Z.; Yang, S.; Ning, J.; Han, W. Mapping Plastic Mulched Farmland for High Resolution Images of Unmanned Aerial Vehicle Using Deep Semantic Segmentation. Remote Sens. 2019, 11, 2008. [Google Scholar] [CrossRef]
- Sun, Y.; Han, J.; Chen, Z.; Shi, M.; Fu, H.; Yang, M. Monitoring M Ethod for UAV Im Age of Greenhouse and Plastic-Mulched Landcover Based on Deep Learning. Trans. Chin. Soc. Agric. Mach. 2018, 49, 133–140. [Google Scholar]
- Zheng, L.; He, Z.; Ding, H. Research on the Sparse Plastic Shed Extraction from High Resolution Images Using ENVINet 5 Deep Learning Method. Remote Sens. Technol. Appl. 2021, 36, 908–915. [Google Scholar]
- Song, C.; Wu, J.; Zhu, L.; Deng, H. Greenhouse Segmentation of Remote Sensing Images Based on Deep Learning. Microelectron. Comput. 2021, 38, 51–56. [Google Scholar]
- Auler, A.S. Karst hydrogeology, geomorphology and caves. Int. J. Speleol. 2023, 52, 0_1–0_2. [Google Scholar]
- Yuan, D. The Development of Modern Karstology in China. Geol. Rev. 2006, 6, 733–736. [Google Scholar]
- Huang, Q. Land use pattern changes and the effects on soil erosion in Guizhou Karst mountain—A case study in Dafang county. J. Guizhou Norm. Univ. (Nat. Sci.) 2015, 33, 18–23. [Google Scholar]
- Dai, L.; Zhao, Y.; Yin, C.; Mao, C.; Zhang, P.; Zhou, F.; Yu, X. Spatial and Temporal Dynamics of Drought and Waterlogging in Karst Mountains in Southwest China. Sustainability 2023, 15, 5545. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lect. Notes Comput. Sci. 2015, 9351, 234–241. [Google Scholar]
- Ulmas, P.; Liiv, I. Segmentation of Satellite Imagery Using U-Net Models for Land Cover Classification. arXiv 2020, arXiv:2003.02899. [Google Scholar]
- Irwansyah, E.; Heryadi, Y.; Santoso Gunawan, A.A. Semantic Image Segmentation for Building Detection in Urban Area with Aerial Photograph Image Using U-Net Models. In Proceedings of the 2020 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), Jakarta, Indonesia, 7–8 December 2020; IEEE: Jakarta, Indonesia, 2020; pp. 48–51. [Google Scholar]
- Yang, X.; Li, X.; Ye, Y.; Lau, R.Y.K.; Zhang, X.; Huang, X. Road Detection and Centerline Extraction Via Deep Recurrent Convolutional Neural Network U-Net. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7209–7220. [Google Scholar] [CrossRef]
- Su, Z.; Wang, Y.; Xu, Q.; Gao, R.; Kong, Q. LodgeNet: Improved Rice Lodging Recognition Using Semantic Segmentation of UAV High-Resolution Remote Sensing Images. Comput. Electron. Agric. 2022, 196, 106873. [Google Scholar] [CrossRef]
- Zhai, Z.; Chen, X.; Zhang, R.; Qiu, F.; Meng, Q.; Yang, J.; Wang, H. Evaluation of Residual Plastic Film Pollution in Pre-Sowing Cotton Field Using UAV Imaging and Semantic Segmentation. Front. Plant Sci. 2022, 13, 991191. [Google Scholar] [CrossRef] [PubMed]
- Sangalli, M.; Blusseau, S. Scale Equivariant U-Net. arXiv 2022, arXiv:2210.04508. [Google Scholar]
- Zhang, G.; Li, L. Remote Sensing Image Recognition and Change Analysis of Rural Houses Based on U-Net Network Model. Jiangxi Cehui 2022, 4, 25–27+60. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016. [Google Scholar]
- Yuan, M.; Liu, Z.; Wang, F. Using the Wide-Range Attention U-Net for Road Segmentation. Remote Sens. Lett. 2019, 10, 506–515. [Google Scholar] [CrossRef]
- Sun, Y. Research on the Extraction Method of Garlic Planting Area Based on Multi-Source Remote Sensing Data. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2022. [Google Scholar]
- Zhang, H.; Zhang, G.; Zhu, S.; Chen, H.; Liang, H.; Sun, Z. Remote Sensing Recognition Method of Grape Planting Regions Based on U-Net. Trans. Chin. Soc. Agric. Mach. 2022, 53, 173–182. [Google Scholar]
- Guo, Y.; Cao, X.; Liu, B.; Gao, M. Cloud Detection for Satellite Imagery Using Attention-Based U-Net Convolutional Neural Network. Symmetry 2020, 12, 1056. [Google Scholar] [CrossRef]
- Jena, B.; Jain, S.; Nayak, G.K.; Saxena, S. Analysis of Depth Variation of U-NET Architecture for Brain Tumor Segmentation. Multimed. Tools Appl. 2023, 82, 10723–10743. [Google Scholar] [CrossRef]
- Huang, D.; Zhou, Z.; Zhang, Z.; Zhu, M.; Peng, R.; Zhang, Y.; Li, Q.; Xiao, D.; Hu, L. Extraction of Agricultural Plastic Film Mulching in Karst Fragmented Arable Lands Based on Unmanned Aerial Vehicle Visible Light Remote Sensing. J. Appl. Rem. Sens. 2022, 16. [Google Scholar] [CrossRef]
- Su, L.; Qu, B. Road extraction algorithm for remote sensing images based on improved U-Net. Chang. Inf. Commun. 2024, 37, 83–85. [Google Scholar]
- Ahmadzadeh, A.; Kempton, D.J.; Chen, Y.; Angryk, R.A. Multiscale IOU: A Metric for Evaluation of Salient Object Detection with Fine Structures. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 684–688. [Google Scholar]
- Yacouby, R.; Axman, D. Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models. In Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, Online, 20 November 2023; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 79–91. [Google Scholar]
- Lanorte, A.; De Santis, F.; Nolè, G.; Blanco, I.; Loisi, R.V.; Schettini, E.; Vox, G. Agricultural Plastic Waste Spatial Estimation by Landsat 8 Satellite Images. Comput. Electron. Agric. 2017, 141, 35–45. [Google Scholar] [CrossRef]
- Lu, L.; Di, L.; Ye, Y. A Decision-Tree Classifier for Extracting Transparent Plastic-Mulched Landcover from Landsat-5 TM Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4548–4558. [Google Scholar] [CrossRef]
- Hasituya; Chen, Z.; Wang, L.; Wu, W.; Jiang, Z.; Li, H. Monitoring Plastic-Mulched Farmland by Landsat-8 OLI Imagery Using Spectral and Textural Features. Remote Sens. 2016, 8, 353. [Google Scholar] [CrossRef]
Baseline Configuration | Hardware Configuration | Software Configuration | Software Version |
---|---|---|---|
System (Microsoft Corporation, Washington, DC, USA) | Windows 10 Home Edition | CUDA | 10.1 |
CPU (Microsoft Corporation, Washington, DC, USA) | Inter® Core (TM) i5-8265U | Python | 3.7 |
Hard Disk (Seagate, Fremont, CA, USA) | 500 GB | Tensorflow | 2.7.0 |
Graphics Card (NVIDIA Corporation, Santa Clara, CA, USA) | NVDIA GeForce MX250 | Keras | 2.7.0 |
Serial Number | True-Color Image | Manual Labeling |
---|---|---|
I | ||
II | ||
III | ||
IV |
Sample Size | 300 | 500 | 800 |
---|---|---|---|
Area Accuracy (S) | 66.90 | 79.93 | 91.00 |
Object Count Accuracy (Q) | 78.78 | 89.61 | 96.38 |
IOU | 75.28 | 83.18 | 89.04 |
F1-score | 85.89 | 90.81 | 94.20 |
Sample Size | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 |
---|---|---|---|---|
300 | ||||
500 | ||||
800 |
Models | U-Net | SVM |
---|---|---|
Area Accuracy (S) | 91.00 | 89.90 |
Object Count Accuracy (Q) | 96.38 | 75.96 |
IOU | 89.04 | 79.10 |
F1-score | 94.20 | 88.33 |
Models | Scenario 1 | Scenario 2 | Scenario 3 |
---|---|---|---|
U-Net | |||
SVM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Huang, D.; Dai, L.; Du, X. Recognition of Plastic Film in Terrain-Fragmented Areas Based on Drone Visible Light Images. Agriculture 2024, 14, 736. https://doi.org/10.3390/agriculture14050736
Du X, Huang D, Dai L, Du X. Recognition of Plastic Film in Terrain-Fragmented Areas Based on Drone Visible Light Images. Agriculture. 2024; 14(5):736. https://doi.org/10.3390/agriculture14050736
Chicago/Turabian StyleDu, Xiaoyi, Denghong Huang, Li Dai, and Xiandan Du. 2024. "Recognition of Plastic Film in Terrain-Fragmented Areas Based on Drone Visible Light Images" Agriculture 14, no. 5: 736. https://doi.org/10.3390/agriculture14050736
APA StyleDu, X., Huang, D., Dai, L., & Du, X. (2024). Recognition of Plastic Film in Terrain-Fragmented Areas Based on Drone Visible Light Images. Agriculture, 14(5), 736. https://doi.org/10.3390/agriculture14050736