Sliding Mode Speed Control in Synchronous Motors for Agriculture Machinery: A Chattering Suppression Approach
Abstract
:1. Introduction
2. Sign Function Approximations as a Solution to Mitigate Chattering Phenomenon
3. Integral Sliding Mode Control Design for Permanent Magnet Synchronous Motor Speed Control
3.1. Dynamical Model of Permanent Magnet Synchronous Motor
3.2. Motor Control Design for Direct Current Axis
3.3. Speed Motor Control Design for Quadrature Current Axis
4. Simulation Results and Discussion
4.1. Control Scheme Evaluation for the First Speed Trajectory
4.2. Sign Function Approximation Evaluation with the First Speed Trajectory
4.3. Control Speed Evaluation for the Second Speed Trajectory
4.4. Sign Function Approximation Evaluation with the Second Speed Trajectory
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, D.; Zhang, H.; Li, X.; Zhao, H.; Zhang, Y.; Wang, S.; Ahmad, T.; Liu, T.; Shuang, F.; Wu, T. A PMSM control system for electric vehicle using improved exponential reaching law and proportional resonance theory. IEEE Trans. Veh. Technol. 2023, 72, 8566–8578. [Google Scholar] [CrossRef]
- Akhil, R.S.; Mini, V.P.; Mayadevi, N.; Harikumar, R. Modified flux-weakening control for electric vehicle with PMSM drive. IFAC-PapersOnLine 2020, 53, 325–331. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, G.; Ouyang, H.; Mei, L. An adaptive super twisting nonlinear fractional order PID sliding mode control of permanent magnet synchronous motor speed regulation system based on extended state observer. IEEE Access 2020, 8, 53498–53510. [Google Scholar] [CrossRef]
- Zellouma, D.; Benbouhenni, H.; Bekakra, Y. Backstepping control based on a third-order sliding mode controller to regulate the torque and flux of asynchronous motor drive. Period. Polytech. Electr. Eng. Comput. Sci. 2023, 67, 10–20. [Google Scholar] [CrossRef]
- Levant, A. Chattering analysis. IEEE Trans. Autom. Control 2010, 55, 1380–1389. [Google Scholar] [CrossRef]
- Feng, Y.; Han, F.; Yu, X. Chattering free full-order sliding-mode control. Automatica 2014, 50, 1310–1314. [Google Scholar] [CrossRef]
- Vinh, V.Q.; Ha, V.T. Improved Torque Ripple of Switched Reluctance Motors using Sliding Mode Control for Electric Vehicles. Eng. Technol. Appl. Sci. Res. 2023, 13, 10140–10144. [Google Scholar] [CrossRef]
- Chavez-Conde, E.; Beltrán-Carbajal, F.; Blanco-Ortega, A.; Mendez-Azua, H. Sliding mode and Generalized PI control of vehicle active suspensions. In Proceedings of the 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC), St. Petersburg, Russia, 8–10 July 2009; pp. 1726–1731. [Google Scholar] [CrossRef]
- Yuan, L.; Jiang, Y.; Xiong, L.; Wang, P. Sliding Mode Control Approach with Integrated Disturbance Observer for PMSM Speed System. CES Trans. Electr. Mach. Syst. 2023, 7, 118–127. [Google Scholar] [CrossRef]
- Sehab, R.; Akrad, A.; Saadi, Y. Super-Twisting Sliding Mode Control to Improve Performances and Robustness of a Switched Reluctance Machine for an Electric Vehicle Drivetrain Application. Energies 2023, 16, 3212. [Google Scholar] [CrossRef]
- Tarchala, G.; Orlawska-Kowalska, T. Sliding mode speed observer for the induction motor drive with different sign function approximation forms and gain adaptation. Organ Stowarzyszenia Elektr. Pol. 2013, 1, 13. Available online: http://pe.org.pl/articles/2013/1a/1.pdf (accessed on 10 April 2024).
- Sadeghi, M.; Ghayem, F.; Babaie-Zadeh, M.; Chatterjee, S.; Skoglund, M.; Jutten, C. LOSoft: ℓ0 Minimization via Soft Thresholding. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Kyurkchiev, V.; Kyurkchiev, N. A family of recurrence generated functions based on the half-hyperbolic tangent activation function. Biomed. Stat. Inform. 2017, 2, 87–94. [Google Scholar] [CrossRef]
- Shokouhi, F.; Davaie Markazi, A.H. A new continuous approximation of sign function for sliding mode control. In Proceedings of the International Conference on Robotics and Mechantronics (ICRoM 2018), Tehran, Iran, 23–25 October 2018; Available online: https://www.researchgate.net/profile/Farbood-Shokouhi/publication/328130695_A_new_continuous_approximation_of_sign_function_for_sliding_mode_control/links/5bb9ccf0a6fdcc9552d5667b/A-new-continuous-approximation-of-sign-function-for-sliding-mode-control.pdf (accessed on 10 April 2024).
- Nise, N.S. Control Systems Engineering, 7th ed.; John Wiley & Sons: Pomona, CA, USA, 2015. [Google Scholar]
- Utkin, V.; Guldner, J.; Shi, J. Sliding Mode Control in Electro-Mechanical Systems, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Edwards, C.; Spurgeon, S. Sliding Mode Control: Theory and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Prakosa, J.A.; Purwowibowo, P.; Kurniawan, E.; Wijonarko, S.; Maftukhah, T.; Rustandi, D.; Pratiwi, E.B.; Rahmanto, R. Experimental Design of Fast Terminal Sliding Mode Control for Valve Regulation under Water Load Uncertainty for Precision Irrigation. Actuators 2023, 12, 155. [Google Scholar] [CrossRef]
- Beltran-Carbajal, F.; Tapia-Olvera, R.; Lopez-Garcia, I.; Valderrabano-Gonzalez, A.; Rosas-Caro, J.C.; Hernandez-Avila, J.L. Extended PI feedback tracking control for synchronous motors. Int. J. Control Autom. Syst. 2019, 17, 1346–1358. [Google Scholar] [CrossRef]
- Beltran-Carbajal, F.; Favela-Contreras, A.; Hernandez-Avila, J.L.; Olvera-Tapia, O.; Sotelo, D.; Sotelo, C. Dynamic output feedback control for desired motion tracking on synchronous motors. Int. Trans. Electr. Energy Syst. 2020, 30, e12260. [Google Scholar] [CrossRef]
- Beltran-Carbajal, F.; Yañez-Badillo, H.; Tapia-Olvera, R.; Rosas-Caro, J.C.; Sotelo, C.; Sotelo, D. Neural Network Trajectory Tracking Control on Electromagnetic Suspension Systems. Mathematics 2023, 11, 2272. [Google Scholar] [CrossRef]
- Cheng, S.; Yu, J.; Zhao, L.; Ma, Y. Adaptive fuzzy control for permanent magnet synchronous motors considering input saturation in electric vehicle stochastic drive systems. J. Frankl. Inst. 2020, 357, 8473–8490. [Google Scholar] [CrossRef]
- An, Y.; Wang, L.; Deng, X.; Chen, H.; Lu, Z.; Wang, T. Research on Differential Steering Dynamics Control of Four-Wheel Independent Drive Electric Tractor. Agriculture 2023, 13, 1758. [Google Scholar] [CrossRef]
- Lu, E.; Xue, J.; Chen, T.; Jiang, S. Robust Trajectory Tracking Control of an Autonomous Tractor-Trailer Considering Model Parameter Uncertainties and Disturbances. Agriculture 2023, 13, 869. [Google Scholar] [CrossRef]
- Sun, C.; Sun, P.; Zhou, J.; Mao, J. Travel reduction control of distributed drive electric agricultural vehicles based on multi-information fusion. Agriculture 2022, 12, 70. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, J.; Zhang, L.; Yu, S. Application of Disturbance Observer-Based Fast Terminal Sliding Mode Control for Asynchronous Motors in Remote Electrical Conductivity Control of Fertigation Systems. Agriculture 2024, 14, 168. [Google Scholar] [CrossRef]
- Xiong, H.; Zhang, M.; Zhang, R.; Zhu, X.; Yang, L.; Guo, X.; Cai, B. A new synchronous control method for dual motor electric vehicle based on cognitive-inspired and intelligent interaction. Future Gener. Comput. Syst. 2019, 94, 536–548. [Google Scholar] [CrossRef]
- Sain, C.; Banerjee, A.; Biswas, P.K. Modelling and comparative dynamic analysis due to demagnetization of a torque controlled permanent magnet synchronous motor drive for energy-efficient electric vehicle. ISA Trans. 2020, 97, 384–400. [Google Scholar] [CrossRef] [PubMed]
- Ullah, K.; Guzinski, J.; Mirza, A.F. Critical review on robust speed control techniques for permanent magnet synchronous motor (PMSM) speed regulation. Energies 2022, 15, 1235. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, B.; Li, X. High precision low-speed control for permanent magnet synchronous motor. Sensors 2020, 20, 1526. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yao, B.; Guo, L.; Jin, X.; Li, X.; Wang, H. Initial rotor position detection for permanent magnet synchronous motor based on high-frequency voltage injection without filter. World Electr. Veh. J. 2020, 11, 71. [Google Scholar] [CrossRef]
- Beltran-Carbajal, F.; Favela-Contreras, A.; Lopez-Garcia, I.; Valderrabano-Gonzalez, A.; Rosas-Caro, J.C.; Sanchez-Huerta, V.M. Output feedback dynamic tracking excitation control of synchronous generators. IET Gener. Transm. Distrib. 2016, 10, 3041–3049. [Google Scholar] [CrossRef]
- Huang, A.; Chen, Z.; Wang, J. Research on the dq-Axis Current Reaction Time of an Interior Permanent Magnet Synchronous Motor for Electric Vehicle. World Electr. Veh. J. 2023, 14, 196. [Google Scholar] [CrossRef]
- Suman, K.; Mathew, A.T. Speed control of permanent magnet synchronous motor drive system using PI, PID, SMC and SMC plus PID controller. In Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 543–549. [Google Scholar] [CrossRef]
- Andrade, D.M.; Carbajal, F.B.; Cruz, J.E.E.; Cambero, I.D.J.R.; Pérez, A.C. Control de velocidad basado en modos deslizantes con aproximaciones de la función signo para un motor síncrono (speed control based on sliding modes with sign function approximations for a synchronous motor). Pist. Educ. 2023, 45, 626–642. Available online: https://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/view/3397/2472 (accessed on 10 April 2024).
- Chen, Z.; Dai, X.; Faizan, M. Speed Stability and Anti-Disturbance Performance Improvement of an Interior Permanent Magnet Synchronous Motor for Electric Vehicles. World Electr. Veh. J. 2023, 14, 311. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, G.; Hang, M.; Cheng, S.; Li, P. Sensorless Control Strategy of a Permanent Magnet Synchronous Motor Based on an Improved Sliding Mode Observer. World Electr. Veh. J. 2021, 12, 74. [Google Scholar] [CrossRef]
- Lu, E.; Li, W.; Wang, S.; Zhang, W.; Luo, C. Disturbance rejection control for PMSM using integral sliding mode based composite nonlinear feedback control with load observer. ISA Trans. 2021, 116, 203–217. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
H | |
Wb | |
P | 2 |
b | Nm s |
J | Kg |
Parameter | Value |
---|---|
Amplitude | (Nm) |
2 | |
2 | |
Frequency | (rad/s) |
15 | |
20 | |
25 | |
30 |
Parameter | Value |
---|---|
Amplitude | (Nm) |
1 | |
3 | |
1 | |
Frequency | (rad/s) |
5 | |
15 | |
25 | |
5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcos-Andrade, D.; Beltran-Carbajal, F.; Rivas-Cambero, I.; Yañez-Badillo, H.; Favela-Contreras, A.; Rosas-Caro, J.C. Sliding Mode Speed Control in Synchronous Motors for Agriculture Machinery: A Chattering Suppression Approach. Agriculture 2024, 14, 737. https://doi.org/10.3390/agriculture14050737
Marcos-Andrade D, Beltran-Carbajal F, Rivas-Cambero I, Yañez-Badillo H, Favela-Contreras A, Rosas-Caro JC. Sliding Mode Speed Control in Synchronous Motors for Agriculture Machinery: A Chattering Suppression Approach. Agriculture. 2024; 14(5):737. https://doi.org/10.3390/agriculture14050737
Chicago/Turabian StyleMarcos-Andrade, David, Francisco Beltran-Carbajal, Ivan Rivas-Cambero, Hugo Yañez-Badillo, Antonio Favela-Contreras, and Julio C. Rosas-Caro. 2024. "Sliding Mode Speed Control in Synchronous Motors for Agriculture Machinery: A Chattering Suppression Approach" Agriculture 14, no. 5: 737. https://doi.org/10.3390/agriculture14050737
APA StyleMarcos-Andrade, D., Beltran-Carbajal, F., Rivas-Cambero, I., Yañez-Badillo, H., Favela-Contreras, A., & Rosas-Caro, J. C. (2024). Sliding Mode Speed Control in Synchronous Motors for Agriculture Machinery: A Chattering Suppression Approach. Agriculture, 14(5), 737. https://doi.org/10.3390/agriculture14050737