Optimization and Prediction of Operational Parameters for Enhanced Efficiency of a Chickpea Peeling Machine
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Description of the Adopted Chickpea
2.2. Peeling Prototype Description
2.2.1. Feeding Hopper
2.2.2. Peeling Chamber
2.2.3. Power Source
2.3. Theoretical Basis
2.4. Experimental Design
2.5. Measurement
2.5.1. Machine Throughput
2.5.2. Power Requirements
2.5.3. The Specific Energy
2.5.4. Broken Seeds Percentage
2.5.5. Unpeeled Seeds Percentage
2.5.6. Peeling Efficiency
2.6. Operating Cost Calculation ($/h)
- A.
- Fixed costs:
- Depreciation cost:
- 2.
- Interest rate cost:
- 3.
- Taxes, insurance, and shelter:
- B.
- Variable costs:
- Repair and maintenance costs were calculated using the following formula [28]:
- 2.
- The consumed power cost was calculated according to the following equation:
- 3.
- Labor costs were calculated as:
3. Results and Discussions
3.1. Statistical Analyses
3.2. Machine’s Throughput
3.3. Power Requirements and Consumed Specific Energy
3.4. Broken Seed Percentage
3.5. Unpeeled Seed Percentage
3.6. Peeling Efficiency
3.7. Prediction Results
3.8. Cost Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohan, S.; Thiyagarajan, K. Genetic variability, correlation and path coefficient analysis in chickpea (Cicer arietinum L.) for yield and its component traits. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1801–1808. [Google Scholar] [CrossRef]
- Srivastava, S.; Lavanya, G.R.; Lal, G.M. Genetic variability and character association for seed yield in chickpea (Cicer arietinum L.). J. Pharmacogn. Phytochem. 2017, 6, 748–750. [Google Scholar]
- Hirdyani, H. Nutritional composition of Chickpea (Cicerarietinum-L) and value added products-a review. Indian J. Community Health 2014, 26, 102–106. [Google Scholar]
- Di Donato, F.; Squeo, F.; Biancolillo, A.; Rossi, L.; D’Archivio, A.A. Characterization of high value Italian chickpeas (Cicer arietinum L.) by means of ICP-OES multi-elemental analysis coupled with chemometrics. Food Control 2022, 131, 108451. [Google Scholar] [CrossRef]
- Deb, A.C.; Khaleque, M.A. Nature of gene action of some quantitative traits in chickpea (Cicer arietinum L.). World J. Agric. Sci. 2009, 5, 361–368. [Google Scholar]
- Rasool, S.; Latef, A.A.H.A.; Ahmad, P. Chickpea: Role and responses under abiotic and biotic stress. In Legumes under Environmental Stress: Yield, Improvement and Adaptations; Wiley: Hoboken, NJ, USA, 2015; pp. 67–79. [Google Scholar] [CrossRef]
- Yadav, M.S.; Prabhu, J.C.; Chandy, R.K. Managing the future: CEO attention and innovation outcomes. J. Mark. 2007, 71, 84–101. [Google Scholar] [CrossRef]
- Nadeem, M.; Tan, I.B.; Haq, M.R.U.; Shahid, S.A.; Shah, S.S.; McKay, G. Sorption of lead ions from aqueous solution by chickpea leaves, stems and fruit peelings. Adsorpt. Sci. Technol. 2006, 24, 269–282. [Google Scholar] [CrossRef]
- Jahan, K.; Singh, V.; Mehrotra, N.; Rathore, K.; Verma, V. Development of activated carbon from KOH activation of pre-carbonized chickpea peel residue and its performance for removal of synthetic dye from drinking water. Biomass Convers. Biorefin. 2023, 13, 6913–6923. [Google Scholar] [CrossRef]
- Imthiyas, A.; Saravanan, M.; Kumar, P.; Meclar, F.R.; Satyanarayan, D.K. Design of Muskmelon Seed Peeling machine. IOP Conf. Ser. Mater. Sci. Eng. 2020, 993, 12032. [Google Scholar] [CrossRef]
- Ugwuoke, I.C.; Okegbile, O.J.; Ikechukwu, I.B.; John, R.T. Design and Development of Manually Operated Roasted Groundnut Seeds Peeling Machine. Int. J. Recent Dev. Eng. Technol. 2014, 2, 30–33. [Google Scholar]
- Kohli, D.; Champawat, P.S.; Mudgal, V.D.; Jain, S.K.; Tiwari, B.K. Advances in peeling techniques for fresh produce. J. Food Process Eng. 2021, 44, e13826. [Google Scholar] [CrossRef]
- Emadi, B.; Kosse, V.; Yarlagadda, P. Abrasive peeling of pumpkin. J. Food Eng. 2007, 79, 647–656. [Google Scholar] [CrossRef]
- Emadi, B.; Abbaspour-Fard, M.H.; Yarlagadda, P. Mechanical peeling of pumpkins. Part 1: Using an abrasive-cutter brush. J. Food Eng. 2008, 89, 448–452. [Google Scholar] [CrossRef]
- Fadeyibi, A.; Faith Ajao, O. Design and performance evaluation of a multi-tuber peeling machine. AgriEngineering 2020, 2, 55–71. [Google Scholar] [CrossRef]
- Helmy, M.A.; Abdallah, S.E.; Mitrroi, A.; Basiouny, M.A. Modification and performance evaluation of a reciprocating machine for shelling peanut. AMA Agric. Mech. Asia Afr. Lat. Am. 2013, 44, 18–24. [Google Scholar]
- Mady, M.A.A. Manufacture and evaluation of a simple prototype of peanut sheller. Misr J. Agric. Eng. 2017, 34, 751–766. [Google Scholar] [CrossRef]
- Ademosun, O.C.; Jimoh, M.O.; Olukunle, O.J. Effect of physical and mechanical properties of cassava tubers on the performance of an automated peeling machine. Int. J. Dev. Sustain. 2012, 1, 810–822. [Google Scholar]
- Olukunle, O.J.; Jimoh, M.O. Comparative analysis and performance evaluation of three cassava peeling machines. Int. Res. J. Eng. Sci. Technol. Innov. 2012, 1, 94–102. [Google Scholar]
- Mousa, A.M.; Darwish, E.A. Performance evaluation of a multi-crop shelling/cracking machine for shelling of peanut pods. AMA Agric. Mech. Asia Afr. Lat. Am. 2021, 52, 74–80. [Google Scholar]
- Shirmohammadi, M.; Yarlagadda, P.; Kosse, V.; Gu, Y. Study of mechanical deformations on tough skinned vegetables during mechanical peeling process (A Review). GSTF J. Eng. Technol. 2012, 1, 31–37. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Goering, C.E.; Rohrbach, R.P.; Buckmaster, D.R. Engineering Principles of Agricultural Machines; American Society of Agricultural Engineers Saint Joseph: St. Joseph, MI, USA, 1993. [Google Scholar]
- Sudduth, K.A.; Hummel, J.W.; Drummond, S.T. Comparison of the Veris Profiler 3000 to an ASAE-standard penetrometer. Appl. Eng. Agric. 2004, 20, 535–541. [Google Scholar] [CrossRef]
- Ali, K.A.M.; Zong, W.; Md-Tahir, H.; Ma, L.; Yang, L. Design, Simulation and Experimentation of an Axial Flow Sunflower-Threshing Machine with an Attached Screw Conveyor. Appl. Sci. 2021, 11, 6312. [Google Scholar] [CrossRef]
- Lockwood, F.B.; Dunstan, R. Electrical Engineering Principles; Heinemann Educational Books: London, UK, 1971. [Google Scholar]
- Ismail, Z.E.; Elhenaway, M.N. Optimization of machine parameters for a sunflower thresher using friction drum. J. Agric. Sci. Mansoura Univ. 2009, 34, 10293–10304. [Google Scholar]
- Hunt, D. Farm Power and Machinery Management; Waveland Press: Long Grove, IL, USA, 2008. [Google Scholar]
- Al-Rajhi, M.A.I.; Osman, Y.K.; El-Wahhab, G.G.A.; Ali, K.A.M. A small boat for fish feeding. Aquac. Eng. 2023, 103, 102371. [Google Scholar] [CrossRef]
- Ali, K.A.M.; Li, C.; Wang, H.; Mousa, A.M.; Mohammed, M.A.-E. Enhancing the Performance of Sunflower Threshing Machines through Innovative Enhancements. Agriculture 2024, 14, 312. [Google Scholar] [CrossRef]
- Ali, K.A.M.; Zong, W.; Ma, L.; El-Wahhab, G.G.A.; Li, M. Testing, Evaluating and Simulate the Performance of the Newly Designed Drum for a Sunflower Threshing Machine. Int. J. Eng. Res. Afr. 2022, 60, 29–41. [Google Scholar] [CrossRef]
- Olukunle, O.J.; Akinnuli, B.O. Theory of an automated cassava peeling system. Int. J. Eng. Innov. Technol. 2013, 2, 177–184. [Google Scholar]
- Jimoh, M.O.; Olukunle, O.J.; Manuwa, S.I. Modeling of cassava peeling performance using dimensional analysis. Agric. Eng. Int. CIGR J. 2016, 18, 360–367. [Google Scholar]
Property (Unit) | Value | S.D. |
---|---|---|
Length (mm) | 7.65 | 0.40 |
Width (mm) | 6.45 | 0.27 |
Thickness (mm) | 5.71 | 0.20 |
Sphericity (%) | 85.72 | 2.41 |
Geometrical diameter (mm) | 6.55 | 0.24 |
The angle of repose (degree) | 26.57 | 0.91 |
Friction coefficient | 0.41 | 0.02 |
Compression force (N) | 45.7 | 3.95 |
Critical airspeed (m/s) | 7.65 | 0.52 |
1000 Seed mass (g) | 173.85 | 2.43 |
Source of Variation | df | F Value | |||||
---|---|---|---|---|---|---|---|
Throughput | Power | Specific Energy | Broken Seed | Unpeeled Seed | Peeling Efficiency | ||
Drum speed | 3 | 549.647 ** | 1054.786 ** | 3.69 * | 104.475 ** | 24.068 ** | 4.031 * |
Rows number | 2 | 412.129 ** | 536.363 ** | 558.95 ** | 94.309 ** | 46.227 ** | 8.550 ** |
Drum speed × rows number | 6 | 9.805 ** | 9.835 ** | 4.93 ** | 0.468 ns | 1.574 ns | 0.368 ns |
Error | 24 |
Item | Cost $ (E.L is the Egyptian Currency) |
Peeler price $ (U.S.D) | $100 (4100 E.L) |
Depreciation costs $/year | 12.5 $/year (525 E.L/year) |
Interest costs $/year | 5 $/year (210 E.L/year) |
Taxes, insurance, and shelter costs $/year | 2 $/year (84 E.L/year) |
Fixed costs in $/h | 0.05 $/h (2.1 E.L/h) |
Repair and maintenance costs $/h | 0.005 $/h (0.22 E.L/h) |
Labor costs $ | 0.6 $/h (25 E.L/h) |
Power cost $/h | 0.0045 $/h (0.2 E.L/h) |
Variable costs | 0.61 $/h (25.6 E.L/h) |
Total cost | 0.66 $/h (27 E.L/h) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, K.A.M.; Li, S.T.; Li, C.; Darwish, E.A.; Wang, H.; Abdelwahab, T.A.M.; Fodah, A.E.M.; Elsaadawi, Y.F. Optimization and Prediction of Operational Parameters for Enhanced Efficiency of a Chickpea Peeling Machine. Agriculture 2024, 14, 780. https://doi.org/10.3390/agriculture14050780
Ali KAM, Li ST, Li C, Darwish EA, Wang H, Abdelwahab TAM, Fodah AEM, Elsaadawi YF. Optimization and Prediction of Operational Parameters for Enhanced Efficiency of a Chickpea Peeling Machine. Agriculture. 2024; 14(5):780. https://doi.org/10.3390/agriculture14050780
Chicago/Turabian StyleAli, Khaled Abdeen Mousa, Sheng Tao Li, Changyou Li, Elwan Ali Darwish, Han Wang, Taha Abdelfattah Mohammed Abdelwahab, Ahmed Elsayed Mahmoud Fodah, and Youssef Fayez Elsaadawi. 2024. "Optimization and Prediction of Operational Parameters for Enhanced Efficiency of a Chickpea Peeling Machine" Agriculture 14, no. 5: 780. https://doi.org/10.3390/agriculture14050780
APA StyleAli, K. A. M., Li, S. T., Li, C., Darwish, E. A., Wang, H., Abdelwahab, T. A. M., Fodah, A. E. M., & Elsaadawi, Y. F. (2024). Optimization and Prediction of Operational Parameters for Enhanced Efficiency of a Chickpea Peeling Machine. Agriculture, 14(5), 780. https://doi.org/10.3390/agriculture14050780