Unraveling the Major Determinants behind Price Changes in Four Selected Representative Agricultural Products †
Abstract
:1. Introduction
Wheat | Maize | Olive Oil | Cotton | ||||
---|---|---|---|---|---|---|---|
Top Countries | Share in the World | Top Countries | Share in the World | Top Countries | Share in the World | Top Countries | Share in the World |
1. China | 17.3% | 1. US | 26.4% | 1. Spain | 42.0% | 1. China | 24.4% |
2. EU | 17.0% | 2. Brazil | 25.7% | 2. Italy | 10.2% | 2. India | 22.6% |
3. India | 14.1% | 3. Argentina | 20.8% | 3. Tunisia | 7.7% | 3. Brazil | 12.9% |
4. Russia | 11.6% | 4. Ukraine | 12.1% | 4. Türkiye | 7.4% | 4. US | 10.7% |
5. US | 6.2% | 5. Russia | 2.6% | 5. Greece | 7.3% | 5. Pakistan | 5.9% |
6. Canada | 4.1% | 6. EU | 2.1% | 6. Morocco | 6.5% | 6. Australia | 4.3% |
7. Pakistan | 3.6% | 7. Portugal | 3.9% | 7. Türkiye | 2.8% | ||
8. Australia | 3.3% | 9. Burma | 1.1% | 8. Algeria | 3.2% | 8. Uzbekistan | 2.6% |
9. Ukraine | 3.0% | 10. Serbia | 1.0% | 9. Argentina | 1.0% | 9. Argentina | 1.4% |
10. Türkiye | 2.5% | 11. Türkiye | 0.9% | 10. Egypt | 0.7% | 10. Mali | 1.2% |
2. Literature Review
2.1. Literature in the World
2.2. Literature on Türkiye
3. Data and Methodology
3.1. Data
3.2. Methodology
4. Results
4.1. Unit Root Tests
4.2. Lag Length Criteria and Bounds Test
4.3. ARDL Model
4.4. Long-Run Relationship
4.5. Short-Run Relationship
5. Discussion
6. Conclusions
- -
- (SDG 1) Preventing the fall into poverty, through employment opportunities provided by support for agricultural production and the agriculture sector;
- -
- (SDG 2) Alleviating hunger by reducing prices and increasing food accessibility, thus enhancing food security;
- -
- (SDG 3 and SDG 4) Increasing good health and well-being, as well as the quality of education, through adequate and balanced nutrition;
- -
- (SDG 6 and SDG 15) Providing clean water, sanitation, and sustainable land use through well-planned and controlled input use.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Descriptive Statistics | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
lnCotton | lnMaize | lnOliveOil | lnWheat | GovEff | PolS | Reg | lnStocks | lnOil | lnNitr | lnPest | lnWPI | lnM1 | lnExc | lnGDP | lnInt | lnRain | lnTemp | Aircraft | COVID | GFC | |
Mean | 11.516 | 10.801 | 0.928 | 10.210 | 0.149 | −1.098 | 0.199 | 26.355 | 4.107 | 14.213 | 10.624 | 5.327 | 18.949 | 0.828 | 27.233 | 2.689 | 6.426 | 2.628 | 0.100 | 0.150 | 0.100 |
Median | 11.460 | 10.967 | 0.798 | 10.420 | 0.125 | −1.058 | 0.269 | 26.574 | 4.147 | 14.193 | 10.587 | 5.329 | 18.955 | 0.551 | 27.374 | 2.670 | 6.455 | 2.620 | 0.000 | 0.000 | 0.000 |
Maximum | 12.351 | 13.323 | 1.810 | 13.249 | 0.432 | −0.590 | 0.463 | 27.490 | 4.716 | 14.535 | 11.002 | 6.104 | 21.470 | 2.180 | 27.588 | 3.981 | 6.680 | 2.710 | 1.000 | 1.000 | 1.000 |
Minimum | 10.812 | 8.823 | 0.000 | .6.035 | −0.159 | −2.007 | −0.101 | 24.942 | 3.161 | 13.940 | 10.219 | 4.605 | 16.58 | 0.264 | 26.205 | 2.103 | 6.200 | 2.550 | 0.000 | 0.000 | 0.000 |
Std. Dev. | 0.428 | 1.470 | 0.461 | 1.974 | 0.190 | 0.370 | 0.180 | 0.565 | 0.451 | 0.151 | 0.228 | 0.489 | 1.291 | 0.608 | 0.375 | 0.498 | 0.110 | 0.045 | 0.308 | 0.366 | 0.308 |
Observations | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 19 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Appendix B
ARDL Results | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dependent Variable: lnWheat | |||||||||||
Model | Variable | Coefficient | Model | Variable | Coefficient | Model | Variable | Model | Model | Variable | Coefficient |
ARDL (1, 1, 1, 1, 1, 1, 1, 1) AIC (−4.1274) | lnWheat(-1) | −0.3732 | ARDL (1, 1, 0, 1, 1, 1, 1, 0) AIC (−3.2161) | lnWheat (-1) | −0.3579 | ARDL (1, 1, 0, 1, 1, 1, 1, 0) AIC (−6.8981) | lnWheat(-1) | −0.4030 | ARDL (1, 0, 0, 0, 0, 0) AIC (−0.0573) | lnWheat(-1) | 0.0826 |
GovEff | −17.0136 | lnOil | 4.8049 | lnM1 | 17.1996 ** | lnRain | 3.7562 | ||||
GovEff(-1) | −30.2759 | lnOil(-1) | 2.4199 | lnM1(-1) | 9.3663 * | lnTemp | 21.3338 | ||||
PolS | −0.3068 | lnNitr | 20.6407 * | lnExcRate | −31.4813 ** | Aircraft | −0.2904 | ||||
PolS(-1) | −3.9123 | lnNitr(-1) | 18.7366 | lnGDP | −28.1222 ** | COVID | 0.4179 | ||||
Reg | 25.4486 | lnPest | 5.9568 | lnGDP(-1) | −8.5694 | GFC | 0.2944 | ||||
Reg(-1) | 31.0303 | lnPest(-1) | 10.6401 | lnInt | −1.1334 | C | −70.9138 | ||||
lnStocks | −6.2819 | lnWPI | −22.0011 | lnInt(-1) | 5.1283 | ||||||
lnStocks(-1) | 3.7785 | lnWPI(-1) | 8.0241 | Aircraft | −0.5280 | ||||||
Aircraft | −0.4908 | Aircraft | 5.8689 | Aircraft(-1) | −3.1974 * | ||||||
Aircraft(-1) | −5.4917 | Aircraft(-1) | −3.0705 * | COVID | −4.9441 | ||||||
COVID | 2.3551 | COVID | −0.2889 | COVID(-1) | −7.4344 ** | ||||||
COVID(-1) | 6.3266 | GFC | −0.9675 | GFC | −1.0138 | ||||||
GFC | −1.1958 | GFC (-1) | 4.1177 * | C | 528.7231 ** | ||||||
GFC(-1) | 7.3718 | C | −677.7797 ** | ||||||||
C | 70.9475 | ||||||||||
LM(1) = 38.5628 (0.1016) Ramsey Reset test = 0.0919 (0.8127) BPG = 0.1954 (0.9798) | LM(1) = 1.8061 (0.3111) Ramsey Reset Test = 2.3071 (0.1474) BPG = 3.1253 (0.1892) | LM(1) = 0.0132 (0.9140) Ramsey Reset Test = 0.4923 (0.5216) BPG = 2.1462 (0.2051) | LM(1) = 0.6749 (0.4288) Ramsey Reset Test = 0.4869 (0.4998) BPG = 1.7166 (0.2004) | ||||||||
Dependent Variable: lnMaize | |||||||||||
Model | Variable | Coefficient | Model | Variable | Coefficient | Model | Variable | Coefficient | Model | Variable | Coefficient |
ARDL (1, 1, 1, 1, 1, 1, 1, 1) AIC (−7.4539) | lnMaize(-1) | −0.7125 * | ARDL (1, 1, 1, 1, 1, 1, 0, 0) AIC (−4.3392) | lnMaize(-1) | −0.4066 | ARDL (1, 0 , 0, 0, 0, 0, 1, 1) AIC (−7.8251) | lnMaize(-1) | 0.1918 | ARDL (1, 1, 0, 0, 1, 1) AIC (−2.0885) | lnMaize (-1) | −0.1820 |
GovEff | −21.4179 ** | lnOil | 0.0257 | lnM1 | 6.9200 ** | lnRain | −8.1191 | ||||
GovEff(-1) | −12.5592 | lnOil(-1) | 1.8393 | lnExc | −6.4788 * | lnRain(-1) | −10.2601 * | ||||
PolS | 1.0241 | lnNitr | 14.1047 * | lnGDP | −16.2247 *** | lnTemp | −5.8631 | ||||
PolS(-1) | −4.2086 ** | lnNitr(-1) | 13.2890 * | lnInt | −2.9650 * | Aircraft | 0.8981 | ||||
Reg | 20.7717 ** | lnPest | 0.4266 | Aircraft | −1.0074 | COVID | 3.8056 ** | ||||
Reg(-1) | 19.7214 * | lnPest(-1) | 3.6827 | COVID | 0.2715 | COVID(-1) | −2.7715 | ||||
lnStocks | 2.2542 | lnWPI | −18.7280 * | COVID(-1) | −5.1735 ** | GFC | −2.9221 | ||||
lnStocks(-1) | −3.0339 | lnWPI(-1) | 13.7521 | GFC | 2.7121 ** | GFC(-1) | 3.8836 | ||||
Aircraft | 0.4709 | Aircraft | 1.7760 | GFC (-1) | −2.5221 * | C | 145.8996 | ||||
Aircraft(-1) | −3.4185 * | Aircraft(-1) | −2.5513 | C | 333.4524 *** | ||||||
COVID | 5.3984 ** | COVID | −0.3084 | ||||||||
COVID(-1) | −3.1591 | GFC | 2.5242 | ||||||||
GFC | 1.7996 * | C | −397.9657 | ||||||||
GFC(-1) | 1.7751 | ||||||||||
C | 31.3386 | ||||||||||
LM(1) = 2.4626 (0.3612) Ramsey Reset test = 0.2459 (0.7069) BPG = 0.5673 (0.7947) | LM(1) = 4.9309 (0.1130) Ramsey Reset test = 1.8061 (0.2716) BPG = 4.7642 (0.0717) | LM(1) = 0.0398 (0.8476) Ramsey Reset Test = 1.4421 (0.1925) BPG = 0.5715 (0.7994) | LM(1) = 0.3523 (0.5692) Ramsey Reset Test = 0.6863 (0.4314) BPG = 1.0522 (0.4704) | ||||||||
Dependent Variable: lnOliveOil | |||||||||||
Model | Variable | Coefficient | Model | Variable | Coefficient | Model | Variable | Coefficient | Model | Variable | Coefficient |
ARDL (1, 1, 0, 1, 1, 1, 1, 1) AIC (−13.3036) | lnOliveOil(-1) | −1.4309 *** | ARDL (1, 1, 1, 0, 1, 0, 1, 0) AIC (−8.8352) | lnOliveOil(-1) | 0.7738 * | ARDL (1, 0, 1, 1, 0, 0, 1, 0) AIC (−12.4628) | lnOliveOil(-1) | 0.1880 | ARDL (1, 0, 1, 1, 1, 1) AIC (−6.5721) | lnOliveOil(-1) | 0.4260 ** |
GovEff | −2.1325 ** | lnOil | −0.1998 | lnM1 | 0.6770 ** | lnRain | 1.0348 ** | ||||
GovEff(-1) | −4.7576 *** | lnOil(-1) | 0.2248 | lnExc | −2.1728 ** | lnTemp | 3.4734 ** | ||||
PolS | −0.9712 *** | lnNitr | −0.5906 | lnExc(-1) | 1.7968 ** | lnTemp(-1) | 1.5290 | ||||
Reg | 0.2437 | lnNitr(-1) | 0.4964 * | lnGDP | −2.0659 *** | Aircraft | −0.0089 | ||||
Reg(-1) | 3.6406 *** | lnPest | 0.4964 * | lnGDP(-1) | 1.4695 ** | Aircraft(-1) | 0.2669 * | ||||
lnStocks | −0.1512 | lnWPI | −2.8356 * | lnInt | 0.4639 ** | COVID | −0.0064 | ||||
lnStocks(-1) | 1.3054 *** | lnWPI(-1) | 2.6977 * | Aircraft | 0.0313 | COVID(-1) | 0.4172 ** | ||||
Aircraft | −0.1912 * | Aircraft | 0.2201 | COVID | −0.2550 | GFC | 0.2218 * | ||||
Aircraft(-1) | −0.8100 *** | COVID | −0.2369 | COVID(-1) | 0.1518 | GFC(-1) | −0.5641 *** | ||||
COVID | 0.0592 | COVID(-1) | 0.4973 * | GFC | −0.0571 | C | −19.2299 ** | ||||
COVID(-1) | 0.7522 * | GFC | 0.1999 | C | 3.5656 | ||||||
GFC | 0.3914 ** | C | −12.1579 | ||||||||
GFC(-1) | 0.3610 ** | ||||||||||
C | −28.9651 ** | ||||||||||
LM(1) = 5.1623 (0.1510) Ramsey Reset test = 3.5755 (0.1992) BPG = 2.3630 (0.2607) | LM(1) = 6.8651 (0.0588) Ramsey Reset test = 0.9381 (0.3876) BPG = 4.8353 (0.0.0468) | LM(1) = 0.7298 (0.4257) Ramsey Reset test = 0.4451 (0.5295) BPG = 0.3864 (0.9231) | LM(1) = 0.2460 (0.6351) Ramsey Reset Test = 0.0025 (0.9614) BPG = 0.3360 (0.9453) | ||||||||
Dependent Variable: lnCotton | |||||||||||
Model | Variable | Coefficient | Model | Variable | Coefficient | Model | Variable | Coefficient | Model | Variable | Coefficient |
ARDL (1, 1, 1, 1, 1, 1, 1, 0) AIC (−8.2823) | lnCotton(-1) | −0.4894 * | ARDL (1, 1, 1, 0, 1, 1, 1, 1) AIC (−10.0201) | lnCotton(-1) | −1.0997 ** | ARDL (1, 1, 1, 1, 0, 0, 0, 1) AIC (−11.6691) | lnCotton | −0.5292 ** | ARDL (1, 0, 0, 1, 0, 1) AIC (−4.7990) | lnCotton(-1) | −0.2936 |
GovEff | −0.7206 | lnOil | −0.0999 | lnM1 | −0.6299 * | lnRain | 1.0740 | ||||
GovEff(-1) | −4.8631 ** | lnOi(-1) | −0.8439 ** | lnM1(-1) | 1.0069 ** | lnTemp | 2.6564 | ||||
PolS | −2.0945 ** | lnNitr | 3.2767 ** | lnExc | −2.6147 * | Aircraft | −0.1676 | ||||
PolS(-1) | 0.7290 | lnNitr(-1) | −2.3431 ** | lnExc(-1) | 3.0944 * | Aircraft(-1) | 0.3508 | ||||
Reg | −0.2369 | lnPest | 0.7400 ** | lnGDP | −2.0736 * | COVID | 0.8684 *** | ||||
Reg(-1) | 3.6681 ** | lnWPI | 8.3946 *** | lnGDP(-1) | 1.1358 | GFC | 0.4147 | ||||
lnStocks | −1.5762 ** | lnWPI(-1) | −8.0411 *** | lnInt | 0.3701 | GFC(-1) | −1.1210 *** | ||||
lnStocks(-1) | 1.0414 ** | Aircraft | −0.7021 * | Aircraft | −0.0860 | C | 0.9469 | ||||
Aircraft | −0.9610 * | Aircraf(-1) | −0.6455 ** | COVID | 0.3053 | ||||||
Aircraft(-1) | −1.2819** | COVID | 1.6962 *** | GFC | 0.3538 | ||||||
COVID | −0.2254 | COVID(-1) | −1.6966 *** | GFC(-1) | −0.5565 *** | ||||||
COVID(-1) | 2.0550 ** | GFC | 0.3125 | C | 35.2437 ** | ||||||
GFC | 0.0801 | GFC(-1) | −1.1714 *** | ||||||||
C | 30.2240 ** | C | 4.4707 | ||||||||
LM(1) = 2.7651 (0.2382) Ramsey Reset test = 0.6253 (0.5956) BPG = 1.4600 (0.4241) | LM(1) = 66.1355 (0.0148) Ramsey Reset test = 0.0257 (0.8874) BPG = 1.2309 (0.4920) | LM(1) = 2.9560 (0.1462) Ramsey Reset test = 9.2570 (0.0287) BPG = 0.5009 (0.8549) | LM(1) = 0.0004 (0.9853) Ramsey Reset Test = 0.2713 (0.6151) BPG = 1.4525 (0.2848) |
Appendix C
References
- Anoruo, E.; Elike, U. An empirical investigation into the impact of high oil prices on economic growth of oil-importing African countries. Int. J. Econ. Perspect. 2009, 3, 121–129. [Google Scholar]
- Headey, D.; Ruel, M. Food inflation and child undernutrition in low and middle income countries. Nat. Commun. 2023, 14, 5761. [Google Scholar] [CrossRef] [PubMed]
- Birhane, T.; Shiferaw, S.; Hagos, S.; Mohindra, K.S. Urban food insecurity in the context of high food prices: A community based cross sectional study in Addis Ababa, Ethiopia. BMC Public Health 2014, 14, 680. [Google Scholar] [CrossRef] [PubMed]
- UNDP. What Are the Sustainable Development Goals? Available online: https://www.undp.org/sustainable-development-goals?gad_source=1&gclid=CjwKCAiA0bWvBhBjEiwAtEsoW21jeoiGilCV0PIoPD4JwyGyzzzPSVBoeFPQDwG3lKpa5CbePSYKvxoC6ccQAvD_BwE (accessed on 10 March 2024).
- Bandara, J.S.; Cai, Y. The impact of climate change on food crop productivity, food prices and food security in South Asia. Econ. Anal. Policy 2014, 44, 451–465. [Google Scholar] [CrossRef]
- Mavejje, J. Food prices, energy and climate shocks in Uganda. Agric. Food Econ. 2016, 4, 1–18. [Google Scholar]
- Cevik, S.; Tovar Halles, J. Eye of the Storm: The Impact of Climate Shocks on Inflation and Growth; IMF Working Paper WP/23/87; IMF: Washington, DC, USA, 2023. [Google Scholar]
- Trostle, R. Global Agricultural Supply and Demand: Factors Contributing to the Recent Increase in Food Commodity Prices; WRS-0801; USDA Economic Research Services: Washington DC, USA, 2008. [Google Scholar]
- Tadesse, G.; Algieri, B.; Kalkuhl, M.; von Braun, J. Drivers and triggers of international food price spikes and volatility. Food Policy 2014, 47, 117–128. [Google Scholar] [CrossRef]
- Aday, S.; Aday, M.S. Impact of COVID-19 on the food supply chain. Food Qual. Saf. 2020, 4, 167–180. [Google Scholar] [CrossRef]
- Lee, C. The impact of intermediate input price changes on food prices: An analysis of “From-the-ground-up” effects. J. Agribus. 2002, 20, 85–102. [Google Scholar]
- Isik, S.; Ozbugday, F.C. The impact of agricultural input costs on food prices in Turkey: A case study. Agric. Econ. 2021, 67, 101–110. [Google Scholar]
- Espitia, A.; Rocha, N.; Ruta, M. COVID-19 and Food Protectionism the Impact of the Pandemic and Export Restrictions on World Food Markets; World Bank Group Policy Research Working Paper 9253; World Bank: Washington DC, USA, 2020. [Google Scholar]
- Mead, D.; Ransom, K.; Reed, S.B.; Sager, S. The Impact of the COVID-19 Pandemic on Food Price Indexes and Data Collection; U.S. Bureau of Labor Statistics Monthly Labor Review; Bureau of Labor Statistics: Washington, DC, USA, 2020. [Google Scholar]
- Bairagi, S.; Mishra, A.K.; Mottaleb, K.A. Impacts of the COVID-19 pandemic on food prices: Evidence from storable and perishable commodities in India. PLoS ONE 2022, 17, e0264355. [Google Scholar] [CrossRef]
- Apergis, N.; Rezitis, A. Food price volatility and macroeconomic factors: Evidence from GARCH and GARCH-X estimates. J. Agric. Appl. Econ. 2011, 43, 95–110. [Google Scholar] [CrossRef]
- Ur Rehman, F.; Khan, D. The determinants of food price inflation in Pakistan: An econometric analysis. Adv. Econ. Bus. 2015, 3, 571–576. [Google Scholar] [CrossRef]
- Mahato, A. Climate change and its impacts on agriculture. Int. J. Sci. Res. Publ. 2014, 4, 1–6. [Google Scholar]
- Kim, C.; UN.ESCAP. The Impact of Climate Change on the Agricultural Sector: Implications of the Agro-Industry for Low Carbon, Green Growth Strategy and Roadmap for the East Asian Region. 2012. Available online: https://hdl.handle.net/20.500.12870/4032(accessed on 14 February 2024).
- Habib-ur-Rahman, M.; Ahmad, A.; Raza, A.; Hasnain, M.U.; Alharby, H.F.; Alzahrani, Y.M.; Bamagoos, A.A.; Hakeem, K.R.; Ahmad, S.; Nasim, W.; et al. Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front. Plant Sci. 2022, 13, 925548. [Google Scholar] [CrossRef] [PubMed]
- Squires, V.R.; Gaur, M.K. Agricultural Productivity and Food Security. In Food Security and Land Use Change under Conditions of Climatic Variability; Squires, V., Gaur, M., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Alexander, P.; Arneth, A.; Henry, R.; Maire, J.; Rabin, S.; Rounsevell, M.D.A. High energy and fertilizer prices are more damaging than food export curtailment from Ukraine and Russia for food prices, health and the environment. Nat. Food 2022, 4, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.M.; Lau, C.K.; Cai, Y.; Sarker, P.K.; Dastgir, S. Asymmetric effects of energy inflation, agri-inflation and CPI on agricultural output: Evidence from NARDL and SVAR models for the UK. Energy Econ. 2023, 126, 106920. [Google Scholar] [CrossRef]
- Brunelle, T.; Dumas, P.; Souty, F.; Dorin, B.; Nadaud, F. Evaluating the impact of rising fertilizer prices on crop yields. Agric. Econ. 2015, 46, 653–666. [Google Scholar] [CrossRef]
- Shahbaz, M.; Sharif, A.; Soliman, A.M.; Jiao, Z.; Hammoudeh, S. Oil prices and geopolitical risk: Fresh insights based on Granger-causality in quantiles analysis. Int. J. Financ. Econ. 2023. [Google Scholar] [CrossRef]
- Kornher, L.; Kalkuhl, M. Food price volatility in developing countries and its determinants. Q. J. Int. Agric. 2013, 4, 277–308. [Google Scholar]
- Lee, H.H.; Park, C.Y. International Transmission of Food Prices and Volatilities: A Panel Analysis; ADB Economics Working Paper Series No. 373; ADB: Manila, Philippines, 2013. [Google Scholar]
- Dawe, D.; Morales-Opazo, C.; Balie, J.; Pierre, G. How much have domestic food prices increased in the new era of higher food prices? Glob. Food Secur. 2015, 5, 1–10. [Google Scholar] [CrossRef]
- Ozkanlisoy, O. The COVID-19 outbreak’s effects and new inclinations in terms of logistics and supply chain activities: A conceptual framework. J. Manag. Mark. Logist. 2021, 8, 76–88. [Google Scholar] [CrossRef]
- Janzen, J.; Zulauf, C. The Russia-Ukraine War and Changes in Ukraine Corn and Wheat Supply: Impacts on Global Agricultural Markets. Farmdoc Dly. 2023, 13, 34. [Google Scholar]
- Awokuse, T.O. Impact of Macroeconomic Policies on Agricultural Prices. Agric. Resour. Econ. Rev. 2005, 34, 226–237. [Google Scholar] [CrossRef]
- Kadir, S.U.S.A.; Tunggal, N.Z. The impact of macroeconomic variables toward agricultural productivity in Malaysia. South East Asia J. Contemp. Bus. Econ. Law 2015, 8, 21–27. [Google Scholar]
- Oluwatoyese, O.P.; Applanaidu, S.D.; Razak, N.A.A. Macroeconomic factors and agricultural sector in Nigeria. Procedia Soc. Behav. Sci. 2016, 219, 562–570. [Google Scholar] [CrossRef]
- TUIK. Data Portal for Statistics. 2024. Available online: https://data.tuik.gov.tr/Kategori/GetKategori?p=enflasyon-ve-fiyat-106&dil=1 (accessed on 11 February 2024).
- Erol, E. The Determinants of Food Inflation in Turkey. Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2017. [Google Scholar]
- World Bank. Commodity Markets Outlook—Persistence of Commodity Shocks; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Demirkilic, S.; Ozertan, G.; Tekguc, H. The evolution of unprocessed food inflation in Turkey: An exploratory study on select products. New Perspect. Turk. 2022, 67, 57–82. [Google Scholar] [CrossRef]
- IMF. Turkey: Staff Report for the 2011 Article IV Consultation; IMF Country Report 12/16; IMF: Washington, DC, USA, 2011. [Google Scholar]
- WTO. Trade Policy Review: Turkey; World Trade Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Kiymaz, T.; Sacli, Y. Tarım ve Gıda Ürünleri Fiyatlarında Yaşanan Sorunlar ve Öneriler; No. DPT-2767; Republic of Turkey Undersecretariat of State Planning Organization: Ankara, Turkiye, 2008. (In Turkish) [Google Scholar]
- Knowles, J.C.; Pernia, E.M.; Racelis, M. Social Consequences of the Financial Crisis in Asia; Papers 60; Asian Development Bank: Manila, Philippines, 1999. [Google Scholar]
- Reyes, C.M.; Manasan, R.G.; Orbeta, A.C.; de Guzman, G.G. Social Impact of the Regional Financial Crisis in the Philippines; Paper prepared for RETA 5799; Asian Development Bank: Manila, Phillippines, 1999. [Google Scholar]
- Atinc, T.M.; Walton, M. Social Consequences of the East Asian Financial Crisis; World Bank: Washington, DC, USA, 1998. [Google Scholar]
- Turan, Z. Dünyadaki ve Türkiye’deki krizlerin ortaya çıkış nedenleri ve ekonomik kalkınmaya etkisi. Niğde Üni. İİbf Derg. 2011, 4, 56–80. [Google Scholar]
- Temiz, D.; Gokmen, A. The 2000–2001 financial crisis in Turkey and the Global Economic Crisis of 2008–2009: Reasons an comparison. Int. J. Soc. Sci. Humanit. Stud. 2009, 1, 1–16. [Google Scholar]
- Mittal, A. The 2008 Food Price Crisis: Rethinking Food Security Policies; United Nations G-24 Discussion Paper Series. No. 56; UN: New York, NY, USA, 2009. [Google Scholar]
- Oguz, I. Rusya krizinin tarım sektörüne etkisi ve çözüm odaklı öneriler. International Journal of Crop Production and Animal Breeding 2016, 19, 48–50. [Google Scholar]
- Sahin, E.; Konak, F.; Karaca, S.S. Türkiye ve Rusya arasındaki “Uçak krizinin” Borsa İstanbul gıda, içecek ve turizm endeksleri üzerine etkisi. Bus. Econ. Res. J. 2017, 8, 473–485. [Google Scholar] [CrossRef]
- WTO. Impacts of the COVID-19 Pandemic on Cotton and Its Value Chains: The Case of the C-4 and Other LDCs. 2021. Available online: https://www.wto.org/english/tratop_e/agric_e/covidinpactstudyc4ldcscotton_e.pdf (accessed on 10 January 2024).
- Turkish Statistical Institute. Dış Ticaret İstatikleri. Available online: https://data.tuik.gov.tr/Kategori/GetKategori?p=Dis-Ticaret-104 (accessed on 18 March 2024).
- USDA. Production—Cotton. Available online: https://fas.usda.gov/data/production/commodity/2631000 (accessed on 18 March 2024).
- International Olive Council. The World of Olive Oil. Available online: https://www.internationaloliveoil.org/the-world-of-olive-oil/ (accessed on 18 March 2024).
- Norazman, O.Z.; Khalid, H.; Mat Ghani, G. Food inflation: A study on key determinants and price transmission processes for Malaysia. Int. J. Bus. Soc. 2018, 19, 117–138. [Google Scholar]
- Kose, N.; Unal, E. The effects of the oil price and temperature on food inflation in Latin America. Environ. Dev. Sustain. 2022, 26, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.; Halunga, A.; Lloyd, T.A.; McCorriston, S.; Morgan, C.W. Explaining UK Food Price Inflation; Transparency of Food Pricing (TRANSFOP) Working Paper 1; University of Exeter Press: Exeter, UK, 2012. [Google Scholar]
- Kuma, B.; Gata, G. Factors affecting food price inflation in Ethiopia: An autoregressive distributed lag approach. J. Agric. Food Res. 2023, 12, 100548. [Google Scholar] [CrossRef]
- Samal, A.; Ummalla, M.; Goyari, P. The impact of macroeconomic factors on food price inflation: An evidence from India. Future Bus. J. 2022, 8, 1–14. [Google Scholar] [CrossRef]
- Qayyum, A.; Sultana, B. Factors of food inflation: Evidence from time series of Pakistan. J. Bank. Financ. Manag. 2018, 1, 23–30. [Google Scholar] [CrossRef]
- von Braun, J.; Pachauri, R.K. The Promises and Challenges of Biofuels for the Poor in Developing Countries; IFPRI: Washington, DC, USA, 2006. [Google Scholar]
- Wang, Y.; Wu, C.; Yang, L. Oil price shocks and agricultural commodity prices. Energy Econ. 2014, 44, 22–35. [Google Scholar] [CrossRef]
- Baffes, J. Oil spills on other commodities. Resour. Policy 2007, 32, 126–134. [Google Scholar] [CrossRef]
- Obadi, S.M.; Korček, M. Are food prices affected by crude oil price: Causality investigation. Rev. Integr. Bus. Econ. Res. 2014, 3, 411–427. [Google Scholar]
- Demirtas, C.; Soylu Yildirim, E.; Tuglu Dur, D. Do oil prices have an effects on food prices? Fresh evidences from Türkiye. J. Bus. Res. Turk 2023, 15, 79–91. [Google Scholar] [CrossRef]
- Baek, J.; Koo, W.W. Analyzing factors affecting U.S. food price inflation. Can. J. Agric. Econ. 2010, 58, 303–320. [Google Scholar] [CrossRef]
- Huh, H.; Park, C. Examining the Determinants of Food Prices in Developing Asia; ADB Economics Working Paper Series No. 370; ADB: Manila, Philippines, 2013. [Google Scholar]
- Irz, X.; Niemi, J.; Liu, X. Determinants of food price inflation in Finland—The role of energy. Energy Policy 2013, 63, 656–663. [Google Scholar] [CrossRef]
- Lee, S.; Lim, J.; Lee, H.; Park, C. Food Prices and Population Health in Developing Countries: An Investigation of the Effects of the Food Crisis Using a Panel Analysis; ADB Economics Working Paper Series No. 374; ADB: Manila, Philippines, 2013. [Google Scholar]
- Ahmed, M.; Singla, N. An analysis of major determinants of food inflation in India. Indian J. Econ. Dev. 2014, 10, 275–282. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Sen Gupta, A. Drivers and Impact of Food Inflation in India; MPRA Paper No. 88721; MPRA: Munich, Germany, 2017. [Google Scholar]
- Ismaya, B.I.; Anugrah, D.F. Determinant of food inflation: The case of Indonesia. Bull. Monet. Econ. Bank. 2018, 21, 81–94. [Google Scholar] [CrossRef]
- Caklovica, L.; Efendic, A. Determinants of inflation in Europe: A dynamic panel analysis. Financ. Internet Q. 2020, 16, 51–79. [Google Scholar] [CrossRef]
- Adjemian, M.K.; Arita, S.; Meyer, S.; Salin, D. Factors affecting recent food price inflation in the United States. Appl. Econ. Perspect. Policy 2024, 46, 648–676. [Google Scholar] [CrossRef]
- Kohlscheen, E. Understanding the Food Component of Inflation; BIS Working Papers No. 1056; BIS: Basel, Switzerland, 2022. [Google Scholar]
- Tay Bayramoglu, A.; Koc Yurtkur, A. Türkiye’de gıda ve tarımsal ürün fiyatlarını uluslararası belirleyicileri. Anadolu Üni Sos. Bilim. Derg. 2015, 15, 63–74. [Google Scholar]
- Alev, N. Türkiye’de enflasyonun belirleyicileri: ARDL sınır testi yaklaşımı (2006:Q1-2018:Q2 dönemi). Uluslararası Ekon. İşletme Polit. Derg. 2019, 3, 1–18. [Google Scholar] [CrossRef]
- Aytekin, M.; Hatirli, S.A. Türkiye’de işlenmemiş gıda enflasyonunu etkileyen faktörlerin analizi: ARDL yaklaşımı. Eurosian J. Res. Soc. Econ. 2021, 8, 203–216. [Google Scholar]
- Sahin Kutlu, S. Türkiye’de gıda enflasyonunun belirleyicileri: SVAR modelinden kanıtlar. EKEV Akad. Derg. 2021, 25, 581–598. [Google Scholar]
- Mat, B.; Arikan, M.A.; Cevrimli, M.B.; Akin, A.C.; Tekindal, M.A. Factors affecting the price of raw milk in Turkey using panel data analysis. Ciência Rural 2021, 51, 1–10. [Google Scholar] [CrossRef]
- Bayramoglu, Z.; Karakayaci, Z.; Agizan, K.; Agizan, S.; Bozdemir, M. Domates fiyatları üzerinde etkili olan faktörlerin belirlenmesi. In Proceedings of the 12. Uluslararası Güncel Araştırmalarla Sosyal Bilimler Kongresi Tam Metinleri, Rize, Türkiye, 5–7 June 2020. [Google Scholar]
- Altintas, H. Petrol fiyatlarının gıda fiyatlarına asimetrik etkisi: Türkiye için NARDL modeli uygulaması. Yönetim Ve Ekon. Araştırmaları Derg. 2016, 14, 1–24. [Google Scholar]
- Gokce, C. Petrol fiyatı ve döviz kurunun gıda fiyatları üzerine asimetrik etkisi: Türkiye örneği. Bus. Econ. Res. J. 2021, 12, 599–611. [Google Scholar] [CrossRef]
- Baskaya, Y.S.; Gurgur, T.; Ogunc, F. Küresel ısınma, küresellesme ve gıda krizi Türkiye'de islenmis gıda fiyatları üzerine ampirik bir çalısma. Cent. Bank Rev. 2008, 2, 1–32. [Google Scholar]
- Bayramoglu, Z.; Agizan, K.; Eroglu, O. Buğday fiyatlarının tahmin edilmesinde ekonomik ve ekolojik faktörlerin etkisi. In Proceedings of the 3rd International Cukurova Agriculture and Veterinary Congress, Adana, Türkiye, 9–10 October 2021. [Google Scholar]
- Guloglu, B.; Nazlioglu, S. Enflasyonun tarımsal fiyatlar üzerindeki etkileri: Panel yumuşak geçiş regresyon analizi. Siyaset Ekon. Yönetim Araştırmaları Derg. 2013, 1, 1–20. [Google Scholar]
- Ozayturk, G. Enerji enflasyonunun tarım ürünleri enflasyonu üzerine etkisi: Türkiye örneği. Fiscaoeconomia 2023, 7, 708–727. [Google Scholar] [CrossRef]
- Icen, H.; Esenyel Icen, N.M.; Polat, B. Türkiye’de gıda fiyatları, döviz kuru ve petrol fiyatları arasındaki asimetrik ilişki. Ekoist: J. Econom. Stat. 2022, 37, 149–169. [Google Scholar] [CrossRef]
- Gungor, S.; Erer, D. Türkiye’deki gıda fiyatları ile petrol fiyatları ve döviz kuru arasındaki doğrusal olmayan ilişkinin incelenmesi: Zamanla-değişen parametreli VAR modelleri. Alanya Akad. Bakış Derg. 2022, 6, 2481–2497. [Google Scholar] [CrossRef]
- Karacan, S. Relationship between the prices of grains, crude oil and real effective exchange rates: Evidence from Fourier Toda-Yamamoto causality test. Dumlupınar Üni. Sos. Bilim. Derg. 2022, 74, 282–292. [Google Scholar] [CrossRef]
- Dumrul, Y.; Kilicarslan, Z. Economic impacts of climate change on agriculture: Empirical evidence from ARDL approach for Turkey. J. Business. Econ. Financ. (JBEF) 2017, 6, 336–347. [Google Scholar] [CrossRef]
- FAO. FAOSTAT. 2024. Available online: https://www.fao.org/faostat/en/#data (accessed on 10 January 2024).
- World Bank. DataBank, World Development Indicators. 2024. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 10 January 2024).
- OECD. OECD Data. 2024. Available online: https://data.oecd.org/ (accessed on 10 January 2024).
- The Central Bank of the Republic of Türkiye. Statistical Data. 2024. Available online: https://evds2.tcmb.gov.tr/index.php (accessed on 10 January 2024).
- Turkish State Meteorological Service. Resmi İstatistikler. 2024. Available online: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=parametrelerinTurkiyeAnalizi (accessed on 10 January 2024).
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Narayan, S.; Narayan, P.K. Determinants of Demand of Fiji’s Exports: An Empirical Investigation. Dev. Econ. 2004, 17, 95–112. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W. Co-integration and error correction: Representation, estimation, and testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Johansen, S. Statistical analysis of cointegration vectors. J. Econ. Dyn. Control 1988, 12, 231–254. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 1981, 49, 1057–1072. [Google Scholar] [CrossRef]
- Phillips, P.C.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Laborde, D.; Lakatos, C.; Martin, W. Poverty Impact of Food Price Shocks and Policies; World Bank Policy Research Working Paper No. 8724; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- FAO. The State of Agricultural Commodity Markets High Food Prices and the Food Crisis—Experience and Lessons Learned; FAO: Rome, Italy, 2009. [Google Scholar]
- Hathaway, D.E. Food prices and inflation. Brook. Pap. Econ. Act. 1974, 1, 63–116. [Google Scholar] [CrossRef]
- Akcaglayan, A. Ham petrol fiyatlarından gıda fiyatlarına asimetrik geçişkenlik: Türkiye örneği. Bankacılık Derg. 2021, 118, 18–30. [Google Scholar]
- Swinnen, J.F.M.; van Herck, K. The Impact of the Global Economic and Financial Crisis on Food Security and the Agricultural Sector of Eastern Europe and Central Asia in FAO. In Proceedings of the UN Ministerial Conference on the Social Impact of the Economic Crisis in Eastern Europe, Central Asia and Turkey, Almaty, Kazakhstan, 7–8 December 2009. [Google Scholar]
- Massa, I. The Impact of the Global Financial Crisis: What Does This Tell Us about State Capacity and Political Incentives to Respond to Shocks and Manage Risks? Literature review. Part 1: The Effects of the Global Financial Crisis on Developing Countries. 2012. Available online: https://www.gov.uk/research-for-development-outputs/the-impact-of-the-global-financial-crisis-what-does-this-tell-us-about-state-capacity-and-political-incentives-to-respond-to-shocks-and-manage-risks-literature-review-part-1-the-effects-of-the-global-financial-crisis (accessed on 18 March 2024).
- Baldock, C.; Grassi, F.; Willis, J.; Financial markets need focus on nitrogen–Fixing Nitrogen. Planet Tracker. 2023. Available online: https://planet-tracker.org/wp-content/uploads/2023/11/Nitrogen.pdf (accessed on 1 May 2024).
- Cakmak, E.H. Agricultural Water Pricing: Turkey; OECD Publishing: Paris, France, 2010. [Google Scholar]
Reference | Title | Years | Period | Region | Method | Variable |
---|---|---|---|---|---|---|
Baek and Koo [64] | Analyzing Factors Affecting U.S. Food Price Inflation | 1989–2008 | Monthly | US |
|
|
Davidson et al. [55] | Explaining UK Food Price Inflation | 1990–2010 | Annually | UK | Cointegrated Vector Autoregressive (C-VAR) |
|
Huh and Park [65] | Examining the Determinants of Food Prices in Developing Asia | 1995–2011 | Quarterly | 11 Developing Asian Countries | Vector Autoregression |
|
Irz et al. [66] | Determinants of food price inflation in Finland—The role of energy | 1995–2010 | Monthly | Finland | Vector Error-Correction Model (VEC) |
|
Lee et al. [67] | Food Prices and Population Health in Developing Countries: An Investigation of the Effects of the Food Crisis Using a Panel Analysis | 2001–2010 | Annually | Developing Countries | Panel analysis |
|
Ahmed and Singla [68] | An Analysis of Major Determinants of Food Inflation in India | 2006–2013 | Monthly | India |
|
|
Bhattacharya and Sen Gupta [69] | Drivers and Impact of Food Inflation in India | 2006–2013 | Monthly | India |
|
|
Ismaya and Anugrah [70] | Determinant of Food Inflation The Case of Indonesia | 2008–2017 | Quarterly | Indonesia | GMM Estimator |
|
Norazman et al. [53] | Food Inflation: A Study on Key Determinants and Price Transmission Processes for Malaysia | 1991–2013 | Monthly | Malaysia | Vector Error-Correction Model (VECM) |
|
Qayyum and Sultana [58] | Factors of Food Inflation: Eviden from Time Series of Pakistan | 1970–2017 | Annually | Pakistan | Regression Analysis |
|
Caklovica and Efendic [71] | Determinants of Inflation in Europe: A Dynamic Panel Analysis | 2005–2015 | Annually | 28 European countries | Dynamic panel analysis |
|
Adjemian et al. [72] | Factors Affecting Recent Food Price Inflation in the United States | 2004–2022 | Monthly | United States | Structural Vector Autoregressive Models – SVAR |
|
Köse and Ünal [54] | The effects of the oil price and temperature on food inflation in Latin America | 2003–2020 | Monthly | Latin America |
|
|
Kohlscheen [73] | Understanding the Food Component of Inflation | 1990–2020 | Annually | 35 Countries | Local projection method |
|
Samal et al. [57] | The Impact of Macroeconomic Factors on Food Price Inflation: An Evidence from India | 2006–2019 | Monthly | India | ARDL Bounds Test |
|
Kuma and Gata [56] | Factors Affecting Food Price Inflation in Ethiopia: An Autoregressive Distributed Lag Appoach | 1990–2021 | Annually | Ethiopia | ARDL |
|
Kornher and Kalkuhl [26] | Food Price Volatility in Developing Countries and Its Determinants | 2000–2012 | Annually | 53 Countries |
|
|
Lee and Park [27] | International Transmission of Food Prices and Volatilities: A Panel Analysis | 2000–2011 | Annually | 72 countries | Panel analysis |
|
Wheat | Price of wheat (USD 1000) [90] |
Maize | Price of maize (USD 1000) [90] |
OliveOil | Price of olive oil (USD 1000) [90] |
Cotton | Price of cotton (USD 1000) [90] |
GovEff | Government effectiveness: The quality of public services, the quality of the civil service and the degree of its independence from political pressures, the quality of policy formulation and implementation, and the credibility of the government's commitment to such policies [91] |
PolS | Political stability: The perceptions of the likelihood of political instability and/or politically motivated violence, including terrorism [91] |
Reg | Regulatory quality: The ability of the government to formulate and implement sound policies and regulations that permit and promote private sector development [91] |
Stocks | Stocks traded: The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices [91] |
Oil | Crude oil import prices (USD/barrel) [92] |
Nitr | Nutrient nitrogen used in agriculture [90] |
Pest | Pesticide use, including the major pesticide groups (insecticides, herbicides, fungicides, plant growth regulators, and rodenticides) and relevant chemical families, in agriculture [90] |
WPI | Water supply price in the context of CPI [34] |
M1 | M1 money supply including money in circulation and current deposit [90] |
Exc | Official exchange rate: the exchange rate determined by national authorities or to the rate determined in the legally sanctioned exchange market. It is calculated as an annual average based on monthly averages [91] |
GDP | Gross domestic product: the sum of the value added by all of its producers (USD) [91] |
Int | Interest rate flow: The weighted average interest rates of deposits calculated for each deposit (stock) and maturity segment [93] |
Rain | Average annual rainfall [94] |
Temp | Average annual temperature [94] |
Unit Root Tests | ADF | PP | ||||||
---|---|---|---|---|---|---|---|---|
Variables | I(0) | I(1) | I(0) | I(1) | ||||
Intercept | Trend and Intercept | Intercept | Trend and Intercept | Intercept | Trend and Intercept | Intercept | Trend and Intercept | |
lnWheat | −5.3438 *** | −5.8411 *** | −5.0456 *** | −4.8031 *** | −3.3695 ** | −4.9201 *** | −7.0292 *** | −7.3019 *** |
lnMaize | −0.1160 | −4.1266 ** | −4.9221 *** | −4.8584 *** | −2.9655 * | −4.5816 *** | −10.7074 *** | −10.2056 *** |
lnOliveOil | −0.9164 | −2.1474 | −1.6802 | −6.5761 *** | −0.9402 | −2.4228 | −6.1610 *** | −6.1148 *** |
lnCotton | −2.2449 | −2.8796 | −6.4637 *** | −3.8689 ** | −2.2449 | −2.8796 | −7.0035 *** | −19.6503 *** |
GovEff | −1.5624 | −1.1898 | −4.2080 *** | −4.9308 *** | −1.0086 | −1.1632 | −4.2427 *** | −4.9376 *** |
PolS | −1.4927 | −2.1918 | −3.8467 ** | −3.7696 ** | −1.4651 | −1.8906 | −3.9347 *** | −4.4314 ** |
Reg | 0.1164 | −0.2221 | −3.1681 ** | −3.2829 | −0.9522 | −0.8728 | −2.8771 * | −3.8570 ** |
lnStocks | −1.9534 | −2.7419 | −3.6538 ** | −3.2984 * | −1.9388 | −2.7045 | −3.6538 ** | −3.2173 |
lnOil | −2.4841 | −2.1538 | −3.6217 ** | −3.6960 ** | −2.4920 | −2.0841 | −3.5450 ** | −3.5195 |
lnNitr | 0.5177 | −4.3684 ** | −7.9176 *** | −4.6653 ** | −2.3281 | −4.5360 *** | −8.7712 *** | −9.5052 *** |
lnPest | −1.0697 | −5.7521 *** | −10.5544 *** | −2.7557 | −2.4430 | −5.6881 *** | −14.6800 *** | −14.0909 *** |
lnWPI | 0.1799 | −3.0950 | −3.9285 ** | −4.2392 ** | 0.4070 | −2.6237 | −3.1263 ** | −2.8059 |
lnM1 | 0.4509 | −1.4952 | −2.8855 * | −2.7739 | 0.0339 | −1.7746 | −2.8929 * | −2.7040 |
lnExc | −0.2578 | −0.4408 | −0.8061 | −6.4791 *** | 4.2022 | 0.2932 | −2.0353 | −13.7321 *** |
lnGDP | −5.1657 *** | −2.8848 | −3.0221 * | −3.8424 ** | −6.5906 *** | −6.0155 *** | −2.9778 * | −3.7552 ** |
lnInt | −3.1495 ** | −1.1006 | −3.2240 ** | −5.4897 *** | −3.3270 ** | −2.5539 | −3.0890 ** | −6.1067 *** |
lnRain | −4.4481 *** | −4.6459 *** | −5.1711 *** | −5.0400 *** | −4.4630 *** | −4.7290 *** | −17.4911 *** | −18.3060 *** |
lnTemp | −3.2700 ** | −5.9474 *** | −4.6999 *** | −4.4940 ** | −3.2676 ** | −7.0547 *** | −23.7940 *** | −22.8425 *** |
F-Bounds Test | |||||||
---|---|---|---|---|---|---|---|
Dependent Variable: lnWheat | Dependent Variable: lnMaize | Dependent Variable: lnOliveOil | Dependent Variable: lnCotton | ||||
Variable Group | F-Stat | Variable Group | F-Stat | Variable Group | F-Stat | Variable Group | F-Stat |
Group I | 7.0492 *** | Group I | 33.5497 *** | Group I | 26.3861 *** | Group I | 10.9923 *** |
Group II | 4.2257 * | Group II | 3.6251 * | Group II | 1.7744 | Group II | 21.7804 *** |
Group III | 6.7250 *** | Group III | 5.1116 ** | Group III | 6.6230 *** | Group III | 21.1098 *** |
Group IV | 2.8097 | Group IV | 1.8711 | Group IV | 3.9751 * | Group IV | 6.2298 ** |
ARDL Long Run Results | |||||||
---|---|---|---|---|---|---|---|
Dependent Variable: lnWheat | |||||||
Group 1 | Group II | Group III | |||||
Variable | Coefficient | Variable | Coefficient | Variable | Coefficient | ||
GovEff | −34.4375 | lnOil | 5.3207 ** | lnM1 | 18.9344 *** | ||
PolS | −3.0724 | lnNitr | 28.9994 * | lnExc | −22.4379 *** | ||
Reg | 41.1295 | lnPest | 12.2228 | lnGDP | −26.1514 ** | ||
lnStocks | −1.8230 | lnWPI | −10.2934 * | lnInt | 2.8473 | ||
Aircraft | −4.3567 | Aircraft | 2.0609 | Aircraft | −2.6552 * | ||
COVID | 6.3222 | COVID | −0.2128 | COVID | −8.8226 * | ||
GFC | 4.4976 | GFC | 2.3200 | GFC | −0.7226 | ||
Dependent Variable: lnMaize | |||||||
Group 1 | Group II | Group III | |||||
Variable | Coefficient | Variable | Coefficient | Variable | Coefficient | ||
GovEff | −19.8404 ** | lnOil | 1.3259 | lnM1 | 8.5622 * | ||
PolS | −1.8595 | lnNitr | 19.4751 ** | lnExc | −8.0163 | ||
Reg | 23.6453 ** | lnPest | 2.9215 | lnGDP | −20.0751 * | ||
lnStocks | −0.4553 | lnWPI | −3.5376 | lnInt | −3.6687 | ||
Aircraft | −1.7212 | Aircraft | −0.5512 | Aircraft | −1.2464 | ||
COVID | 1.3076 | COVID | −0.2192 | COVID | −6.0654 | ||
GFC | 2.0874 ** | GFC | 1.7946 | GFC | 0.2351 | ||
Dependent Variable: lnOliveOil | |||||||
Group 1 | Group III | Group IV | |||||
Variable | Coefficient | Variable | Coefficient | Variable | Coefficient | ||
GovEff | −2.8344 *** | lnM1 | 0.8338 ** | lnRain | 1.8026 * | ||
PolS | −0.3995 *** | lnExc | −0.4630 | lnTemp | 8.7144 *** | ||
Reg | 1.5979 *** | lnGDP | −0.7345 | Aircraft | 0.4494 ** | ||
lnStocks | 0.4748 *** | lnInt | 0.5713 ** | COVID | 0.7157 *** | ||
Aircraft | −0.4118 ** | Aircraft | 0.0386 | GFC | −0.5962 * | ||
COVID | −0.3338 ** | COVID | −0.1270 | ||||
GFC | 0.3095 *** | GFC | −0.0703 | ||||
Dependent Variable: lnCotton | |||||||
Group I | Group IV | ||||||
Variable | Coefficient | Variable | Coefficient | ||||
GovEff | −3.7489 ** | lnRain | 0.8302 | ||||
PolS | −0.9168 ** | lnTemp | 2.0535 | ||||
Reg | 2.3037 | Aircraft | 0.1416 | ||||
lnStocks | −0.3591 | COVID | 0.6713 *** | ||||
Aircraft | −1.5058 ** | GFC | −0.5460 * | ||||
COVID | 1.2283 ** | ||||||
GFC | 0.2054 |
Error Correction Model Results | |||||||
---|---|---|---|---|---|---|---|
Dependent Variable: lnWheat | |||||||
Group 1 | Group II | Group III | |||||
Variable | Coefficient | Variable | Coefficient | Variable | Coefficient | ||
D(GovEff) | −17.0136 ** | D(Oil) | 4.8049 ** | D(lnM1) | 17.1996 *** | ||
D(PolS) | 5.2184 *** | D(lnNitr) | 20.6407 *** | D(lnGDP) | −28.1222 *** | ||
D(Reg) | 25.4486 ** | D(lnPest) | 5.9568 ** | D(lnInt) | −1.1334 | ||
D(lnStocks) | −6.2819 ** | D(lnWPI) | −22.0011 ** | D(Aircraft) | −0.5280 | ||
D(COVID) | 2.3551 * | D(Aircraft) | 5.8689 *** | D(COVID) | −4.9441 *** | ||
D(GFC) | −1.1958 | D(GFC) | −0.9675 | CointEq(-1) | −1.4030 *** | ||
CointEq(-1) | −1.3732 *** | CointEq(-1) | −1.3579 *** | ||||
Dependent Variable: lnMaize | |||||||
Group 1 | Group II | Group III | |||||
Variable | Coefficient | Variable | Coefficient | Variable | Coefficient | ||
D(GovEff) | −21.4179 *** | D(lnOil) | 0.0257 | D(COVID) | 0.2715 | ||
D(PolS) | 1.0241 ** | D(lnNitr) | 14.1047 *** | D(GFC) | 2.7121 *** | ||
D(Reg) | 20.7717 *** | D(lnPest) | 0.4266 | CointEq(-1) | −0.8082 *** | ||
D(lnStocks) | 2.2542 *** | D(lnWPI) | −18.7280 *** | ||||
D(AirCraft) | 0.4709 * | D(Aircraft) | 1.7760 ** | ||||
D(COVID) | 5.3984 *** | CointEq(-1) | −1.4066 *** | ||||
D(GFC) | 1.7996 *** | ||||||
CointEq(-1) | −1.7125 *** | ||||||
Dependent Variable: lnOliveOil | |||||||
Group 1 | Group III | Group IV | |||||
Variable | Coefficient | Variable | Coefficient | Variable | Coefficient | ||
D(GovEff) | −2.1325 *** | D(lnExc) | −2.1728 *** | D(lnTemp) | 3.4734 *** | ||
D(Reg) | 0.2437 * | D(lnGDP) | −2.0659 *** | D(Aircraft) | −0.0089 | ||
D(lnStocks) | −0.1512 *** | D(COVID) | −0.2550 *** | D(COVID) | −0.0064 | ||
D(Aircraft) | −0.1912 *** | CointEq(-1) | −0.8120 *** | D(GFC) | 0.2218 ** | ||
D(COVID) | 0.0592 * | CointEq(-1) | −0.5740 *** | ||||
D(GFC) | 0.3914 *** | ||||||
CointEq(-1) | −1.2652 *** | ||||||
Dependent Variable: lnCotton | |||||||
Group 1 | Group IV | ||||||
Variable | Coefficient | Variable | Coefficient | ||||
D(GovEff) | −0.7206 | D(Aircraft) | −0.1676 | ||||
D(PolS) | −2.0945 *** | D(GFC) | 0.4147 ** | ||||
D(Reg) | −0.2369 | CointEq(-1) | −1.2936 *** | ||||
D(lnStocks) | −1.5762 *** | ||||||
D(Aircraft) | −0.9610 *** | ||||||
D(COVID) | −0.2254 | ||||||
CointEq(-1) | −1.4894 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tandogan Aktepe, N.S.; Kayral, İ.E. Unraveling the Major Determinants behind Price Changes in Four Selected Representative Agricultural Products. Agriculture 2024, 14, 782. https://doi.org/10.3390/agriculture14050782
Tandogan Aktepe NS, Kayral İE. Unraveling the Major Determinants behind Price Changes in Four Selected Representative Agricultural Products. Agriculture. 2024; 14(5):782. https://doi.org/10.3390/agriculture14050782
Chicago/Turabian StyleTandogan Aktepe, Nisa Sansel, and İhsan Erdem Kayral. 2024. "Unraveling the Major Determinants behind Price Changes in Four Selected Representative Agricultural Products" Agriculture 14, no. 5: 782. https://doi.org/10.3390/agriculture14050782
APA StyleTandogan Aktepe, N. S., & Kayral, İ. E. (2024). Unraveling the Major Determinants behind Price Changes in Four Selected Representative Agricultural Products. Agriculture, 14(5), 782. https://doi.org/10.3390/agriculture14050782