Estimation of Surface Soil Nutrient Content in Mountainous Citrus Orchards Based on Hyperspectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Soil Sample Collection
2.3. Soil Hyperspectral Data Measurement
2.4. Soil Nutrient Determination
2.5. Preprocessing Methods for Soil Spectral Data
2.6. Technology Roadmap
3. Methods for Predictive Modeling
3.1. Partial Least Squares Regression
3.2. Multiple Stepwise Regression
4. Results
4.1. Sample Detected Abnormality
4.2. Descriptive Statistics of Soil Nutrients
4.3. Spectral Preprocessing
4.4. Spectral Transformation and Correlation Analysis
4.5. Feature Band Selection
4.6. Building Hyperspectral Models for Soil Nutrient Content Estimation
4.6.1. Partitioning of Training and Validation Sets
4.6.2. Model Construction and Validation for Soil Nutrients
4.6.3. Optimal Estimation Model of Soil Nutrients
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Xiong, J.; Du, T.; Ju, X.; Gan, Y.; Li, S.; Xia, L.; Shen, Y.; Pacenka, S.; Steenhuis, T.S.; et al. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nat. Commun. 2024, 15, 1–14. [Google Scholar] [CrossRef]
- Li, F.; Li, D.; Voors, M.; Feng, S.; Zhang, W.; Heerink, N. Improving smallholder farmer’s soil nutrient management: The effect of science and technology backyards in the North China plain. China Agric. Econ. Rev. 2023, 15, 134–158. [Google Scholar] [CrossRef]
- Ding, J.-L.; Wu, M.-C.; Liu, H.-X.; Li, Z.-G. Study on the soil salinization monitoring based on synthetical hyperspectral index. Spectrosc. Spectr. Anal. 2012, 32, 1918–1922. [Google Scholar]
- Yu, H.; Kong, B.; Wang, Q.; Liu, X.; Liu, X. Hyperspectral remote sensing applications in soil: A review. In Hyperspectral Remote Sensing; Pandey, P.C., Srivastava, P.K., Balzter, H., Bhattacharya, B., Petropoulos, G.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 269–291. [Google Scholar]
- Hively, W.D.; McCarty, G.W.; Reeves, J.B.; Lang, M.W.; Oesterling, R.A.; Delwiche, S.R. Use of airborne hyperspectral imagery to map soil properties in tilled agricultural fields. Appl. Environ. Soil Sci. 2011, 2011, 358193. [Google Scholar] [CrossRef]
- Vibhute, A.D.; Kale, K.V. Mapping several soil types using hyperspectral datasets and advanced machine learning methods. Results Opt. 2023, 12, 100503. [Google Scholar] [CrossRef]
- Yu, H.; Kong, B.; Hou, Y.; Xu, X.; Chen, T.; Liu, X. A critical review on applications of hyperspectral remote sensing in crop monitoring. Exp. Agric. 2022, 58, e26. [Google Scholar] [CrossRef]
- Zhao, H. Spectral characteristics analysis of common precious jade material reflectance based on portable ground object spectrometer. Mineral. Petrol. 2021, 41, 1–12. [Google Scholar] [CrossRef]
- Tan, K.L.; Wan, Y.Q.; Yang, Y.D.; Duan, Q.B. Study of hyperspectral remote sensing for archaeology. J. Infrared Millim. Waves 2005, 24, 437–440. [Google Scholar]
- Sut, M.; Fischer, T.; Repmann, F.; Raab, T.; Dimitrova, T. Feasibility of field portable near infrared (nir) spectroscopy to determine cyanide concentrations in soil. Water Air Soil Pollut. 2012, 223, 5495–5504. [Google Scholar] [CrossRef]
- Arif, M.; Qi, Y.; Dong, Z.; Wei, H. Rapid retrieval of cadmium and lead content from urban greenbelt zones using hyperspectral characteristic bands. J. Clean. Prod. 2022, 374, 133922. [Google Scholar] [CrossRef]
- Daniel, K.W.; Tripathi, N.K.; Honda, K.; Apisit, E. Analysis of vnir (400–1100 nm) spectral signatures for estimation of soil organic matter in tropical soils of Thailand. Int. J. Remote Sens. 2004, 25, 643–652. [Google Scholar] [CrossRef]
- Wan, M.; Jin, X.; Han, Y.; Wang, L.; Li, S.; Rao, Y.; Zhang, X.; Gao, Q. A stacking-based ensemble learning method for available nitrogen soil prediction with a handheld micronear-infrared spectrometer. J. Appl. Spectrosc. 2023, 89, 1241–1253. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, X.; Shen, Z.; Xiao, Y. Estimating fertility index by using field-measured vis-nir spectroscopy in the huanghui river basin. Chin. J. Soil Sci. 2021, 52, 575–584. [Google Scholar]
- Dongmei, X.I.; Weidong, D.; Hongguang, G.A.O.; Huaming, M.A.O. Physico-chemical properties of rocks and soils and abundances of minerals in main geological background areas in yunnan province. Soils 2008, 40, 114–120. [Google Scholar]
- Kirchhoff, M.; Romes, T.; Marzolff, I.; Seeger, M.; Hssaine, A.A.; Ries, J.B. Spatial distribution of argan tree influence on son properties in southern morocco. Soil 2021, 7, 511–524. [Google Scholar] [CrossRef]
- Mendes, W.d.S.; Demattê, J.A.; de Resende, M.E.B.; Ruiz, L.F.C.; de Mello, D.C.; Rosas, J.T.F.; Silvero, N.E.Q.; Alleoni, L.R.F.; Colzato, M.; Rosin, N.A.; et al. A remote sensing framework to map potential toxic elements in agricultural soils in the humid tropics. Environ. Pollut. 2022, 292, 118397. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cao, M.; Cai, W.; Huang, H.; Zeng, H. Effects of land use on humus and soil enzymes of yellow soil under soil erosion. Bull. Soil Water Conserv. 2017, 37, 27–33. [Google Scholar]
- Lesu, Y. An improvement on the heating condition of soil organic matter determination. Ecol. Sci. 2006, 25, 459–461. [Google Scholar]
- HJ 717-2014; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2015.
- HJ 632-2011; Soil-Determination of Total Phosphorus by Alkali Fusion–Mo-Sb Anti Spectrophotometric Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2012.
- Lu, R.K. Analysis Method of Soil Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Chen, H.; Pan, T.; Chen, J. Combination optimization of multiple scatter correction and savitzky-golay smoothing modes applied to the near infrared spectroscopy analysis of soil organic matter. Comput. Appl. Chem. 2011, 28, 518–522. [Google Scholar]
- Guo, P.; Li, T.; Gao, H.; Chen, X.; Cui, Y.; Huang, Y. Evaluating calibration and spectral variable selection methods for predicting three soil nutrients using vis-nir spectroscopy. Remote Sens. 2021, 13, 4000. [Google Scholar] [CrossRef]
- Tang, M.; Yang, Q.; Tang, H. Prediction of soil organic carbon content based on hyperspectral data in peak-cluster depressions, northeastern Guangxi. Carsol. Sin. 2021, 40, 876–883. [Google Scholar]
- Chen, L.; Wang, H.; Sun, C. The application of anomaly contrast to extracting geochemical anomaly information: A study of duobaoshan area in heilongjiang province. Geophys. Geochem. Explor. 2018, 42, 1150–1155. [Google Scholar]
- Yasenjiang, K.; Yang, S.; Nigara, T.; Zhang, F. Hyperspectral estimation of soil electrical conductivity based on fractional order differentially optimised spectral indices. Acta Ecol. Sin. 2019, 39, 7237–7248. [Google Scholar]
- Li, Z.Y.; Deng, F.; He, J.L.; Wei, W. Hyperspectral estimation model of heavy metal arsenic in soil. Spectrosc. Spectr. Anal. 2021, 41, 2872–2878. [Google Scholar]
- Nie, L.; Dou, Z.; Cui, L.; Tang, X.; Zhai, X.; Zhao, X.; Lei, Y.; Li, J.; Wang, J.; Li, W. Hyperspectral inversion of soil carbon and nutrient contents in the yellow river delta wetland. Diversity 2022, 14, 862. [Google Scholar] [CrossRef]
- Wang, C.; Pan, X.; Zhou, R.; Liu, Y.; Li, Y.; Xie, X. Prediction of soil properties using plsr-based soil-environment models. Acta Pedol. Sin. 2012, 49, 237–245. [Google Scholar]
- Piccini, C.; Metzger, K.; Debaene, G.; Stenberg, B.; Götzinger, S.; Borůvka, L.; Sandén, T.; Bragazza, L.; Liebisch, F. In-field soil spectroscopy in vis–nir range for fast and reliable soil analysis: A review. Eur. J. Soil Sci. 2024, 75, e13481. [Google Scholar] [CrossRef]
- Horta, A.; Malone, B.; Stockmann, U.; Minasny, B.; Bishop, T.; McBratney, A.; Pallasser, R.; Pozza, L. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. Geoderma 2015, 241–242, 180–209. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Yu, W.; Zhang, B.; Song, K.; Blackwell, J. Simulating models for phaeozem hyperspectral reflectance. Int. J. Remote Sens. 2011, 32, 3819–3834. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, X.; Nie, G.G.; Li, Y.R.; Shao, Y.T.; Tian, Y.Q.; Fan, L.Q.; Zhang, Y.J. Estimation of soil organic matter in coastal wetlands by svm and bp based on hyperspectral remote sensing. Spectrosc. Spectr. Anal. 2020, 40, 556–561. [Google Scholar]
- Li, X.; Ding, J.; Hou, Y.; Deng, K. Estimating the soil salt content and electrical conductivity in semi-arid and arid areas by using hyperspectral data. J. Glaciol. Geocryol. 2015, 37, 1050–1058. [Google Scholar]
- Zhang, X.; Yao, Y.; Yan, X. Effects of spectral transformation and spectral resolution on the estimation accuracy of soil organic matter content. Soil Fertil. Sci. China 2023, 3, 184–193. [Google Scholar]
- Mu, Q.; Yang, G.; Chen, H.; Zhang, T. Hyperspectral characteristics of simulated soils with different salinity in laboratory. J. North-East For. Univ. 2021, 49, 68–75. [Google Scholar]
Soil Nutrient | Number | Minimum Value | Maximum Value | Median | Average Value | Standard Deviation | Coefficient of Variation% |
---|---|---|---|---|---|---|---|
SOM | 66 | 10.39 | 82.62 | 28.11 | 31.60 | 15.22 | 48.15 |
TN | 66 | 0.35 | 3.00 | 1.60 | 1.64 | 0.60 | 36.78 |
TP | 66 | 0.11 | 0.42 | 0.16 | 0.19 | 0.08 | 41.92 |
AN | 66 | 51.45 | 262.15 | 108.50 | 121.59 | 57.41 | 47.22 |
Model | Transformation | Training Set | Validation Set | |||
---|---|---|---|---|---|---|
R2 | RMSE/ g·kg−1 | R2 | RMSE/ g·kg−1 | RPD | ||
PLSR | FD | 0.76 | 10.19 | 0.79 | 11.14 | 1.41 |
SD | 0.83 | 13.13 | 0.74 | 12.01 | 1.52 | |
LTFD | 0.75 | 10.22 | 0.80 | 11.34 | 1.49 | |
LTSD | 0.81 | 10.36 | 0.86 | 11.12 | 1.46 | |
LRD | 0.68 | 11.10 | 0.60 | 11.34 | 1.26 | |
LRSD | 0.52 | 12.16 | 0.51 | 11.16 | 1.25 | |
MLSR | FD | 0.84 | 6.40 | 0.86 | 6.45 | 1.56 |
SD | 0.87 | 6.61 | 0.87 | 6.54 | 1.55 | |
LTFD | 0.85 | 6.94 | 0.87 | 6.48 | 1.58 | |
LTSD | 0.86 | 6.76 | 0.88 | 6.76 | 1.59 | |
LRD | 0.59 | 9.46 | 0.58 | 9.19 | 1.57 | |
LRSD | 0.51 | 9.76 | 0.60 | 9.66 | 1.59 |
Model | Transformation | Training Set | Validation Set | |||
---|---|---|---|---|---|---|
R2 | RMSE/ g·kg−1 | R2 | RMSE/ g·kg−1 | RPD | ||
PLSR | FD | 0.61 | 0.45 | 0.61 | 0.46 | 1.45 |
SD | 0.65 | 0.43 | 0.64 | 0.43 | 1.56 | |
LTFD | 0.73 | 0.40 | 0.79 | 0.40 | 1.56 | |
LTSD | 0.75 | 0.40 | 0.75 | 0.38 | 1.57 | |
LRD | 0.77 | 0.37 | 0.76 | 0.37 | 1.55 | |
LRSD | 0.74 | 0.37 | 0.78 | 0.39 | 1.51 | |
MLSR | FD | 0.52 | 0.45 | 0.50 | 0.46 | 1.43 |
SD | 0.72 | 0.40 | 0.54 | 0.55 | 1.54 | |
LTFD | 0.65 | 0.36 | 0.62 | 0.40 | 1.45 | |
LTSD | 0.68 | 0.37 | 0.65 | 0.38 | 1.46 | |
LRD | 0.71 | 0.33 | 0.70 | 0.34 | 1.47 | |
LRSD | 0.68 | 0.32 | 0.70 | 0.31 | 1.44 |
Model | Transformation | Training Set | Validation Set | |||
---|---|---|---|---|---|---|
R2 | RMSE/ g·kg−1 | R2 | RMSE g·kg−1 | RPD | ||
PLSR | FD | 0.42 | 0.07 | 0.43 | 0.07 | 1.16 |
SD | 0.63 | 0.05 | 0.64 | 0.05 | 1.14 | |
LTFD | 0.63 | 0.05 | 0.66 | 0.05 | 1.13 | |
LTSD | 0.64 | 0.05 | 0.62 | 0.05 | 1.27 | |
LRD | 0.56 | 0.05 | 0.57 | 0.06 | 1.14 | |
LRSD | 0.42 | 0.05 | 0.43 | 0.06 | 1.17 | |
MLSR | FD | 0.47 | 0.05 | 0.48 | 0.06 | 1.16 |
SD | 0.63 | 0.06 | 0.64 | 0.06 | 1.17 | |
LTFD | 0.64 | 0.06 | 0.66 | 0.05 | 1.17 | |
LTSD | 0.69 | 0.04 | 0.68 | 0.06 | 1.11 | |
LRD | 0.63 | 0.06 | 0.69 | 0.06 | 1.13 | |
LRSD | 0.47 | 0.06 | 0.49 | 0.05 | 1.14 |
Model | Transformation | Training Set | Validation Set | |||
---|---|---|---|---|---|---|
R2 | RMSE/ mg·kg−1 | R2 | RMSE mg·kg−1 | RPD | ||
PLSR | FD | 0.57 | 38.64 | 0.55 | 39.55 | 1.09 |
SD | 0.70 | 35.14 | 0.67 | 39.56 | 1.12 | |
LTFD | 0.82 | 27.17 | 0.63 | 40.84 | 1.13 | |
LTSD | 0.81 | 30.21 | 0.66 | 40.45 | 1.24 | |
LRD | 0.75 | 25.21 | 0.70 | 38.56 | 1.20 | |
LRSD | 0.83 | 24.12 | 0.68 | 37.54 | 1.27 | |
MLSR | FD | 0.57 | 30.12 | 0.66 | 35.41 | 1.46 |
SD | 0.68 | 27.45 | 0.68 | 34.11 | 1.45 | |
LTFD | 0.72 | 27.64 | 0.75 | 35.14 | 1.53 | |
LTSD | 0.82 | 26.05 | 0.80 | 26.45 | 1.52 | |
LRD | 0.72 | 26.48 | 0.71 | 32.00 | 1.51 | |
LRSD | 0.76 | 28.19 | 0.61 | 29.42 | 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, X.; Liu, H.; Wang, W.; Zhu, J.; Wang, H. Estimation of Surface Soil Nutrient Content in Mountainous Citrus Orchards Based on Hyperspectral Data. Agriculture 2024, 14, 873. https://doi.org/10.3390/agriculture14060873
Jiao X, Liu H, Wang W, Zhu J, Wang H. Estimation of Surface Soil Nutrient Content in Mountainous Citrus Orchards Based on Hyperspectral Data. Agriculture. 2024; 14(6):873. https://doi.org/10.3390/agriculture14060873
Chicago/Turabian StyleJiao, Xuchao, Hui Liu, Weimu Wang, Jiaojiao Zhu, and Hao Wang. 2024. "Estimation of Surface Soil Nutrient Content in Mountainous Citrus Orchards Based on Hyperspectral Data" Agriculture 14, no. 6: 873. https://doi.org/10.3390/agriculture14060873
APA StyleJiao, X., Liu, H., Wang, W., Zhu, J., & Wang, H. (2024). Estimation of Surface Soil Nutrient Content in Mountainous Citrus Orchards Based on Hyperspectral Data. Agriculture, 14(6), 873. https://doi.org/10.3390/agriculture14060873