Fuzzy Mathematical Model of Photosynthesis in Jalapeño Pepper
Abstract
:1. Introduction
- Empirical models, also called black box models, mainly describe a system’s responses by using mathematical or statistical equations without any scientific content, restrictions, or scientific principle. Depending on particular goals, this may be the best type to build. Its construction is based only on experimental data and does not explain dynamic mechanisms; this refers to the fact that the system’s process is unknown.
- Mechanistic models, also called white-box models, provide a degree of understanding or explanation of the modeled phenomena. The term “understanding” implies a causal relationship between quantities and mechanisms (process).
- An intermediate model is classified as the semi-empirical or semi-mechanistic model between the black box and white box models. These models are also called gray box or hybrid models; they consist of a combination of empirical and mechanistic models [2].
2. Materials and Methods
2.1. Data Collection and Experimental Setup
2.2. Fuzzy Modeling
- Incident radiation (R). Also known as light intensity (LI), it is a reference for climatic conditions and a key factor for internal processes such as photosynthesis, temperature regulation, and transpiration. It is the primary source of energy for photosynthesis [36].
- Leaf relative humidity (RH). It is a plant response related to its transpiration [36].
- Leaf temperature (LT). It is one of the main factors related to photosynthesis. The photosynthetic capacity decreases as the temperature of the leaves increases due to an increase in the respiration rates of the plant. Therefore, the enzymes are inactivated, reducing carbon fixation [30].
2.3. Methodology for the Fuzzy Model
- Model training. Once the input/output data from the experimentation have been collected, we must start by loading a training data set. This set must be 85% of the total input/output data collected [41]. Any dataset you load must be a matrix, with the data arranged as column vectors and the output data in the last column. Therefore, the ANFIS tool is used to train the FIS (fuzzy inference system) model and can emulate the training data presented to it by modifying the parameters of the membership function according to a chosen error criterion.
- Validation of the model. For this task, the validation used a different data set than the ones used in the training. In this case, it was 15% of the total input/output data [41]. Such a dataset was tested by the MATLAB function evalfis and the MATLAB code generated with our proposal.
- Inference system. The fuzzy logic toolbox GUI tool is helpful for building, editing, and viewing the FIS model generated in step 2.
- Fuzzy logic designer (fuzzification). Declare the input and output variables of the fuzzy inference system.
- Membership functions. Define the forms of all membership functions associated with each input and output variable for the entire fuzzy inference system.
- Fuzzy rules. Build the rule statements that define the behavior of the system.
- Fuzzy inference diagram. Use the rule viewer as a diagnostic to see how the shapes of individual membership functions influence the results.
- Simulation. After obtaining the inference system, simulate the fuzzy model based on Equation (3) and compare its output with the outputs of the LI-COR Li-6800 apparatus for model fitting.
- Verification. Compare the output of the implemented fuzzy model with the results of the simulations using experimental data.
3. Results
3.1. Results of Data Collection and Experimental Setup
3.2. Fuzzy Modeling Results
4. Discussion
- Soil moisture (SMA). Some sensors measure soil moisture by the variation in its conductivity or capacitance. These sensors are considered semi-invasive since, for measurement, they have direct contact with the soil but not necessarily with the plant.
- Ambient temperature (AT). This variable can be measured using different kinds of sensors, for example bandgap, thermocouple, or RTD (resistance temperature detector) sensors. The measurement only requires bringing the sensor a considerable distance from the plant.
- Light intensity (LI). The measurement device for this variable can be a light sensor that combines a configurable silicon photodiode and a current to frequency converter in an integrated circuit. The measurement technique does not require any contact with the plant since, to detect the light intensity, it only needs to be placed in an area close to the light.
- Leaf relative humidity (RH). A capacitive sensor element is used to measure the relative humidity around the leaf. The measurement technique consists of bringing the sensor closer to a suitable distance to avoid stress on the plant.
- Leaf temperature (LT). The thermopile is a transducer that takes the IR light radiated by different bodies (which is proportional to the temperature of the body) and converts it into a voltage. The thermopile is a sensor that absorbs infrared energy from an object at wavelengths between 4 μm and 16 μm. In this way, thermopiles are non-invasive temperature sensors.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ryu, Y.; Berry, J.A.; Baldocchi, D.D. What is global Photosynthesis? History, uncertainties and opportunities. Remote Sens. Environ. 2019, 223, 95–114. [Google Scholar] [CrossRef]
- García Rodríguez, L.d.C.; Prado-Olivarez, J.; Guzmán-Cruz, R.; Rodríguez-Licea, M.A.; Barranco-Gutiérrez, A.I.; Perez-Pinal, F.J.; Espinosa-Calderon, A. Mathematical Modeling to Estimate Photosynthesis: A State of the Art. Appl. Sci. 2022, 12, 5537. [Google Scholar] [CrossRef]
- Stirbet, A.; Lazár, D.; Guo, Y.; Govindjee, G. Photosynthesis: Basics, history and modelling. Ann. Bot. 2019, 126, 511–537. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef]
- Chen, D.-X.; Coughenour, M.B.; Knapp, A.K.; Owensby, C.E. Mathematical simulation of C4 grass photosynthesis in ambient and elevated CO2. Ecol. Model. 1994, 73, 63–80. [Google Scholar] [CrossRef]
- Zufferey, V.; Murisier, F.; Schultz, H. A model analysis of the photosynthetic response of Vitis vinifera L. cvs Riesling and Chasselas leaves in the field: I. Interaction of age, light and temperature. VITIS 2000, 39, 19–26. [Google Scholar]
- Boonen, C.; Samson, R.; Janssens, K.; Pien, H.; Lemeur, R.; Berckmans, D. Scaling the spatial distribution of Photosynthesis from leaf to canopy in a plant growth chamber. Ecol. Model. 2002, 156, 201–212. [Google Scholar] [CrossRef]
- Ye, Z.P. A new model for relationship between irradiance and the rate of Photosynthesis in Oryza sativa. Photosynthetica 2007, 45, 637–640. [Google Scholar] [CrossRef]
- Bernacchi, C.J.; Rosenthal, D.M.; Pimentel, C.; Long, S.P.; Farquhar, G.D. Modeling the Temperature Dependence of C3 Photosynthesis. In Photosynthesis In Silico: Understanding Complexity from Molecules to Ecosystems, Advances in Photosynthesis and Respiration; Lais-k, A., Nedbal, L., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 231–246. [Google Scholar] [CrossRef]
- LI-COR. Using the LI-6800, Portable Photosynthesis: User manual.LI6800 | Instruction Manuals. 2009. Available online: https://www.licor.com/env/support/LI-6800/manuals.html (accessed on 2 December 2022).
- Müller, J.; Braune, H.; Diepenbrock, W. Complete Parameterization of Photosynthesis Models—An Example for Barley. In Crop Modeling and Decision Support; Cao, W., White, J.W., Wang, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 12–23. [Google Scholar] [CrossRef]
- Johnson, I.R.; Thornley, J.H.M.; Frantz, J.M.; Bugbee, B. A model of canopy photosynthesis incorporating protein distribution through the canopy and its acclimation to light, temperature and CO2. Ann. Bot. 2010, 106, 735–749. [Google Scholar] [CrossRef]
- García Camacho, F.; Sánchez-Mirón, A.; Molina-Grima, E.; Camacho-Rubio, F.; Merchuck, J.C. A mechanistic model of Photosynthesis in microalgae including photoacclimation dynamics. J. Theor. Biol. 2012, 304, 1–15. [Google Scholar] [CrossRef]
- Lombardozzi, D.; Sparks, J.P.; Bonan, G.; Levis, S. Ozone exposure causes a decoupling of conductance and photosynthesis: Implications for the Ball-Berry stomatal conductance model. Oecologia 2012, 169, 651–659. [Google Scholar] [CrossRef]
- Von Caemmerer, S. Steady-state models of Photosynthesis. Plant Cell Environ. 2013, 36, 1617–1630. [Google Scholar] [CrossRef]
- Serbin, S.P.; Singh, A.; Desai, A.R.; Dubois, S.G.; Jablonski, A.D.; Kingdon, C.C.; Kruger, E.L.; Townsend, P.A. Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy. Remote Sens. Environ. 2015, 167, 78–87. [Google Scholar] [CrossRef]
- Janka, E.; Körner, O.; Rosenqvist, E.; Ottosen, C.-O. A coupled model of leaf photosynthesis, stomatal conductance, and leaf energy balance for chrysanthemum (Dendranthema grandiflora). Comput. Electron. Agric. 2016, 123, 264–274. [Google Scholar] [CrossRef]
- FAO. Inicio | Organización de las Naciones Unidas para la Alimentación y la Agricultura, FAOHome. Available online: https://www.fao.org/home/es (accessed on 29 March 2022).
- Tron, E.; Margaliot, M. Mathematical modeling of observed natural behavior: A fuzzy logic approach. Fuzzy Sets Syst. 2004, 146, 437–450. [Google Scholar] [CrossRef]
- Dubois, D.; Nguyen, H.T.; Prade, H.; Sugeno, M. Introduction: The Real Contribution of Fuzzy Systems. In Fuzzy Systems: Modeling and Control; Nguyen, H.T., Sugeno, M., Eds.; Springer: Boston, MA, USA, 1998; pp. 1–17. [Google Scholar] [CrossRef]
- Fuzzy Logic ToolboxTM User’s Guide; The MathWorks, Inc.: Natick, MA, USA, 2018.
- Cepeda Negrete, J. Modelado de Sistemas Difusos de Múltiples Entradas y Salidas. Doctoral Dissertation, Universidad de Guanajuato DICIS, Salamanca, Mexico, 2011. Available online: https://www.aacademica.org/jcepedanegrete/7 (accessed on 15 August 2022).
- Sugeno, M.; Yasukawa, T. A fuzzy logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1993, 1, 7. [Google Scholar] [CrossRef]
- Center, B.; Verma, B.P. A fuzzy photosynthesis model for tomato. Trans. ASAE 1997, 40, 815–821. [Google Scholar] [CrossRef]
- Valenzuela, I.C.; Baldovino, R.G.; Bandala, A.A.; Dadios, E.P. Optimization of Photosynthetic Rate Parameters using Adaptive Neuro-Fuzzy Inference System (ANFIS). In Proceedings of the 2017 International Conference on Computer and Applications (ICCA), Doha, Qatar, 6–7 September 2017; pp. 129–134. [Google Scholar] [CrossRef]
- Kothari, S.L.; Joshi, A.; Kachhwaha, S.; Ochoa-Alejo, N. Chilli peppers—A review on tissue culture and transgenesis. Biotechnol. Adv. 2010, 28, 35–48. [Google Scholar] [CrossRef]
- West-Eberhard, M.J.; Smith, J.A.C.; Winter, K. Photosynthesis, Reorganized. Science 2011, 332, 311–312. [Google Scholar] [CrossRef]
- Zotarelli, L.; Dukes, M.; Morgan, K. Interpretación del contenido de la humedad del suelo para determinar capacidad de campo y evitar riego excesivo en suelos arenosos utilizando sensores de humedad. EDIS 2013, 2013. [Google Scholar] [CrossRef]
- Lardizabá, R. Manual de Producción de Chile Jalapeño; Centro de Desarrollo de Agronegocios: General Escobedo, Mexico, 2002. [Google Scholar]
- Espinosa-Calderon, A.; Torres-Pacheco, I.; Padilla-Medina, J.A.; Chavaro-Ortiz, M.; Xoconostle-Cazares, B.; Gomez-Silva, L.; Ruiz-Medrano, R.; Guevara-Gonzalez, R.G. Relationship between leaf temperature and photosynthetic carbon in Capsicum annuum L. in controlled climates. JSIR 2012, 7108, 528–533. [Google Scholar]
- Snider, J.L.; Choinski, J.S.; Wise, R.R. Juvenile Rhus glabra leaves have higher temperatures and lower gas exchange rates than mature leaves when compared in the field during periods of high irradiance. J. Plant Physiol. 2009, 166, 686–696. [Google Scholar] [CrossRef]
- Singh, M.P.; Erickson, J.E.; Boote, K.J.; Tillman, B.L.; van Bruggen, A.H.C.; Jones, J.W. Photosynthetic Consequences of Late Leaf Spot Differ between Two Peanut Cultivars with Variable Levels of Resistance. Crop Sci. 2011, 51, 2741–2748. [Google Scholar] [CrossRef]
- Espinosa-Calderón, A.; Torres-Pacheco, I.; Padilla-Medina, J.A.; Osornio-Ríos, R.A.; Romero-Troncoso, R.d.J.; Villaseñor-Mora, C.; Rico-García, E.; Guevara-González, R.G. Description of photosynthesis measurement methods in green plants involving optical techniques, advantages and limitations. Int. J. Anim. Breed. Genet. 2014, 4, 1–10. [Google Scholar]
- Steiner, A.A. The universal nutrient solution. In Proceedings of the 6th International Congress on Soilless Culture, Lunteren, The Netherlands, 29 April–5 May 1984. [Google Scholar]
- Helliker, B.R.; Richter, S.L. Subtropical to boreal convergence of tree-leaf temperatures. Nature 2008, 454, 511–514. [Google Scholar] [CrossRef]
- Yamori, W. Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. J. Plant Res. 2016, 129, 379–395. [Google Scholar] [CrossRef]
- García-Rodríguez, L.D.C.; Prado-Olivarez, J.; Guzmán-Cruz, R.; Heil, M.; Guevara-González, R.G.; Diaz-Carmona, J.; Espinosa-Calderón, A. Black-Box Mathematical Model for Net Photosynthesis Estimation and Its Digital IoT Implementation Based on Non-Invasive Techniques: Capsicum annuum L. Study Case. Sensors 2022, 22, 5275. [Google Scholar] [CrossRef]
- Azcon Bieto, J.; Talón, M. Fundamentos de Fisiología Vegetal; McGraw-Hill., Interamericana: Barcelona, Spain, 2000. [Google Scholar]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development; Sinauer Associates: Sunderland, CT, USA, 2015. [Google Scholar]
- Wang, L.X. Adaptive Fuzzy Systems and Control: Design and Stability Analysis; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1994. [Google Scholar]
- Escamilla-García, A.; Soto-Zarazúa, G.M.; Toledano-Ayala, M.; Rivas-Araiza, E.; Gastélum-Barrios, A. Applications of artificial neural networks in greenhouse technology and overview for smart agriculture development. Appl. Sci. 2020, 10, 3835. [Google Scholar] [CrossRef]
- Feng, L.; Raza, M.A.; Li, Z.; Chen, Y.; Khalid, M.H.B.; Du, J.; Yang, F. The influence of light intensity and leaf movement on photosynthesis characteristics and carbon balance of soybean. Front. Plant Sci. 2019, 9, 1952. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Von Caemmerer, S.; Berry, J.A. Models of Photosynthesis. Plant Physiol. 2001, 125, 42–45. [Google Scholar] [CrossRef]
- Liu, Q.; Xie, L.; Li, F. Dynamic Simulation of the Crown Net Photosynthetic Rate for Young Larix olgensis Henry Trees. Forests 2019, 10, 321. [Google Scholar] [CrossRef]
- Sánchez-Zurano, A.; GómezSerrano, C.; Acién-Fernández, F.G.; Fernández-Sevilla, J.M.; Molina-Grima, E. Modeling of Photosynthesis and respiration rate for microalgae–bacteria consortia. Biotechnol. Bioeng. 2021, 118, 952–962. [Google Scholar] [CrossRef]
- Shimada, R.; Takahashi, K. Diurnal and seasonal variations in photosynthetic rates of dwarf pine Pinus pumila at the treeline in central Japan. Arct. Antarct. Alp. Res. 2022, 54, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Wu, X.; Zhou, S.; Zhang, G.; Qin, Y.; Dong, J. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 2017, 4, 170165. [Google Scholar] [CrossRef]
Reference | R2 | Invasive | Inputs |
---|---|---|---|
Farquhar et al. [4] | - | Yes | Ambient temperature, CO2 concentration in the leaf, light intensity, and oxygen concentration in the leaf. |
Liu et al. [45] | 0.883 | Yes | Light, leaf temperature, vapor pressure deficit, leaf mass per area, and relative depth in the canopy. |
Sánchez et al. [46] | 0.873 | Yes | Irradiation, temperature, pH, and dissolved oxygen. |
Shimada et al. [47] | 0.86 | Yes | Photosynthetic photon flux density, air temperature, soil temperature, vapor pressure deficit, soil water content, and age. |
García et al. [37] | 0.98 | No | Leaf temperature, relative leaf humidity, and incident radiation. |
Proposed strategy | 0.95 | No | Soil moisture, ambient temperature, leaf temperature, relative humidity, and incident radiation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Rodríguez, L.d.C.; Morales-Viscaya, J.A.; Prado-Olivarez, J.; Barranco-Gutiérrez, A.I.; Padilla-Medina, J.A.; Espinosa-Calderón, A. Fuzzy Mathematical Model of Photosynthesis in Jalapeño Pepper. Agriculture 2024, 14, 909. https://doi.org/10.3390/agriculture14060909
García-Rodríguez LdC, Morales-Viscaya JA, Prado-Olivarez J, Barranco-Gutiérrez AI, Padilla-Medina JA, Espinosa-Calderón A. Fuzzy Mathematical Model of Photosynthesis in Jalapeño Pepper. Agriculture. 2024; 14(6):909. https://doi.org/10.3390/agriculture14060909
Chicago/Turabian StyleGarcía-Rodríguez, Luz del Carmen, Joel Artemio Morales-Viscaya, Juan Prado-Olivarez, Alejandro Israel Barranco-Gutiérrez, José Alfredo Padilla-Medina, and Alejandro Espinosa-Calderón. 2024. "Fuzzy Mathematical Model of Photosynthesis in Jalapeño Pepper" Agriculture 14, no. 6: 909. https://doi.org/10.3390/agriculture14060909
APA StyleGarcía-Rodríguez, L. d. C., Morales-Viscaya, J. A., Prado-Olivarez, J., Barranco-Gutiérrez, A. I., Padilla-Medina, J. A., & Espinosa-Calderón, A. (2024). Fuzzy Mathematical Model of Photosynthesis in Jalapeño Pepper. Agriculture, 14(6), 909. https://doi.org/10.3390/agriculture14060909