The Impacts of the C/N Ratio on Hydrogen Sulfide Emission and Microbial Community Characteristics during Chicken Manure Composting with Wheat Straw
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical and Chemical Properties of Compost
2.2. Experimental Design
2.3. Aerobic Composting Operation
2.4. Temperature Measurement and Sample Collection
2.5. Determination Methods of Relevant Physical and Chemical Indicators
2.6. High-Throughput Sequencing of Microorganisms
2.7. Data Processing and Analysis
3. Results and Discussion
3.1. Physical and Chemical Characterization of Compost
3.2. Characterization of Changes in Sulfur-Containing Substances in Compost
3.3. Analysis of the Effect of C/N Ratio on Changes in Cellulose, Hemicellulose and Lignin in Composting
3.4. Analysis of the Effect of C/N Ratio on the Change of Organic Matter in Composting
3.5. Analysis of the Effect of C/N Ratio on the Diversity of Bacterial Communities in Composting
3.6. Association Analysis between Microorganisms and Environmental Factors in Compost with Different C/N Ratios
3.7. Correlation Analysis between Composting Characteristics and Environmental Variables
4. Conclusions
- (1)
- The use of WS to adjust the C/N ratio can promote the increase in compost temperature during composting and prolong the thermophilic period of composting, and the low C/N ratio group has a more obvious effect on the increase in aerobic compost fermentation temperature.
- (2)
- At the end of composting, the cumulative collection amount of hydrogen sulfide in groups CK, T1, T2 and T3 was 139.43 mg, 134.43 mg, 144.83 mg and 150.69 mg, respectively. Compared with group CK, the cumulative collection amount of hydrogen sulfide in low C/N ratio treatment group (group T1) was reduced by 3.59%. Adjustment of C/N ratio by straw addition significantly increased sulphate and total sulfur content in organic fertilizers and reduced sulfur loss. At the end of composting, the total sulfur loss of CK, T1, T2 and T3 treatment groups was 57.03%, 44.75%, 48.45% and 42.02%, respectively.
- (3)
- The contents of cellulose, hemicellulose and organic matter all showed a decreasing trend in the composting process. Adding straw to adjust the C/N ratio could improve the degradation efficiency of organic matter and cellulose and improve the composting quality. At the end of composting, the organic matter contents of CK, T1, T2 and T3 groups were 32.74%, 52.51%, 53.08% and 52.25%, respectively, which met the technical standard of organic fertilizer (NY 525/T-2021). The results indicated that adding straw to adjust C/N ratio could effectively increase the content of organic matter in organic fertilizer.
- (4)
- Regulation of the C/N ratio for co-composting treatment has been shown to promote maturation and the production of high-quality compost products. This occurs through alteration of the microbial community succession process, which in turn promotes the corresponding microbial sulfur transformation and cellulose degradation processes.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, X.; Zhou, H.; Meng, H.; Ding, J.; Shen, Y.; Cheng, H.; Zhang, X.; Li, R.; Fan, S. Amino Acid Profile Characterization during the Co-Composting of a Livestock Manure and Maize Straw Mixture. J. Clean. Prod. 2021, 278, 123494. [Google Scholar] [CrossRef]
- Sun, M.; Xu, X.; Wang, C.; Bai, Y.; Fu, C.; Zhang, L.; Fu, R.; Wang, Y. Environmental Burdens of the Comprehensive Utilization of Straw: Wheat Straw Utilization from a Life-Cycle Perspective. J. Clean. Prod. 2020, 259, 120702. [Google Scholar] [CrossRef]
- Ravindra, K.; Singh, T.; Mor, S. Emissions of Air Pollutants from Primary Crop Residue Burning in India and Their Mitigation Strategies for Cleaner Emissions. J. Clean. Prod. 2019, 208, 261–273. [Google Scholar] [CrossRef]
- Siedt, M.; Schäffer, A.; Smith, K.E.C.; Nabel, M.; Roß-Nickoll, M.; Van Dongen, J.T. Comparing Straw, Compost, and Biochar Regarding Their Suitability as Agricultural Soil Amendments to Affect Soil Structure, Nutrient Leaching, Microbial Communities, and the Fate of Pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef]
- Pan, J.-L.; Dai, W.-A.; Shang, Z.-H.; Guo, R.-Y. Review of Research Progress on the Influence and Mechanism of Field Straw Residue Incorporation on Soil Organic Matter and Nitrogen Availability: Review of Research Progress on the Influence and Mechanism of Field Straw Residue Incorporation on Soil Organic Matter and Nitrogen Availability. Chin. J. Eco-Agric. 2013, 21, 526–535. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Liu, R.; Xing, L.; Yang, Z. Improved Crop Yield and Reduced Nitrate Nitrogen Leaching with Straw Return in a Rice-Wheat Rotation of Ningxia Irrigation District. Sci. Rep. 2018, 8, 9458. [Google Scholar] [CrossRef]
- Shao, J.; Gao, C.; Afi Seglah, P.; Xie, J.; Zhao, L.; Bi, Y.; Wang, Y. Analysis of the Available Straw Nutrient Resources and Substitution of Chemical Fertilizers with Straw Returned Directly to the Field in China. Agriculture 2023, 13, 1187. [Google Scholar] [CrossRef]
- Su, Y.; Kwong, R.W.M.; Tang, W.; Yang, Y.; Zhong, H. Straw Return Enhances the Risks of Metals in Soil? Ecotoxicol. Environ. Saf. 2021, 207, 111201. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, X.; Zhang, L.; Han, R. Biosorption of Methylene Blue by Natural and Chemical Modified Wheat Straw in Fixed-Bed Column. Desalination Water Treat. 2013, 51, 4514–4523. [Google Scholar] [CrossRef]
- Farooqi, M.U.; Ali, M. Durability Evaluation of Wheat Straw Reinforced Concrete for Sustainable Structures. J. Build. Eng. 2024, 82, 108400. [Google Scholar] [CrossRef]
- Assandri, D.; Pampuro, N.; Zara, G.; Cavallo, E.; Budroni, M. Suitability of Composting Process for the Disposal and Valorization of Brewer’s Spent Grain. Agriculture 2020, 11, 2. [Google Scholar] [CrossRef]
- Tan, H.; Yu, Y.; Zhu, Y.; Liu, T.; Miao, R.; Hu, R.; Peng, W.; Chen, J. Impacts of Size Reduction and Alkaline-Soaking Pretreatments on Microbial Community and Organic Matter Decomposition during Wheat Straw Composting. Bioresour. Technol. 2022, 360, 127549. [Google Scholar] [CrossRef]
- Kumar, S.; Gaind, S. Fermentative Production of Soluble Phosphorus Fertilizer Using Paddy Straw: An Alternate to Biomass Burning. Int. J. Environ. Sci. Technol. 2019, 16, 6077–6088. [Google Scholar] [CrossRef]
- Greff, B.; Szigeti, J.; Nagy, Á.; Lakatos, E.; Varga, L. Influence of Microbial Inoculants on Co-Composting of Lignocellulosic Crop Residues with Farm Animal Manure: A Review. J. Environ. Manag. 2022, 302, 114088. [Google Scholar] [CrossRef]
- Michel, F.C.; Pecchia, J.A.; Rigot, J.; Keener, H.M. Mass and Nutrient Losses During the Composting Of Dairy Manure Amended with Sawdust or Straw. Compos. Sci. Util. 2004, 12, 323–334. [Google Scholar] [CrossRef]
- NY/T 525-2021; Organic Fertilizer. Ministry of Agriculture and Rural Affairs: Beijing, China, 2021.
- HJ 761-2015; Solid Waste-Determination of Organic Matter-Ignition Loss Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2015.
- HJ 769-2015; Determination of Total Sulfur in Coal—Eschka-Ion Chromatography Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2015.
- HJ 1226-2021; Water Quality—Determination of Sulfide—Methylene Blue Spectrophotometric Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2021.
- Wang, Y.W.; Xu, W.Y. Procedure for the quantitative analysis of hemicellulose cellulose and lignin in lignocellulosic solid matrix ferments. Microbiol. Bull. 1987, 14, 81–84. [Google Scholar] [CrossRef]
- Mason, I.G.; Milke, M.W. Physical Modelling of the Composting Environment: A Review. Part 1: Reactor Systems. Waste Manag. 2005, 25, 481–500. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Li, R.; Hou, Y.; Chen, G.; Yan, B.; Mu, L. Effects of Common Microplastics on Aerobic Composting of Cow Manure: Physiochemical Characteristics, Humification and Microbial Community. J. Environ. Chem. Eng. 2022, 10, 108681. [Google Scholar] [CrossRef]
- Jolanun, B.; Towprayoon, S. Novel Bulking Agent from Clay Residue for Food Waste Composting. Bioresour. Technol. 2010, 101, 4484–4490. [Google Scholar] [CrossRef]
- Jiang, Z.; Lu, Y.; Xu, J.; Li, M.; Shan, G.; Li, Q. Exploring the Characteristics of Dissolved Organic Matter and Succession of Bacterial Community during Composting. Bioresour. Technol. 2019, 292, 121942. [Google Scholar] [CrossRef]
- Xie, G.; Kong, X.; Kang, J.; Su, N.; Fei, J.; Luo, G. Fungal Community Succession Contributes to Product Maturity during the Co-Composting of Chicken Manure and Crop Residues. Bioresour. Technol. 2021, 328, 124845. [Google Scholar] [CrossRef]
- Zhu, N.; Zhu, Y.; Kan, Z.; Li, B.; Cao, Y.; Jin, H. Effects of Two-Stage Microbial Inoculation on Organic Carbon Turnover and Fungal Community Succession during Co-Composting of Cattle Manure and Rice Straw. Bioresour. Technol. 2021, 341, 125842. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, W.; Li, Y.; Wang, G.; Li, G. Performance of Co-Composting Sewage Sludge and Organic Fraction of Municipal Solid Waste at Different Proportions. Bioresour. Technol. 2018, 250, 853–859. [Google Scholar] [CrossRef]
- Sun, P.; Liu, B.; Ahmed, I.; Yang, J.; Zhang, B. Composting Effect and Antibiotic Removal under a New Temperature Control Strategy. Waste Manag. 2022, 153, 89–98. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, X.; Qiu, X.; Zhang, J. Biochar Influences the Succession of Microbial Communities and the Metabolic Functions during Rice Straw Composting with Pig Manure. Bioresour. Technol. 2019, 272, 10–18. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Wang, Q.; Huang, H.; Ren, X.; Lahori, A.H.; Mahar, A.; Ali, A.; Shen, F.; Li, R.; Zhang, Z. Influence of Zeolite and Lime as Additives on Greenhouse Gas Emissions and Maturity Evolution during Sewage Sludge Composting. Bioresour. Technol. 2016, 216, 172–181. [Google Scholar] [CrossRef]
- Li, R.; Wang, Q.; Zhang, Z.; Zhang, G.; Li, Z.; Wang, L.; Zheng, J. Nutrient Transformation during Aerobic Composting of Pig Manure with Biochar Prepared at Different Temperatures. Environ. Technol. 2015, 36, 815–826. [Google Scholar] [CrossRef]
- An, C.-J.; Huang, G.-H.; Yao, Y.; Sun, W.; An, K. Performance of In-Vessel Composting of Food Waste in the Presence of Coal Ash and Uric Acid. J. Hazard. Mater. 2012, 203–204, 38–45. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Pandey, A.K.; Bundela, P.S.; Wong, J.W.C.; Li, R.; Zhang, Z. Co-Composting of Gelatin Industry Sludge Combined with Organic Fraction of Municipal Solid Waste and Poultry Waste Employing Zeolite Mixed with Enriched Nitrifying Bacterial Consortium. Bioresour. Technol. 2016, 213, 181–189. [Google Scholar] [CrossRef]
- Gajalakshmi, S.; Abbasi, S.A. Solid Waste Management by Composting: State of the Art. Crit. Rev. Environ. Sci. Technol. 2008, 38, 311–400. [Google Scholar] [CrossRef]
- Wong, J.W.-C.; Fung, S.O.; Selvam, A. Coal Fly Ash and Lime Addition Enhances the Rate and Efficiency of Decomposition of Food Waste during Composting. Bioresour. Technol. 2009, 100, 3324–3331. [Google Scholar] [CrossRef]
- Li, M.; Li, S.; Meng, Q.; Chen, S.; Wang, J.; Guo, X.; Ding, F.; Shi, L. Feedstock Optimization with Rice Husk Chicken Manure and Mature Compost during Chicken Manure Composting: Quality and Gaseous Emissions. Bioresour. Technol. 2023, 387, 129694. [Google Scholar] [CrossRef]
- Silva, M.E.; Lemos, L.T.; Cunha-Queda, A.C.; Nunes, O.C. Co-Composting of Poultry Manure with Low Quantities of Carbon-Rich Materials. Waste Manag. Res. 2009, 27, 119–128. [Google Scholar] [CrossRef]
- Guo, X.; Liu, H.; Wu, S. Humic Substances Developed during Organic Waste Composting: Formation Mechanisms, Structural Properties, and Agronomic Functions. Sci. Total Environ. 2019, 662, 501–510. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.J.; Zhang, Z.; Shen, F.; Zhang, G.; Qin, R.; Li, X.; Xiao, R. Nutrient Transformations during Composting of Pig Manure with Bentonite. Bioresour. Technol. 2012, 121, 362–368. [Google Scholar] [CrossRef]
- Jiang, Y.; Yao, Y.; Liu, H.; Zhang, S.; Bai, X.; Ma, X.; Wang, Y.; Ren, Q. Volatile Organic Compounds Conversion Pathways and Odor Gas Emission Characteristics in Chicken Manure Composting Process. Front. Ecol. Evol. 2023, 11, 1192132. [Google Scholar] [CrossRef]
- Xia, Y.; Lü, C.; Hou, N.; Xin, Y.; Liu, J.; Liu, H.; Xun, L. Sulfide Production and Oxidation by Heterotrophic Bacteria under Aerobic Conditions. ISME J. 2017, 11, 2754–2766. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Pandey, A.K.; Khan, J.; Bundela, P.S.; Wong, J.W.C.; Selvam, A. Evaluation of Thermophilic Fungal Consortium for Organic Municipal Solid Waste Composting. Bioresour. Technol. 2014, 168, 214–221. [Google Scholar] [CrossRef]
- Tawfik, A.; Eraky, M.; Osman, A.I.; Ai, P.; Zhou, Z.; Meng, F.; Rooney, D.W. Bioenergy Production from Chicken Manure: A Review. Env. Chem. Lett. 2023, 21, 2707–2727. [Google Scholar] [CrossRef]
- Tang, R.; Liu, Y.; Ma, R.; Zhang, L.; Li, Y.; Li, G.; Wang, D.; Lin, J.; Li, Q.; Yuan, J. Effect of Moisture Content, Aeration Rate, and C/N on Maturity and Gaseous Emissions during Kitchen Waste Rapid Composting. J. Environ. Manag. 2023, 326, 116662. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Pandey, A.K.; Bundela, P.S.; Khan, J. Co-Composting of Organic Fraction of Municipal Solid Waste Mixed with Different Bulking Waste: Characterization of Physicochemical Parameters and Microbial Enzymatic Dynamic. Bioresour. Technol. 2015, 182, 200–207. [Google Scholar] [CrossRef]
- Antunes, L.P.; Martins, L.F.; Pereira, R.V.; Thomas, A.M.; Barbosa, D.; Lemos, L.N.; Silva, G.M.M.; Moura, L.M.S.; Epamino, G.W.C.; Digiampietri, L.A.; et al. Microbial Community Structure and Dynamics in Thermophilic Composting Viewed through Metagenomics and Metatranscriptomics. Sci. Rep. 2016, 6, 38915. [Google Scholar] [CrossRef]
- Zeng, G.; Zhang, J.; Chen, Y.; Yu, Z.; Yu, M.; Li, H.; Liu, Z.; Chen, M.; Lu, L.; Hu, C. Relative Contributions of Archaea and Bacteria to Microbial Ammonia Oxidation Differ under Different Conditions during Agricultural Waste Composting. Bioresour. Technol. 2011, 102, 9026–9032. [Google Scholar] [CrossRef]
- Varma, V.S.; Ramu, K.; Kalamdhad, A.S. Carbon Decomposition by Inoculating Phanerochaete Chrysosporium during Drum Composting of Agricultural Waste. Env. Sci. Pollut. Res. 2015, 22, 7851–7858. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, J.; Xu, Y.; Xiao, H.; An, W.; Xi, H.; Xue, Z.; Huang, H.; Chen, X.; Shen, A. Fungal Community Dynamics and Driving Factors during Agricultural Waste Composting. Env. Sci. Pollut. Res. 2015, 22, 19879–19886. [Google Scholar] [CrossRef]
- Jiang, J.; Pan, Y.; Yang, X.; Liu, J.; Miao, H.; Ren, Y.; Zhang, C.; Yan, G.; Lv, J.; Li, Y. Beneficial Influences of Pelelith and Dicyandiamide on Gaseous Emissions and the Fungal Community during Sewage Sludge Composting. Env. Sci. Pollut. Res. 2019, 26, 8928–8938. [Google Scholar] [CrossRef]
- Ma, C.; Lo, P.K.; Xu, J.; Li, M.; Jiang, Z.; Li, G.; Zhu, Q.; Li, X.; Leong, S.Y.; Li, Q. Molecular Mechanisms Underlying Lignocellulose Degradation and Antibiotic Resistance Genes Removal Revealed via Metagenomics Analysis during Different Agricultural Wastes Composting. Bioresour. Technol. 2020, 314, 123731. [Google Scholar] [CrossRef]
- Meng, L.; Xu, C.; Wu, F. Huhe Microbial Co-Occurrence Networks Driven by Low-Abundance Microbial Taxa during Composting Dominate Lignocellulose Degradation. Sci. Total Environ. 2022, 845, 157197. [Google Scholar] [CrossRef]
- Nigussie, A.; Dume, B.; Ahmed, M.; Mamuye, M.; Ambaw, G.; Berhiun, G.; Biresaw, A.; Aticho, A. Effect of Microbial Inoculation on Nutrient Turnover and Lignocellulose Degradation during Composting: A Meta-Analysis. Waste Manag. 2021, 125, 220–234. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Duan, Y.; Awasthi, S.K.; Liu, T.; Chen, H.; Pandey, A.; Zhang, Z.; Taherzadeh, M.J. Emerging Applications of Biochar: Improving Pig Manure Composting and Attenuation of Heavy Metal Mobility in Mature Compost. J. Hazard. Mater. 2020, 389, 122116. [Google Scholar] [CrossRef]
- Pervaiz, A.; Zhong, Q.; Rehman, S.A.U.; Ma, C.; Jiao, Y.; He, M. Immobilization and Phytoavailability of Antimony (Sb) in Contaminated Agricultural Soils Amended with Composted Manure. Sci. Total Environ. 2023, 856, 159213. [Google Scholar] [CrossRef]
- Tiong, Y.W.; Sharma, P.; Xu, S.; Bu, J.; An, S.; Foo, J.B.L.; Wee, B.K.; Wang, Y.; Lee, J.T.E.; Zhang, J.; et al. Enhancing Sustainable Crop Cultivation: The Impact of Renewable Soil Amendments and Digestate Fertilizer on Crop Growth and Nutrient Composition. Environ. Pollut. 2024, 342, 123132. [Google Scholar] [CrossRef]
- Wong, J.W.; Selvam, A. Reduction of Indicator and Pathogenic Microorganisms in Pig Manure through Fly Ash and Lime Addition during Alkaline Stabilization. J. Hazard. Mater. 2009, 169, 882–889. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Chen, H.; Wang, Q.; Liu, T.; Duan, Y.; Awasthi, S.K.; Ren, X.; Tu, Z.; Li, J.; Zhao, J.; et al. Succession of Bacteria Diversity in the Poultry Manure Composted Mixed with Clay: Studies upon Its Dynamics and Associations with Physicochemical and Gaseous Parameters. Bioresour. Technol. 2018, 267, 618–625. [Google Scholar] [CrossRef]
- Zhu, N.; Gao, J.; Liang, D.; Zhu, Y.; Li, B.; Jin, H. Thermal Pretreatment Enhances the Degradation and Humification of Lignocellulose by Stimulating Thermophilic Bacteria during Dairy Manure Composting. Bioresour. Technol. 2021, 319, 124149. [Google Scholar] [CrossRef]
- Shankar, K.; Kulkarni, N.S.; Jayalakshmi, S.K.; Sreeramulu, K. Saccharification of the Pretreated Husks of Corn, Peanut and Coffee Cherry by the Lignocellulolytic Enzymes Secreted by Sphingobacterium Sp. Ksn for the Production of Bioethanol. Biomass Bioenergy 2019, 127, 105298. [Google Scholar] [CrossRef]
- Steger, K.; Sjögren, Å.M.; Jarvis, Å.; Jansson, J.K.; Sundh, I. Development of Compost Maturity and Actinobacteria Populations during Full-Scale Composting of Organic Household Waste. J. Appl. Microbiol. 2007, 103, 487–498. [Google Scholar] [CrossRef]
- Wei, H.; Wang, L.; Hassan, M.; Xie, B. Succession of the Functional Microbial Communities and the Metabolic Functions in Maize Straw Composting Process. Bioresour. Technol. 2018, 256, 333–341. [Google Scholar] [CrossRef]
- De Gannes, V.; Eudoxie, G.; Hickey, W.J. Prokaryotic Successions and Diversity in Composts as Revealed by 454-Pyrosequencing. Bioresour. Technol. 2013, 133, 573–580. [Google Scholar] [CrossRef]
- Bao, Y.; Dolfing, J.; Guo, Z.; Chen, R.; Wu, M.; Li, Z.; Lin, X.; Feng, Y. Important Ecophysiological Roles of Non-Dominant Actinobacteria in Plant Residue Decomposition, Especially in Less Fertile Soils. Microbiome 2021, 9, 84. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Zhang, Z.; Wang, Q.; Shen, F.; Li, R.; Li, D.; Ren, X.; Wang, M.; Chen, H.; Zhao, J. New Insight with the Effects of Biochar Amendment on Bacterial Diversity as Indicators of Biomarkers Support the Thermophilic Phase during Sewage Sludge Composting. Bioresour. Technol. 2017, 238, 589–601. [Google Scholar] [CrossRef]
- Chen, L.; Li, W.; Zhao, Y.; Zhang, S.; Meng, L. Mechanism of Sulfur-Oxidizing Inoculants and Nitrate on Regulating Sulfur Functional Genes and Bacterial Community at the Thermophilic Compost Stage. J. Environ. Manag. 2023, 326, 116733. [Google Scholar] [CrossRef]
- Booker, A.E.; Borton, M.A.; Daly, R.A.; Welch, S.A.; Nicora, C.D.; Hoyt, D.W.; Wilson, T.; Purvine, S.O.; Wolfe, R.A.; Sharma, S.; et al. Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales. mSphere 2017, 2, e00257-17. [Google Scholar] [CrossRef]
- Li, Y.; Ma, J.; Yong, X.; Luo, L.; Wong, J.W.C.; Zhang, Y.; Wu, H.; Zhou, J. Effect of Biochar Combined with a Biotrickling Filter on Deodorization, Nitrogen Retention, and Microbial Community Succession during Chicken Manure Composting. Bioresour. Technol. 2022, 343, 126137. [Google Scholar] [CrossRef]
- Dong, S.; Wei, Y.; Yu, Q.; Gao, Y.; Chen, H.; Zhou, K.; Cheng, M.; Wang, B.; Wei, Y.; Hu, X. Inoculating Functional Bacteria Improved the Humification Process by Regulating Microbial Networks and Key Genera in Straw Composting by Adding Different Nitrogen Sources. Bioresour. Technol. 2024, 393, 130022. [Google Scholar] [CrossRef]
- Wang, L.; Wang, T.; Xing, Z.; Zhang, Q.; Niu, X.; Yu, Y.; Teng, Z.; Chen, J. Enhanced Lignocellulose Degradation and Composts Fertility of Cattle Manure and Wheat Straw Composting by Bacillus Inoculation. J. Environ. Chem. Eng. 2023, 11, 109940. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, W.; Chen, L.; Meng, L.; Zheng, Z. Effect of Enriched Thermotolerant Nitrifying Bacteria Inoculation on Reducing Nitrogen Loss during Sewage Sludge Composting. Bioresour. Technol. 2020, 311, 123461. [Google Scholar] [CrossRef]
- Luo, Y.; Van Veelen, H.P.J.; Chen, S.; Sechi, V.; Ter Heijne, A.; Veeken, A.; Buisman, C.J.N.; Bezemer, T.M. Effects of Sterilization and Maturity of Compost on Soil Bacterial and Fungal Communities and Wheat Growth. Geoderma 2022, 409, 115598. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, B.; Peng, S.; Zhang, Z.; Cai, S.; Yu, J.; Wang, D.; Zhang, W. Mechanistic Insights into Chemical Conditioning on Transformation of Dissolved Organic Matter and Plant Biostimulants Production during Sludge Aerobic Composting. Water Res. 2024, 255, 121446. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, H.; Zhang, H.; Xun, L.; Chen, G.; Wang, L. Thermomyces Lanuginosus Is the Dominant Fungus in Maize Straw Composts. Bioresour. Technol. 2015, 197, 266–275. [Google Scholar] [CrossRef]
- Wan, L.; Wang, X.; Cong, C.; Li, J.; Xu, Y.; Li, X.; Hou, F.; Wu, Y.; Wang, L. Effect of Inoculating Microorganisms in Chicken Manure Composting with Maize Straw. Bioresour. Technol. 2020, 301, 122730. [Google Scholar] [CrossRef]
- Wang, X.; Kong, Z.; Wang, Y.; Wang, M.; Liu, D.; Shen, Q. Insights into the Functionality of Fungal Community during the Large Scale Aerobic Co-Composting Process of Swine Manure and Rice Straw. J. Environ. Manag. 2020, 270, 110958. [Google Scholar] [CrossRef]
- Zhu, N.; Zhu, Y.; Liang, D.; Li, B.; Jin, H.; Dong, Y. Enhanced Turnover of Phenolic Precursors by Gloeophyllum Trabeum Pretreatment Promotes Humic Substance Formation during Co-Composting of Pig Manure and Wheat Straw. J. Clean. Prod. 2021, 315, 128211. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L. Effects of Additives on the Co-Composting of Forest Residues with Cattle Manure. Bioresour. Technol. 2023, 368, 128384. [Google Scholar] [CrossRef]
- Chen, H.; Awasthi, S.K.; Liu, T.; Zhang, Z.; Awasthi, M.K. An Assessment of the Functional Enzymes and Corresponding Genes in Chicken Manure and Wheat Straw Composted with Addition of Clay via Meta-Genomic Analysis. Ind. Crops Prod. 2020, 153, 112573. [Google Scholar] [CrossRef]
- Zhou, S.-P.; Tang, S.-Q.; Ke, X.; Zhou, H.-Y.; Zou, S.-P.; Xue, Y.-P.; Zheng, Y.-G. Hyperthermophilic Pretreatment Significantly Accelerates Thermophilic Composting Humification through Improving Bacterial Communities and Promoting Microbial Cooperation. Bioresour. Technol. 2023, 385, 129467. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Y.; Zhou, K.; Gao, X.; Chang, Y.; Zhang, K.; Deng, J.; Zhan, Y.; Li, J.; Li, R.; et al. Regulating pH and Phanerochaete Chrysosporium Inoculation Improved the Humification and Succession of Fungal Community at the Cooling Stage of Composting. Bioresour. Technol. 2023, 384, 129291. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, C.; Tan, L.; Wei, X.; Li, Q.; Zheng, X.; Liu, F.; Wang, J.; Xu, Y. Full-Scale of a Compost Process Using Swine Manure, Human Feces, and Rice Straw as Feedstock. Front. Bioeng. Biotechnol. 2022, 10, 928032. [Google Scholar] [CrossRef]
Raw Material | S (%) | C (%) | N (%) | C/N | Organic Material (%) | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Ash (%) |
---|---|---|---|---|---|---|---|---|---|
CM | 1.29 ± 0.02 | 28.19 ± 0.57 | 4.04 ± 0.01 | 6.98 ± 0.04 | 31.03 ± 7.59 | 11.77 ± 0.02 | 0.94 ± 0.00 | 8.78 ± 0.01 | 30.14 ± 0.35 |
PW | 0.25 ± 0.00 | 40.81 ± 6.19 | 0.52 ± 0.06 | 78.10 ± 0.88 | 58.62 ± 0.88 | 49.20 ± 0.01 | 2.51 ± 0.00 | 23.83 ± 0.08 | _ |
WS | 0.38 ± 0.03 | 40.00 ± 0.69 | 0.41 ± 0.83 | 97.56 ± 4.35 | 56.77 ± 1.67 | 41.05 ± 0.01 | 30.96 ± 0.01 | 21.65 ± 0.00 | _ |
Treatment | Initial Total Sulfur (g) | Final Total Sulfur (g) | Total Sulfur Mass Loss (g) | Total Sulfur Loss Ratio (%) |
---|---|---|---|---|
CK | 1149.07 ± 115.85 Aa | 493.78 ± 2.10 Bc | 655.29 ± 117.95 Aa | 57.03 ± 0.05 Aa |
T1 | 1349.71 ± 362.01 Aa | 745.77 ± 8.93 Ab | 603.94 ± 354.27 Aa | 44.75 ± 0.15 Aa |
T2 | 1399.87 ± 282.82 Aa | 721.63 ± 33.52 Ab | 678.24 ± 249.30 Aa | 48.45 ± 0.08 Aa |
T3 | 1450.03 ± 347.03 Aa | 840.70 ± 23.41 Aa | 609.33 ± 370.45 Aa | 42.02 ± 0.16 Ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, S.; Ma, Y.; Bao, Z.; Yang, Z.; Niu, X.; Meng, Q.; Qin, D.; Wang, Y.; Wan, J.; Guo, X. The Impacts of the C/N Ratio on Hydrogen Sulfide Emission and Microbial Community Characteristics during Chicken Manure Composting with Wheat Straw. Agriculture 2024, 14, 948. https://doi.org/10.3390/agriculture14060948
Cai S, Ma Y, Bao Z, Yang Z, Niu X, Meng Q, Qin D, Wang Y, Wan J, Guo X. The Impacts of the C/N Ratio on Hydrogen Sulfide Emission and Microbial Community Characteristics during Chicken Manure Composting with Wheat Straw. Agriculture. 2024; 14(6):948. https://doi.org/10.3390/agriculture14060948
Chicago/Turabian StyleCai, Shangying, Yi Ma, Zhenkang Bao, Ziying Yang, Xiangyu Niu, Qingzhen Meng, Dongsheng Qin, Yan Wang, Junfeng Wan, and Xiaoying Guo. 2024. "The Impacts of the C/N Ratio on Hydrogen Sulfide Emission and Microbial Community Characteristics during Chicken Manure Composting with Wheat Straw" Agriculture 14, no. 6: 948. https://doi.org/10.3390/agriculture14060948
APA StyleCai, S., Ma, Y., Bao, Z., Yang, Z., Niu, X., Meng, Q., Qin, D., Wang, Y., Wan, J., & Guo, X. (2024). The Impacts of the C/N Ratio on Hydrogen Sulfide Emission and Microbial Community Characteristics during Chicken Manure Composting with Wheat Straw. Agriculture, 14(6), 948. https://doi.org/10.3390/agriculture14060948