Automatic Identification of Sea Rice Grains in Complex Field Environment Based on Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Set Preparation
2.1.1. Image Acquisition
2.1.2. Image Annotation
2.1.3. Image Processing
2.2. Grain Detection Model
2.2.1. Construction of the Sea Grain Detection Model
2.2.2. Training of the Sea Grain Detection Model
2.3. Evaluation Indicators
3. Results
3.1. Training of the Sea Grain Detection Model
3.2. Detection Results of the Sea Grain Detection Model
3.3. Comparison with Other Detection Models
3.4. Counting Accuracy of the Sea Grain Detection Model
4. Discussion
4.1. Effect of Blurred Rice Panicle Images
4.2. Effect of Covering Grains on Sea Rice Panicle
4.3. Effect of Background in Complex Rice Fields
4.4. Improvement of Model Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Li, N.; Xu, Y.; Wang, W.; Liu, Y. Functional activity of endophytic bacteria G9H01 with high salt tolerance and anti-Magnaporthe oryzae that isolated from saline-alkali-tolerant rice. Sci. Total. Environ. 2024, 926, 171822. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Li, Y.; Huang, R. Advances and Challenges in the Breeding of Salt-Tolerant Rice. Int. J. Mol. Sci. 2020, 21, 8385. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.M.L.; Tran, T.N.; Nguyen, T.K.T.; Williams, B.; Wurm, P.; Bellairs, S.; Mundree, S. Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities. Agronomy 2016, 6, 54. [Google Scholar] [CrossRef]
- Huong, C.T.; Anh, T.T.T.; Tran, H.-D.; Duong, V.X.; Trung, N.T.; Khanh, T.D.; Xuan, T.D. Assessing Salinity Tolerance in Rice Mutants by Phenotypic Evaluation Alongside Simple Sequence Repeat Analysis. Agriculture 2020, 10, 191. [Google Scholar] [CrossRef]
- Wu, J.; Yang, G.; Yang, X.; Xu, B.; Han, L.; Zhu, Y. Automatic Counting of in situ Rice Seedlings from UAV Images Based on a Deep Fully Convolutional Neural Network. Remote Sens. 2019, 11, 691. [Google Scholar] [CrossRef]
- Lu, Y.; Chuan, M.; Wang, H.; Chen, R.; Tao, T.; Zhou, Y.; Xu, Y.; Li, P.; Yao, Y.; Xu, C.; et al. Genetic and molecular factors in determining grain number per panicle of rice. Front. Plant Sci. 2022, 13, 964246. [Google Scholar] [CrossRef]
- Duan, L.; Yang, W.; Bi, K.; Chen, S.; Luo, Q.; Liu, Q. Fast discrimination and counting of filled/unfilled rice spikelets based on bi-modal imaging. Comput. Electron. Agric. 2011, 75, 196–203. [Google Scholar] [CrossRef]
- Yu, L.; Shi, J.; Huang, C.; Duan, L.; Wu, D.; Fu, D.; Wu, C.; Xiong, L.; Yang, W.; Liu, Q. An integrated rice panicle phenotyping method based on X-ray and RGB scanning and deep learning. Crop J. 2021, 9, 42–56. [Google Scholar] [CrossRef]
- Yang, W.; Guo, Z.; Huang, C.; Duan, L.; Chen, G.; Jiang, N.; Fang, W.; Feng, H.; Xie, W.; Lian, X.; et al. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat. Commun. 2014, 5, 5087. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Qiao, J.; Li, L.; Wang, X.; Yao, J.; Liao, G. Automatic counting of rapeseed inflorescences using deep learning method and UAV RGB imagery. Front. Plant Sci. 2023, 14, 1101143. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference; Proceedings, Part I 14, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Wang, H.; Wang, T. Multi-Scale Residual Aggregation Feature Pyramid Network for Object Detection. Electronics 2022, 12, 93. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, L.; Yao, Y.; Wang, Y.; Li, J.; Yang, W. An Interconnected Feature Pyramid Networks for object detection. J. Vis. Commun. Image Represent. 2021, 79, 103260. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2015; Volume 28. [Google Scholar]
- Khaki, S.; Pham, H.; Han, Y.; Kuhl, A.; Kent, W.; Wang, L. Convolutional Neural Networks for Image-Based Corn Kernel Detection and Counting. Sensors 2020, 20, 2721. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhong, C. Adaptive Feature Pyramid Networks for Object Detection. IEEE Access 2021, 9, 107024–107032. [Google Scholar] [CrossRef]
- Wu, W.; Yang, T.-L.; Li, R.; Chen, C.; Liu, T.; Zhou, K.; Sun, C.-M.; Li, C.-Y.; Zhu, X.-K.; Guo, W.-S. Detection and enumeration of wheat grains based on a deep learning method under various scenarios and scales. J. Integr. Agric. 2020, 19, 1998–2008. [Google Scholar] [CrossRef]
- Gong, Y.; Xiao, Z.; Tan, X.; Sui, H.; Xu, C.; Duan, H.; Li, D. Context-aware convolutional neural network for object detection in VHR remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2019, 58, 34–44. [Google Scholar] [CrossRef]
- Dandrifosse, S.; Ennadifi, E.; Carlier, A.; Gosselin, B.; Dumont, B.; Mercatoris, B. Deep learning for wheat ear segmentation and ear density measurement: From heading to maturity. Comput. Electron. Agric. 2022, 199, 107161. [Google Scholar] [CrossRef]
- Wang, X.; Yang, W.; Lv, Q.; Huang, C.; Liang, X.; Chen, G.; Xiong, L.; Duan, L. Field rice panicle detection and counting based on deep learning. Front. Plant Sci. 2022, 13, 966495. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Qi, L.; Pan, W.; Wang, Z.; Fu, D.; Yang, X. Automatic estimation of rice grain number based on a convolutional neural network. J. Opt. Soc. Am. A 2022, 39, 1034–1044. [Google Scholar] [CrossRef]
- Gedraite, E.S.; Hadad, M. Investigation on the effect of a Gaussian Blur in image filtering and segmentation. In Proceedings of the ELMAR-2011, Zadar, Croatia, 14–16 September 2011; pp. 393–396. [Google Scholar]
- Keller, A.; Eng, J.; Zhang, N.; Li, X.; Aebersold, R. A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol. 2005, 1, 2005-0017. [Google Scholar] [CrossRef]
- Marcel, S.; Rodriguez, Y. Torchvision the machine-vision package of torch. In Proceedings of the 18th ACM International Conference on Multimedia, Firenze, Italy, 25–29 October 2010; pp. 1485–1488. [Google Scholar]
- Jung, A.B.; Wada, K.; Crall, J.; Tanaka, S.; Graving, J.; Reinders, C.; Yadav, S.; Banerjee, J.; Vecsei, G.; Kraft, A.; et al. Imgaug; GitHub: San Francisco, CA, USA, 2020; Available online: https://github.com/aleju/imgaug (accessed on 9 July 2024).
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image Augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Yan, J.; Wang, H.; Yan, M.; Diao, W.; Sun, X.; Li, H. IoU-Adaptive Deformable R-CNN: Make Full Use of IoU for Multi-Class Object Detection in Remote Sensing Imagery. Remote Sens. 2019, 11, 286. [Google Scholar] [CrossRef]
Phone Model | Brand | Country | Camera Resolution | Focal Length Range |
---|---|---|---|---|
Xiaomi Mi 11 | Xiaomi Inc. (Beijing, China) | China | 3200 × 1440 pixels | 26–50 mm |
Redmi K40 | Xiaomi Inc. (Beijing, China) | China | 2400 × 1080 pixels | 25–50 mm |
Apple iPhone 12 | Apple Inc. (Cupertino, CA, USA) | USA | 2532 × 1170 pixels | 13–26 mm |
Apple iPhone 11 | Apple Inc. (Cupertino, CA, USA) | USA | 1792 × 828 pixels | 13–26 mm |
Index | Sea Grain Detection Model | YOLOv3 | Grid R-CNN |
---|---|---|---|
Precision | 0.97 ± 0.01 | 0.86 ± 0.01 | 0.96 ± 0.01 |
Recall | 0.91 ± 0.03 | 0.83 ± 0.03 | 0.90 ± 0.03 |
mAP (%), IoU:0.5 | 90.1 ± 0.2 | 78.9 ± 0.2 | 89.3 ± 0.2 |
Time (epoch/s) | 105 | 90 | 300 |
No. | Actual Number | Counting Result | Accuracy |
---|---|---|---|
1 | 69 | 67 | 97.1% |
2 | 75 | 64 | 85.3% |
3 | 103 | 97 | 94.2% |
4 | 87 | 81 | 93.1% |
5 | 88 | 86 | 97.7% |
6 | 97 | 93 | 95.9% |
7 | 117 | 100 | 85.5% |
8 | 82 | 82 | 100.0% |
9 | 92 | 92 | 100.0% |
10 | 93 | 93 | 100.0% |
Mean | 94.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, R.; Cheng, W.; Liu, H.; Hou, D.; Zhong, X.; Huang, Z.; Xie, B.; Yin, N. Automatic Identification of Sea Rice Grains in Complex Field Environment Based on Deep Learning. Agriculture 2024, 14, 1135. https://doi.org/10.3390/agriculture14071135
Deng R, Cheng W, Liu H, Hou D, Zhong X, Huang Z, Xie B, Yin N. Automatic Identification of Sea Rice Grains in Complex Field Environment Based on Deep Learning. Agriculture. 2024; 14(7):1135. https://doi.org/10.3390/agriculture14071135
Chicago/Turabian StyleDeng, Ruoling, Weilin Cheng, Haitao Liu, Donglin Hou, Xiecheng Zhong, Zijian Huang, Bingfeng Xie, and Ningxia Yin. 2024. "Automatic Identification of Sea Rice Grains in Complex Field Environment Based on Deep Learning" Agriculture 14, no. 7: 1135. https://doi.org/10.3390/agriculture14071135
APA StyleDeng, R., Cheng, W., Liu, H., Hou, D., Zhong, X., Huang, Z., Xie, B., & Yin, N. (2024). Automatic Identification of Sea Rice Grains in Complex Field Environment Based on Deep Learning. Agriculture, 14(7), 1135. https://doi.org/10.3390/agriculture14071135