Refinement of Cropland Data Layer with Effective Confidence Layer Interval and Image Filtering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Sentinel-2 Imagery
2.2.2. Cropland Data Layer (CDL)
2.2.3. CDL Confidence Layer
2.3. Research Approaches
2.3.1. CDL Refinement Using the Confidence Layer
2.3.2. CDL Refinement Using Image Filters
- Aggregation [29]: This filter smooths the data by combining small, isolated patches of classified pixels into larger, contiguous regions, thereby reducing salt-and-pepper noise.
- Boundary cleaning [30]: This filter simplifies the raster by smoothing zone boundaries using expansion (dilation) and shrinking (erosion) techniques. This process involves evaluating each input cell based on its orthogonal and diagonal neighbors to achieve the desired smoothing effect.
- Expand [31]: The expand filter increases the size of designated zones within a raster by a certain number of cells. These designated zones are treated as the foreground, while the rest are considered the background, allowing the foreground to grow into the surrounding background areas.
- Shrink [32]: The shrink filter designates specific zone values as the foreground, enabling their expansion into surrounding background zones. This process effectively reduces noise and minor misclassifications, resulting in a more accurate and conservative delineation of crop extents.
- Majority [33]: This filter reclassifies each pixel based on the majority class of its neighbors, helping to correct misclassified pixels by considering local context.
- Expand–shrink: This technique involves initially shrinking the classified regions in an image to remove noise and small misclassified areas and then expanding the remaining areas back to their original size. This process helps in retaining the core areas of the classified regions while minimizing the impact of noise and erroneous small regions.
2.4. Data Pre-Processing
2.5. Model Architecture and Training
2.6. Accuracy Metrics and Comparative Analysis
3. Results
3.1. Impact of CDL Confidence Intervals on Segmentation
3.2. Evaluating Filtered CDL
3.3. CDL Refinement in T14TNK Area
4. Discussion
4.1. CDL Refinement Using Confidence Layer
4.2. CDL Refinement Using Image Filters
4.3. Comparative Analysis of CDL Refinement Methods
4.4. Generalizability Assessment
4.5. Implementation Prospects and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Čerkasova, N.; White, M.; Arnold, J.; Bieger, K.; Allen, P.; Gao, J.; Meki, M.; Kiniry, J.; Gassman, P. Field scale SWAT+ modeling of corn and soybean yields for the contiguous United States: National Agroecosystem Model Development. Agric. Syst. 2023, 210, 103695. [Google Scholar] [CrossRef]
- FAO. The State of Food Insecurity in the World—Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress; FAO: Rome, Italy, 2015; pp. 1–54. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World: Transforming Food Systems for Affordable Healthy Diets; FAO: Rome, Italy; IFAD: Rome, Italy; UNICEF: Rome, Italy; WFP: Rome, Italy; WHO: Rome, Italy, 2020. [Google Scholar]
- Zhu, Y.; Wu, S.; Qin, M.; Fu, Z.; Gao, Y.; Wang, Y.; Du, Z. A deep learning crop model for adaptive yield estimation in large areas. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102828. [Google Scholar] [CrossRef]
- USDA; N.A.S.S. Statewide Agricultural Accuracy Report. Available online: https://www.nass.usda.gov/Research_and_Science/Cropland/metadata/meta.php (accessed on 17 July 2024).
- Ebrahimy, H.; Zhang, Z. Per-pixel accuracy as a weighting criterion for combining ensemble of extreme learning machine classifiers for satellite image classification. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103390. [Google Scholar] [CrossRef]
- Zhang, C.; Di, L.; Lin, L.; Li, H.; Guo, L.; Yang, Z.; Yu, E.G.; Di, Y.; Yang, A. Towards automation of in-season crop type mapping using spatiotemporal crop information and remote sensing data. Agric. Syst. 2022, 201, 103462. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Bayas, J.C.L.; Waldner, F.; Jacques, D.; Becker-Reshef, I.; Whitcraft, A.; Baruth, B.; Bonifacio, R.; Crutchfield, J.; et al. A comparison of global agricultural monitoring systems and current gaps. Agric. Syst. 2019, 168, 258–272. [Google Scholar] [CrossRef]
- Lin, L.; Di, L.; Zhang, C.; Guo, L.; Di, Y.; Li, H.; Yang, A. Validation and refinement of cropland data layer using a spatial-temporal decision tree algorithm. Sci. Data 2022, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 2018, 210, 35–47. [Google Scholar] [CrossRef]
- Wang, S.; Azzari, G.; Lobell, D.B. Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sens. Environ. 2019, 222, 303–317. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Hao, P.; Di, L.; Zhang, C.; Guo, L. Transfer Learning for Crop classification with Cropland Data Layer data (CDL) as training samples. Sci. Total Environ. 2020, 733, 138869. [Google Scholar] [CrossRef]
- Lark, T.J.; Schelly, I.H.; Gibbs, H.K. Accuracy, Bias, and Improvements in Mapping Crops and Cropland across the United States Using the USDA Cropland Data Layer. Remote Sens. 2021, 13, 968. [Google Scholar] [CrossRef]
- Reitsma, K.D.; Clay, D.E.; Clay, S.A.; Dunn, B.H.; Reese, C. Does the US cropland data layer provide an accurate benchmark for land-use change estimates? Agron. J. 2016, 108, 266–272. [Google Scholar] [CrossRef]
- Li, R.; Wei, C.; Afroz, M.D.; Lyu, J.; Chen, G. A GIS-based framework for local agricultural decision-making and regional crop yield simulation. Agric. Syst. 2021, 193, 103213. [Google Scholar] [CrossRef]
- Zhang, C.; Di, L.; Hao, P.; Yang, Z.; Lin, L.; Zhao, H.; Guo, L. Rapid in-season mapping of corn and soybeans using machine-learned trusted pixels from Cropland Data Layer. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102374. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Di, L.; Lin, L.; Hao, P. Refinement of cropland data layer using machine learning. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, 42, 161–164. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Zhang, Z.; Tian, F. An unsupervised domain adaptation deep learning method for spatial and temporal transferable crop type mapping using Sentinel-2 imagery. ISPRS J. Photogramm. Remote Sens. 2023, 199, 102–117. [Google Scholar] [CrossRef]
- Ge, S.; Zhang, J.; Pan, Y.; Yang, Z.; Zhu, S. Transferable deep learning model based on the phenological matching principle for mapping crop extent. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102451. [Google Scholar] [CrossRef]
- Yang, G.; Yu, W.; Yao, X.; Zheng, H.; Cao, Q.; Zhu, Y.; Cao, W.; Cheng, T. AGTOC: A novel approach to winter wheat mapping by automatic generation of training samples and one-class classification on Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102446. [Google Scholar] [CrossRef]
- ESA. MSI User Guide. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi (accessed on 17 July 2024).
- Saad El Imanni, H.; El Harti, A.; Panimboza, J. Investigating Sentinel-1 and Sentinel-2 Data Efficiency in Studying the Temporal Behavior of Wheat Phenological Stages Using Google Earth Engine. Agriculture 2022, 12, 1605. [Google Scholar] [CrossRef]
- Tomíček, J.; Mišurec, J.; Lukeš, P.; Potůčková, M. Retrieval of Harmonized LAI Product of Agricultural Crops from Landsat OLI and Sentinel-2 MSI Time Series. Agriculture 2022, 12, 2080. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Wu, X.; Yang, W.; Shen, Y.; Lu, B.; Wang, J. AUTS: A Novel Approach to Mapping Winter Wheat by Automatically Updating Training Samples Based on NDVI Time Series. Agriculture 2022, 12, 817. [Google Scholar] [CrossRef]
- Bartschat, A.; Reischl, M.; Mikut, R. Data mining tools. WIREs Data Min. Knowl. Discov. 2019, 9, e1309. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Rahman, M.S.; Di, L.; Yu, E.; Zhang, C.; Mohiuddin, H. In-Season Major Crop-Type Identification for US Cropland from Landsat Images Using Crop-Rotation Pattern and Progressive Data Classification. Agriculture 2019, 9, 17. [Google Scholar] [CrossRef]
- Dong, W.; Woźniak, M.; Wu, J.; Li, W.; Bai, Z. Denoising aggregation of graph neural networks by using principal component analysis. IEEE Trans. Ind. Inform. 2022, 19, 2385–2394. [Google Scholar] [CrossRef]
- Ilesanmi, A.E.; Ilesanmi, T.O. Methods for image denoising using convolutional neural network: A review. Complex Intell. Syst. 2021, 7, 2179–2198. [Google Scholar] [CrossRef]
- Wade, T.; Wickham, J.; Nash, M.; Neale, A.; Riitters, K.; Jones, K. A Comparison of Vector and Raster GIS Methods for Calculating Landscape Metrics Used in Environmental Assessments. Photogramm. Eng. Remote Sens. 2003, 69, 1399–1405. [Google Scholar] [CrossRef]
- Olivas, E.S.; Guerrero, J.D.M.; Sober, M.M.; Benedito, J.R.M.; Lopez, A.J.S. Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods and Techniques—2 Volumes; IGI Publishing: Hershey, PA, USA, 2009. [Google Scholar]
- Soares, D.; Galvão, L.; Formaggio, A. Crop area estimate from original and simulated spatial resolution data and landscape metrics. Sci. Agric. 2008, 65, 459–467. [Google Scholar] [CrossRef]
- European Space Agency. Copernicus Sentinel-2 Collection 1 MSI Level-2A (L2A). Available online: https://sentinels.copernicus.eu/web/sentinel/sentinel-data-access/sentinel-products/sentinel-2-data-products/collection-1-level-2a (accessed on 17 July 2024).
- Liu, M.; Fu, B.; Xie, S.; He, H.; Lan, F.; Li, Y.; Lou, P.; Fan, D. Comparison of multi-source satellite images for classifying marsh vegetation using DeepLabV3 Plus deep learning algorithm. Ecol. Indic. 2021, 125, 107562. [Google Scholar] [CrossRef]
- Yojana, K.; Thillai Rani, L. OCT layer segmentation using U-NET semantic segmentation and RESNET34 encoder-decoder. Meas. Sens. 2023, 29, 100817. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, Y.; Zhang, J.; Hu, T.; Zhao, J.; Li, N.; Chen, Q. A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution. Remote Sens. Environ. 2020, 247, 111912. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Larsen, A.E.; Hendrickson, B.T.; Dedeic, N.; MacDonald, A.J. Taken as a given: Evaluating the accuracy of remotely sensed crop data in the USA. Agric. Syst. 2015, 141, 121–125. [Google Scholar] [CrossRef]
- Abdali, E.; Valadan Zoej, M.J.; Taheri Dehkordi, A.; Ghaderpour, E. A Parallel-Cascaded Ensemble of Machine Learning Models for Crop Type Classification in Google Earth Engine Using Multi-Temporal Sentinel-1/2 and Landsat-8/9 Remote Sensing Data. Remote Sens. 2024, 16, 127. [Google Scholar] [CrossRef]
- Bahrami, H.; Homayouni, S.; Safari, A.; Mirzaei, S.; Mahdianpari, M.; Reisi-Gahrouei, O. Deep Learning-Based Estimation of Crop Biophysical Parameters Using Multi-Source and Multi-Temporal Remote Sensing Observations. Agronomy 2021, 11, 1363. [Google Scholar] [CrossRef]
Confidence Interval | Overall | Corn | Cotton | Rice | Soybeans | Other | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OA | UA | PA | F1 | UA | PA | F1 | UA | PA | F1 | UA | PA | F1 | UA | PA | F1 | UA | PA | F1 | MCDA | |
All CDL | 89.4 | 89.5 | 89.7 | 89.6 | 88.7 | 88.1 | 88.4 | 88.8 | 91.9 | 90.3 | 93.3 | 91.4 | 92.3 | 85.6 | 86.0 | 85.8 | 91.3 | 91.1 | 91.2 | 85.8 |
+5% | 89.5 | 89.2 | 89.9 | 89.5 | 89.6 | 86.8 | 88.2 | 87.0 | 93.2 | 90.0 | 91.6 | 92.8 | 92.2 | 87.1 | 84.6 | 85.8 | 90.7 | 92.0 | 91.4 | 84.8 |
+15% | 89.7 | 90.3 | 89.7 | 90.0 | 89.7 | 87.7 | 88.7 | 90.1 | 91.9 | 91.0 | 93.0 | 92.3 | 92.6 | 89.1 | 83.0 | 85.9 | 89.5 | 93.6 | 91.5 | 86.4 |
+25% | 89.9 | 90.2 | 90.0 | 90.1 | 89.7 | 88.0 | 88.8 | 89.7 | 92.2 | 91.0 | 93.0 | 92.7 | 92.8 | 88.9 | 83.5 | 86.1 | 89.9 | 93.4 | 91.6 | 87.5 |
+35% | 90.0 | 90.5 | 89.8 | 90.2 | 90.8 | 87.7 | 89.2 | 90.2 | 91.8 | 91.0 | 94.0 | 91.5 | 92.7 | 86.5 | 85.9 | 86.2 | 91.1 | 92.3 | 91.7 | 88.0 |
+45% | 90.5 | 90.7 | 90.7 | 90.7 | 90.1 | 89.7 | 89.9 | 90.8 | 91.6 | 91.2 | 93.0 | 93.8 | 93.4 | 88.3 | 85.6 | 86.9 | 91.4 | 92.8 | 92.1 | 92.3 |
+55% | 90.6 | 90.0 | 91.4 | 90.7 | 90.7 | 89.3 | 90.0 | 89.0 | 93.2 | 91.0 | 91.0 | 95.7 | 93.3 | 86.8 | 87.7 | 87.2 | 92.6 | 91.2 | 91.9 | 90.8 |
+65% | 90.6 | 89.8 | 91.2 | 90.4 | 88.6 | 91.0 | 89.8 | 88.6 | 92.6 | 90.6 | 90.6 | 95.2 | 92.8 | 89.4 | 84.6 | 87.0 | 91.5 | 92.3 | 91.9 | 90.1 |
+75% | 90.3 | 89.0 | 90.6 | 89.8 | 86.5 | 92.4 | 89.4 | 87.1 | 91.8 | 89.3 | 92.2 | 91.5 | 91.9 | 87.2 | 85.9 | 86.5 | 92.1 | 91.4 | 91.7 | 86.2 |
+85% | 88.6 | 86.2 | 87.7 | 86.9 | 84.5 | 88.2 | 86.3 | 84.1 | 85.1 | 84.5 | 87.4 | 92.7 | 89.9 | 84.4 | 81.8 | 83.1 | 90.9 | 90.7 | 90.8 | 68.1 |
+95% | 84.7 | 77.0 | 79.6 | 78.1 | 73.6 | 81.6 | 77.4 | 71.5 | 75.1 | 73.2 | 77.1 | 87.3 | 81.9 | 73.5 | 64.5 | 68.7 | 89.1 | 89.4 | 89.2 | 8.9 |
+100% | 84.9 | 76.3 | 79.5 | 77.8 | 72.7 | 81.8 | 77.0 | 70.4 | 75.1 | 72.6 | 77.3 | 82.6 | 79.8 | 71.3 | 69.2 | 70.2 | 89.9 | 88.9 | 89.4 | 8.4 |
Overall | Corn | Cotton | Rice | Soybeans | Other | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Filters | OA | UA | PA | F1 | UA | PA | F1 | UA | PA | F1 | UA | PA | F1 | UA | PA | F1 | UA | PA | F1 | MCDA |
Aggregate | 90.1 | 89.5 | 89.0 | 89.2 | 87.3 | 88.8 | 88.1 | 88.7 | 88.9 | 88.8 | 91.8 | 91.1 | 91.4 | 89.2 | 83.5 | 86.3 | 90.6 | 92.8 | 91.7 | 52.9 |
Boundary Clean | 90.3 | 91.6 | 90.0 | 90.7 | 92.9 | 85.2 | 88.9 | 92.6 | 91.9 | 92.2 | 94.5 | 91.9 | 93.2 | 86.3 | 88.8 | 87.5 | 91.4 | 92.1 | 91.8 | 66.0 |
Expand | 86.7 | 87.9 | 85.4 | 86.5 | 88.4 | 78.5 | 83.1 | 89.4 | 85.0 | 87.2 | 90.4 | 87.1 | 88.7 | 85.6 | 81.8 | 83.7 | 85.4 | 94.7 | 89.8 | 14.7 |
Expand–Shrink | 91.7 | 91.5 | 91.7 | 91.6 | 91.7 | 90.3 | 91.0 | 90.1 | 93.6 | 91.8 | 93.2 | 93.9 | 93.5 | 90.7 | 87.3 | 89.0 | 92.0 | 93.5 | 92.8 | 84.0 |
Majority | 91.4 | 91.8 | 91.8 | 91.8 | 90.2 | 92.0 | 91.1 | 92.5 | 93.2 | 92.8 | 94.0 | 94.2 | 94.1 | 90.9 | 86.0 | 88.4 | 91.4 | 93.8 | 92.6 | 83.8 |
Shrink | 91.4 | 89.4 | 89.4 | 89.3 | 89.5 | 85.3 | 87.4 | 86.8 | 89.0 | 87.9 | 90.0 | 93.0 | 91.4 | 87.4 | 85.9 | 86.6 | 93.2 | 93.8 | 93.5 | 51.3 |
R-CDL [9] | 90.7 | 90.8 | 91.3 | 91.0 | 90.0 | 90.3 | 90.2 | 90.0 | 94.5 | 92.2 | 93.5 | 92.5 | 93.0 | 88.8 | 86.1 | 87.4 | 91.4 | 92.8 | 92.1 | 75.9 |
No Filter | 89.4 | 89.5 | 89.7 | 89.6 | 88.7 | 88.1 | 88.4 | 88.8 | 91.9 | 90.3 | 93.3 | 91.4 | 92.3 | 85.6 | 86.0 | 85.8 | 91.3 | 91.1 | 91.2 | 58.1 |
Confidence Interval | Overall | Corn | Soybeans | Other | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OA | UA | PA | F1 | UA | PA | F1 | UA | PA | F1 | UA | PA | F1 | MCDA | |
All CDL | 92.7 | 91.9 | 92.2 | 92.1 | 92.4 | 90.3 | 91.4 | 88.7 | 91.8 | 90.2 | 94.5 | 94.6 | 94.6 | 92.0 |
+5% | 92.7 | 92.0 | 92.1 | 92.0 | 91.6 | 90.9 | 91.2 | 90.1 | 90.6 | 90.3 | 94.5 | 94.7 | 94.6 | 92.2 |
+15% | 92.7 | 92.0 | 92.2 | 92.1 | 93.2 | 89.7 | 91.4 | 88.8 | 91.8 | 90.3 | 94.1 | 95.1 | 94.6 | 91.2 |
+25% | 92.7 | 92.1 | 92.1 | 92.1 | 92.8 | 90.0 | 91.4 | 89.4 | 91.3 | 90.3 | 94.1 | 95.0 | 94.5 | 92.3 |
+35% | 92.8 | 92.0 | 92.3 | 92.2 | 91.9 | 91.1 | 91.5 | 89.3 | 91.5 | 90.4 | 94.8 | 94.4 | 94.6 | 93.6 |
+45% | 93.1 | 92.3 | 92.6 | 92.5 | 92.2 | 91.5 | 91.8 | 89.9 | 91.7 | 90.8 | 94.9 | 94.6 | 94.8 | 96.1 |
+55% | 92.9 | 92.1 | 92.5 | 92.3 | 91.8 | 92.1 | 92.0 | 89.9 | 91.2 | 90.6 | 94.7 | 94.0 | 94.3 | 94.2 |
+65% | 92.6 | 91.8 | 91.9 | 91.9 | 91.9 | 91.9 | 91.9 | 89.8 | 90.3 | 90.0 | 93.8 | 93.6 | 93.7 | 91.0 |
+75% | 91.8 | 90.4 | 91.6 | 91.0 | 91.0 | 91.4 | 91.2 | 86.4 | 91.2 | 88.7 | 93.9 | 92.2 | 93.1 | 82.1 |
+85% | 90.4 | 88.8 | 89.1 | 89.0 | 88.2 | 89.9 | 89.1 | 85.7 | 85.7 | 85.7 | 92.5 | 91.8 | 92.2 | 63.6 |
+95% | 87.3 | 82.9 | 83.4 | 83.1 | 80.7 | 81.7 | 81.2 | 77.0 | 77.8 | 77.4 | 91.1 | 90.6 | 90.8 | 6.0 |
+100% | 87.5 | 82.7 | 84.1 | 83.4 | 78.8 | 84.8 | 81.7 | 77.4 | 77.5 | 77.5 | 91.9 | 90.0 | 90.9 | 9.4 |
Overall | Corn | Soybeans | Other | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Filters | OA | UA | PA | F1 | UA | PA | F1 | UA | PA | F1 | UA | PA | F1 | MCDA |
Aggregate | 92.2 | 90.7 | 91.5 | 91.1 | 90.5 | 91.6 | 91.1 | 87.2 | 90.0 | 88.6 | 94.2 | 93.0 | 93.6 | 70.3 |
Boundary Clean | 92.5 | 92.4 | 91.5 | 91.9 | 92.2 | 96.2 | 94.1 | 94.0 | 88.5 | 91.2 | 91.1 | 89.7 | 90.4 | 74.8 |
Expand | 85.6 | 86.0 | 85.0 | 84.6 | 80.8 | 98.6 | 88.8 | 97.5 | 73.1 | 83.5 | 79.6 | 83.4 | 81.5 | 45.6 |
Expand–Shrink | 93.1 | 91.8 | 93.3 | 92.5 | 95.7 | 92.7 | 94.2 | 91.3 | 93.8 | 92.5 | 88.2 | 93.6 | 90.8 | 77.7 |
Majority | 93.5 | 92.7 | 93.2 | 93.0 | 95.4 | 94.2 | 94.8 | 91.8 | 93.2 | 92.5 | 91.1 | 92.2 | 91.6 | 80.7 |
Shrink | 85.6 | 79.8 | 91.2 | 83.7 | 98.7 | 79.5 | 88.1 | 72.9 | 97.2 | 83.3 | 67.8 | 96.9 | 79.8 | 41.8 |
R-CDL [9] | 92.7 | 92.2 | 92.1 | 92.1 | 92.1 | 90.9 | 91.5 | 90.5 | 90.9 | 90.7 | 93.9 | 94.4 | 94.1 | 75.5 |
No Filter | 92.7 | 91.9 | 92.2 | 92.1 | 92.4 | 90.3 | 91.4 | 88.7 | 91.8 | 90.2 | 94.5 | 94.6 | 94.6 | 74.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maleki, R.; Wu, F.; Oubara, A.; Fathollahi, L.; Yang, G. Refinement of Cropland Data Layer with Effective Confidence Layer Interval and Image Filtering. Agriculture 2024, 14, 1285. https://doi.org/10.3390/agriculture14081285
Maleki R, Wu F, Oubara A, Fathollahi L, Yang G. Refinement of Cropland Data Layer with Effective Confidence Layer Interval and Image Filtering. Agriculture. 2024; 14(8):1285. https://doi.org/10.3390/agriculture14081285
Chicago/Turabian StyleMaleki, Reza, Falin Wu, Amel Oubara, Loghman Fathollahi, and Gongliu Yang. 2024. "Refinement of Cropland Data Layer with Effective Confidence Layer Interval and Image Filtering" Agriculture 14, no. 8: 1285. https://doi.org/10.3390/agriculture14081285
APA StyleMaleki, R., Wu, F., Oubara, A., Fathollahi, L., & Yang, G. (2024). Refinement of Cropland Data Layer with Effective Confidence Layer Interval and Image Filtering. Agriculture, 14(8), 1285. https://doi.org/10.3390/agriculture14081285