Rolling Bearing Fault Diagnosis in Agricultural Machinery Based on Multi-Source Locally Adaptive Graph Convolution
Abstract
:1. Introduction
2. Basic Principles
2.1. Spectral Convolution
2.2. Local Maximum Mean Difference
2.3. Ranger Optimization Algorithm
3. Fault Diagnosis Process
4. Experimental Platform and Result Analysis
4.1. Experimental Setup
4.2. Comparative Analysis of Experimental Results for Adaptive Methods in Different Fields
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Chu, Y.; Xue, Y.; Ying, H.; Chen, X.; Zhao, Y.; Ma, W.; Ma, L.; Zhang, J.; Yin, Y.; et al. Outlook of China’s agriculture transforming from smallholder operation to sustainable production. Glob. Food Secur. 2020, 26, 100444. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Nie, C.; Gong, P.; Yang, J.; Hu, Z.; Li, B.; Ma, M. Research Progress on the Wear Resistance of Key Components in Agricultural Machinery. Materials 2023, 16, 7646. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Chen, X.Y.; Gu, J.M.; Jiang, S.N.; Feng, Z.L. High-speed wear lifetime analysis of instrument ball bearings. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2009, 223, 497–510. [Google Scholar] [CrossRef]
- Scolaro, E.; Beligoj, M.; Estevez, M.P.; Alberti, L.; Renzi, M.; Mattetti, M. Electrification of agricultural machinery: A review. IEEE Access 2021, 9, 164520–164541. [Google Scholar] [CrossRef]
- Craessaerts, G.; De Baerdemaeker, J.; Saeys, W. Fault diagnostic systems for agricultural machinery. Biosyst. Eng. 2010, 106, 26–36. [Google Scholar] [CrossRef]
- Mishra, D.; Satapathy, S. Reliability and maintenance of agricultural machinery by MCDM approach. Int. J. Syst. Assur. Eng. Manag. 2023, 14, 135–146. [Google Scholar] [CrossRef]
- Alimova, Z.X.; Kholikova, N.A.; Kholova, S.O.; Karimova, K.G. Influence of the antioxidant properties of lubricants on the wear of agricultural machinery parts. IOP Conf. Ser. Earth Environ. Sci. 2021, 868, 012037. [Google Scholar] [CrossRef]
- Han, J.; Zhang, J.; Zeng, B.; Mao, M. Optimizing dynamic facility location-allocation for agricultural machinery maintenance using Benders decomposition. Omega 2021, 105, 102498. [Google Scholar] [CrossRef]
- Celenta, G.; De Simone, M.C. Retrofitting techniques for agricultural machines. In New Technologies Development and Application III; Springer: Berlin/Heidelberg, Germany, 2020; pp. 388–396. [Google Scholar]
- Niazian, M.; Niedbała, G. Machine Learning for Plant Breeding and Biotechnology. Agriculture 2020, 10, 436. [Google Scholar] [CrossRef]
- Cheng, Z.; Lu, Z. Research on Load Disturbance Based Variable Speed PID Control and a Novel Denoising Method Based Effect Evaluation of HST for Agricultural Machinery. Agriculture 2021, 11, 960. [Google Scholar] [CrossRef]
- Moshrefzadeh, A. Condition monitoring and intelligent diagnosis of rolling element bearings under constant/variable load and speed conditions. Mech. Syst. Signal Process. 2021, 149, 107153. [Google Scholar] [CrossRef]
- Lv, Y.; Zhao, W.; Zhao, Z.; Li, W.; Ng, K.K. Vibration signal-based early fault prognosis: Status quo and applications. Adv. Eng. Inform. 2022, 52, 101609. [Google Scholar] [CrossRef]
- Cheng, C.; Zhou, B.; Ma, G.; Wu, D.; Yuan, Y. Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data. Neurocomputing 2020, 409, 35–45. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A Survey of Transfer Learning. J. Big Data 2016, 3, 1–40. [Google Scholar] [CrossRef]
- Zhang, X.; He, L.; Wang, X.; Wang, J.; Cheng, P. Transfer Fault Diagnosis based on Local Maximum Mean Difference and K-means. Comput. Ind. Eng. 2022, 172, 108568. [Google Scholar] [CrossRef]
- Qian, W.; Li, S.; Yi, P.; Zhang, K. A Novel Transfer Learning Method for Robust Fault Diagnosis of Rotating Machines under Variable Working Conditions. Measurements 2019, 138, 514–525. [Google Scholar] [CrossRef]
- Cheng, C.; Zhou, B.; Ma, G.; Wu, D.; Yuan, Y. Wasserstein Distance Based Deep Adversarial Transfer Learning for Intelligent Fault Diagnosis. arXiv 2019, arXiv:1903.06753. [Google Scholar]
- Li, X.; Zhang, Z.; Gao, L.; Wen, L. A New Semi-supervised Fault Diagnosis Method via Deep CORAL and Transfer Component Analysis. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 6, 690–699. [Google Scholar] [CrossRef]
- Wang, Z.; He, X.; Yang, B.; Li, N. Subdomain Adaptation Transfer Learning Network for Fault Diagnosis of Roller Bearings. IEEE Trans. Ind. Electron. 2021, 69, 8430–8439. [Google Scholar] [CrossRef]
- Liu, J.; Guan, R.; Li, Z.; Zhang, J.; Hu, Y.; Wang, X. Adaptive Multi-feature Fusion Graph Convolutional Network for Hyperspectral Image Classification. Remote Sens. 2023, 15, 5483. [Google Scholar] [CrossRef]
- Tian, J.; Han, D.; Li, M.; Shi, P. A Multi-source Information Transfer Learning Method with Subdomain Adaptation for Cross-domain Fault Diagnosis. Knowl.-Based Syst. 2022, 243, 108466. [Google Scholar] [CrossRef]
- Nguyen, T.; Le, T.; Zhao, H.; Tran, Q.H.; Nguyen, T.; Phung, D. Most: Multi-source domain adaptation via optimal transport for student-teacher learning. In Uncertainty in Artificial Intelligence; PMLR: London, UK, 2021; pp. 225–235. [Google Scholar]
- Ghorvei, M.; Kavianpour, M.; Beheshti, M.T.; Ramezani, A. An unsupervised bearing fault diagnosis based on deep subdomain adaptation under noise and variable load condition. Meas. Sci. Technol. 2021, 33, 025901. [Google Scholar] [CrossRef]
- Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 2008, 20, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wu, L.; Yang, J.; Guan, Y. Naive Bayes Bearing Fault Diagnosis Based on Enhanced Independence of Data. Sensors 2018, 18, 463. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhao, Z.; Sun, C.; Yan, R.; Chen, X. Multireceptive Field Graph Convolutional Networks for Machine Fault Diagnosis. IEEE Trans. Ind. Electron. 2021, 68, 12739–12749. [Google Scholar] [CrossRef]
- Yin, P.; Nie, J.; Liang, X.; Yu, S.; Wang, C.; Nie, W.; Ding, X. A Multi-scale Graph Convolutional Neural Network Framework for Fault Diagnosis of Rolling Bearing. IEEE Trans. Instrum. Meas. 2023, 72, 2520713. [Google Scholar] [CrossRef]
- Li, T.; Zhao, Z.; Sun, C.; Yan, R.; Chen, X. Domain Adversarial Graph Convolutional Network for Fault Diagnosis under Variable Working Conditions. IEEE Trans. Instrum. Meas. 2021, 70, 3515010. [Google Scholar] [CrossRef]
- Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph Convolutional Networks: A Comprehensive Review. Comput. Soc. Netw. 2019, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Das, K.C. The Laplacian Spectrum of a Graph. Comput. Math. Appl. 2004, 48, 715–724. [Google Scholar] [CrossRef]
- Gatgash, Z.E.; Sadeghi, S.H. Comparative Effect of Conventional and Adaptive Management Approaches on Watershed Health. Soil Tillage Res. 2024, 235, 105869. [Google Scholar] [CrossRef]
- Natarajan, S.; Kurian, S.; Divakarachari, P.B.; Falkowski-Gilski, P. An Automated Learning Model for Twitter Sentiment Analysis using Ranger AdaBelief Optimizer based Bidirectional Long Short Term Memory. Expert Syst. 2024, 41, e13610. [Google Scholar] [CrossRef]
- Chakravarty, N.; Dua, M. Feature extraction using GTCC spectrogram and ResNet50 based classification for audio spoof detection. Int. J. Speech Technol. 2024, 27, 225–237. [Google Scholar] [CrossRef]
- Fan, L. Fault Diagnosis and Performance Degradation Assessment of Rolling Bearings; Jiangnan University: Wuxi, China, 2021. [Google Scholar]
- Xu, F.; Hong, D.; Tian, Y.; Wei, N.; Wu, J. Unsupervised Deep Transfer Learning Method for Rolling Bearing Fault Diagnosis Based on Improved Convolutional Neural Network. J. Phys. Conf. Ser. 2024, 2694, 012050. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, W.; Zhang, L.; Chen, X.; Wang, S. An Intelligent Hybrid Bearing Fault Diagnosis Method Based on Transformer and Domain Adaptation. In Proceedings of the 2021 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC) 2021, Weihai, China, 13–15 August 2021; pp. 304–310. [Google Scholar]
- Li, X.; Yu, T.; He, D.; Xie, Z.; Kong, X. Fusion with Joint Distribution and Adversarial Networks: A New Transfer Learning Approach for Intelligent Fault Diagnosis. In Proceedings of the PHM Society Asia-Pacific Conference, Tokyo, Japan, 11–14 September 2023; Volume 4. [Google Scholar]
Network Architecture | Category | Coverage Area |
---|---|---|
input | 224 × 224 × 3 | |
Con1 | Convolution layer | 7 × 7; 64 |
Max pool | Maximum pooling layer | 3 × 3; 64 |
Conv2_x | Residual block1 × 3 | |
Conv3_x | Residual block1 × 4 | |
Conv4_x | Residual block1 × 6 | |
Conv5_x | Residual block1 × 3 | |
Average | Average pooling layer |
Network | Network Structure and Parameters |
---|---|
Shared feature extraction network | ResNet50( ) |
Domain-specific feature extraction network | Conv2d(2048,256)-BN2d (256)-ReLu( )- Conv2d(256,256)-BN2d (256)-ReLu( )- Conv2d(256,256)-BN2d (256)-ReLu( )- MRF-GCN( ) |
Dataset | Speed (r/min) | Bearing Condition | Label | Sample Points per Set | Sample Size |
---|---|---|---|---|---|
A/B/C | 600/800/1000 | Normal state | 0 | 1024 | 800 |
600/800/1000 | Inner ring fault | 1 | 1024 | 800 | |
600/800/1000 | Outer ring fault | 2 | 1024 | 800 | |
600/800/1000 | Rolling element fault | 3 | 1024 | 800 |
Parameter Name | Parameter Value |
---|---|
Number of samples per batch | 32 |
0.0005 | |
0.000005 | |
Number of iterations | 1000 |
Activation function | ReLU |
Tasks/Adaptive Methods | JMMD | CORAL | MK-MMD | MSLA |
---|---|---|---|---|
B + C→A | 96.97% | 97.56% | 97.56% | 99.17% |
A + C→B | 96.56% | 98.16% | 98.09% | 99.47% |
A + B→C | 98.83% | 99.54% | 99.29% | 99.88% |
Tasks | MSLA | Tasks | SSLA |
---|---|---|---|
B→A | 96.23% | ||
B + C→A | 99.17% | C→A | 94.84% |
B + C→A | 96.93% | ||
A→B | 98.73% | ||
A + C→B | 99.89% | C→A | 99.30% |
A + C→B | 99.59% | ||
A→C | 98.59% | ||
A + B→C | 99.88% | B→C | 98.68% |
A + B→C | 98.68% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, F.; Sun, E.; Wang, L.; Wang, G.; Xiao, Q. Rolling Bearing Fault Diagnosis in Agricultural Machinery Based on Multi-Source Locally Adaptive Graph Convolution. Agriculture 2024, 14, 1333. https://doi.org/10.3390/agriculture14081333
Xie F, Sun E, Wang L, Wang G, Xiao Q. Rolling Bearing Fault Diagnosis in Agricultural Machinery Based on Multi-Source Locally Adaptive Graph Convolution. Agriculture. 2024; 14(8):1333. https://doi.org/10.3390/agriculture14081333
Chicago/Turabian StyleXie, Fengyun, Enguang Sun, Linglan Wang, Gan Wang, and Qian Xiao. 2024. "Rolling Bearing Fault Diagnosis in Agricultural Machinery Based on Multi-Source Locally Adaptive Graph Convolution" Agriculture 14, no. 8: 1333. https://doi.org/10.3390/agriculture14081333
APA StyleXie, F., Sun, E., Wang, L., Wang, G., & Xiao, Q. (2024). Rolling Bearing Fault Diagnosis in Agricultural Machinery Based on Multi-Source Locally Adaptive Graph Convolution. Agriculture, 14(8), 1333. https://doi.org/10.3390/agriculture14081333