Response of Bacterial Community Structure and Function in Rhizosphere Soil on the Photosynthesis of Selected Plant Types C3 and C4 under Bis(2,4,6-tribromophenoxy) Ethane Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Pot Experiment
2.3. Soil DNA Extraction, Bacterial 16S rRNA Gene Amplification, Sequencing and Bioinformatic Analysis
2.4. Function Prediction
2.5. Statistical Analysis
3. Results and Discussion
3.1. Species Richness and Diversity Index of Bacteria in Rhizosphere Soil of C3 and C4 Plants
3.1.1. ASV Distribution of Rhizosphere Soil Bacteria
3.1.2. α-Diversity of Rhizosphere Soil Bacteria
3.1.3. β-Diversity of Rhizosphere Soil Bacteria
3.2. Species Composition of Bacteria in Rhizosphere Soil of C3 and C4 Plants
3.2.1. Taxonomic Composition of Bacterial Community in Rhizosphere Soil of C3 and C4 Plants
3.2.2. Composition Characteristics of Bacterial Phylum in Rhizosphere Soil of C3 and C4 Plants
3.2.3. Composition Characteristics of Bacterial Genus in Rhizosphere Soil of C3 and C4 Plants
3.3. Analysis of Differences in Bacterial Species Composition in Rhizosphere Soil of C3 and C4 Plants
3.4. Functional Prediction of Bacterial Community in Rhizosphere Soil of C3 and C4 Plants
3.4.1. FAPROTAX Function Prediction
3.4.2. PICRUSt 2 Function Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kalachova, K.; Hradkova, P.; Lankova, D.; Hajslova, J.; Pulkrabova, J. Occurrence of brominated flame retardants in household and car dust from the Czech Republic. Sci. Total Environ. 2012, 441, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Hou, X.; Zhao, G.; Feng, Y.; Zhang, S.; Zhang, H.; Liu, J.; Jiang, G. Migration of polycyclic aromatic hydrocarbons in the rhizosphere micro-interface of soil-ryegrass (Lolium perenne L.) system. Sci. Total Environ. 2023, 903, 166299. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Chen, S.; Wang, J.; Zheng, X.; Luo, X.; Mai, B. Brominated flame retardants in the atmosphere of e-waste and rural sites in southern China: Seasonal variation, temperature dependence, and gas-particle partitioning. Environ. Sci. Technol. 2011, 45, 8819–8825. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, T.; Yang, B.; Wang, D.; Sun, W.; Wang, Y.; Yang, X.; Wen, S.; Li, J.; Shi, Z. Serum levels of novel brominated flame retardants (NBFRs) in residents of a major BFR-producing region: Occurrence, impact factors and the relationship to thyroid and liver function. Ecotoxicol. Environ. Saf. 2021, 208, 111467. [Google Scholar] [CrossRef]
- McGrath, T.J.; Ball, A.S.; Clarke, B.O. Critical review of soil contamination by polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs); concentrations, sources and congener profiles. Environ. Pollut. 2017, 230, 741–757. [Google Scholar] [CrossRef]
- Covaci, A.; Harrad, S.; Abdallah, M.A.-E.; Ali, N.; Law, R.J.; Herzke, D.; de Wit, C.A. Novel brominated flame retardants: A review of their analysis, environmental fate and behaviour. Environ. Int. 2011, 37, 532–556. [Google Scholar] [CrossRef]
- Xiong, P.; Yan, X.; Zhu, Q.; Qu, G.; Shi, J.; Liao, C.; Jiang, G. A review of environmental occurrence, fate, and toxicity of novel brominated flame retardants. Environ. Sci. Technol. 2019, 53, 13551–13569. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, P.; Zhu, Y.; Yang, R.; Li, Y.; Wang, D.; Matsiko, J.; Han, X.; Zhao, J.; Zhang, Q.; et al. Brominated flame retardants in atmospheric fine particles in the Beijing-Tianjin-Hebei region, China: Spatial and temporal distribution and human exposure assessment. Ecotoxicol. Environ. Saf. 2019, 171, 181–189. [Google Scholar] [CrossRef]
- Nyholm, J.R.; Grabic, R.; Arp, H.P.H.; Moskeland, T.; Andersson, P.L. Environmental occurrence of emerging and legacy brominated flame retardants near suspected sources in Norway. Sci. Total Environ. 2013, 443, 307–314. [Google Scholar] [CrossRef]
- Shi, T.; Chen, S.; Luo, X.; Zhang, X.; Tang, C.; Luo, Y.; Ma, Y.; Wu, J.; Peng, X.; Mai, B. Occurrence of brominated flame retardants other than polybrominated diphenyl ethers in environmental and biota samples from southern China. Chemosphere 2009, 74, 910–916. [Google Scholar] [CrossRef]
- Ali, N.; Harrad, S.; Goosey, E.; Neels, H.; Covaci, A. “Novel” brominated flame retardants in Belgian and UK indoor dust: Implications for human exposure. Chemosphere 2011, 83, 1360–1365. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Tao, B.; Zhou, Z.; Fan, S.; Zhang, T.; Liu, A.; Dong, S.; Yuan, J.; Li, H.; Chen, J.; et al. Occurrence, composition, source, and regional distribution of halogenated flame retardants and polybrominated dibenzo-p-dioxin/dibenzofuran in thesoils of Guiyu, China. Environ. Pollut. 2017, 228, 61–71. [Google Scholar] [CrossRef] [PubMed]
- McGrath, T.J.; Morrison, P.D.; Ball, A.S.; Clarke, B.O. Detection of novel brominated flame retardants (NBFRs) in the urban soils of Melbourne, Australia. Emerg. Contam. 2017, 3, 23–31. [Google Scholar] [CrossRef]
- Xie, J.; Sun, Y.; Cheng, Y.; Chen, Y.; Chen, L.; Xie, C.; Dai, S.; Luo, X.; Zhang, L.; Mai, B. Halogenated flame retardants in surface sediments from fourteen estuaries, South China. Mar. Pollut. Bull. 2021, 164, 112099. [Google Scholar] [CrossRef]
- Zheng, J.; Luo, X.; Yuan, J.; Wang, J.; Wang, Y.; Chen, S.; Mai, B.; Yang, Z. Levels and sources of brominated flame retardants in human hair from urban, e-waste, and rural areas in South China. Environ. Pollut. 2011, 159, 3706–3713. [Google Scholar] [CrossRef] [PubMed]
- Bu, Q.; Wu, D.; Xia, J.; Wu, M.; Liu, X.; Cao, Z.; Yu, G. Polybrominated diphenyl ethers and novel brominated flame retardants in indoor dust of different microenvironments in Beijing, China. Environ. Int. 2019, 122, 159–167. [Google Scholar] [CrossRef]
- Chen, T.; Yu, D.; Yang, L.; Sui, S.; Lv, S.; Bai, Y.; Sun, W.; Wang, Y.; Chen, L.; Sun, Z.; et al. Thyroid function and decabromodiphenyl ethane (DBDPE) exposure in Chinese adults from a DBDPE manufacturing area. Environ. Int. 2019, 133, 105179. [Google Scholar] [CrossRef]
- Fromme, H.; Becher, G.; Hilger, B.; Völkel, W. Brominated flame retardants-Exposure and risk assessment for the general population. Int. J. Hyg. Environ. Health 2016, 219, 1–23. [Google Scholar] [CrossRef]
- Zhou, S.N.; Buchar, A.; Siddique, S.; Takser, L.; Abdelouahab, N.; Zhu, J. Measurements of selected brominated flame retardants in nursing women: Implications for human exposure. Environ. Sci. Technol. 2014, 48, 8873–8880. [Google Scholar] [CrossRef]
- Ali, N.; Shahzad, K.; Rashid, M.I.; Shen, H.; Ismail, I.M.I.; Eqani, S.A.M.A.S. Currently used organophosphate and brominated flame retardants in the environment of China and other developing countries (2000–2016). Environ. Sci. Pollut. Res. 2017, 24, 18721–18741. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Z.; Xiao, Q.; Ge, J.; Wang, X.; Jiang, W.; Yuan, Y.; Zhuang, Y.; Meng, Q.; Jiang, J.; et al. The effects and mechanisms of the new brominated flame retardant BTBPE on thyroid toxicity. Food Chem. Toxicol. 2023, 180, 114027. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Xiao, Q.; Wang, Z.; Zhang, Q.; Liu, Y.; Hao, W.; Jiang, J.; Meng, Q.; Wei, X. 1,2-bis(2,4,6-tribromophenoxy) ethane, a novel brominated flame retardant, disrupts intestinal barrier function via the IRX3/NOS2 axis in rat small intestine. J. Hazard. Mater. 2024, 461, 132597. [Google Scholar] [CrossRef] [PubMed]
- Yadav, I.C.; Devi, N.L.; Singh, V.K.; Li, J.; Zhang, G. Measurement of legacy and emerging flame retardants in indoor dust from a rural village (Kopawa) in Nepal: Implication for source apportionment and health risk assessment. Ecotoxicol. Environ. Saf. 2019, 168, 304–314. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- An, Q.; Yang, L.; Yang, S.; Wang, Y.; Shi, L.; Aamir, M.; Liu, W. Legacy and novel brominated flame retardants in agricultural soils of eastern China (2011–2021): Concentration level, temporal trend, and health risk assessment. J. Hazard. Mater. 2023, 446, 130631. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, Y.; Shen, L.; Wen, C.; Yan, Q.; Ning, D.; Qin, Y.; Xue, K.; Wu, L.; He, Z.; et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 2016, 7, 12083. [Google Scholar] [CrossRef]
- Liu, J.; He, X.; Lin, X.; Chen, W.; Zhou, Q.; Shu, W.; Huang, L. Ecological effects of combined pollution associated with e-waste recycling on the composition and diversity of soil microbial communities. Environ. Sci. Technol. 2015, 49, 6438–6447. [Google Scholar] [CrossRef]
- Liu, F.; Mo, X.; Kong, W.; Song, Y. Soil bacterial diversity, structure, and function of Suaeda salsa in rhizosphere and non-rhizosphere soils in various habitats in the Yellow River Delta, China. Sci. Total Environ. 2020, 740, 140144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Song, J.; Yan, W.; Li, T.; Li, R.; Wang, J.; Wang, X.; Zhou, Q. Regulation of rhizospheric microbial network to enhance plant growth and resist pollutants: Unignorable weak electric field. Sci. Total Environ. 2023, 855, 158888. [Google Scholar] [CrossRef]
- Arthur, E.; Rice, P.; Rice, P.; Anderson, T.; Baladi, S.; Henderson, K.; Coats, J. Phytoremediation—An overview. Crit. Rev. Plant Sci. 2005, 24, 109–122. [Google Scholar] [CrossRef]
- Tejeda-Agredano, M.C.; Gallego, S.; Vila, J.; Grifoll, M.; Ortega-Calvo, J.J.; Cantos, M. Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil. Soil Biol. Biochem. 2013, 57, 830–840. [Google Scholar] [CrossRef]
- Guo, M.; Gong, Z.; Miao, R.; Rookes, J.; Cahill, D.; Zhuang, J. Microbial mechanisms controlling the rhizosphere effect of ryegrass on degradation of polycyclic aromatic hydrocarbons in an aged-contaminated agricultural soil. Soil Biol. Biochem. 2017, 113, 130–142. [Google Scholar] [CrossRef]
- Chen, Y.; Zhen, Z.; Li, G.; Li, H.; Wei, T.; Huang, F.; Li, T.; Yang, C.; Ren, L.; Liang, Y.; et al. Di-2-ethylhexyl phthalate (DEHP) degradation and microbial community change in mangrove rhizosphere gradients. Sci. Total Environ. 2023, 871, 162022. [Google Scholar] [CrossRef]
- Dong, J.; Li, G.; Gao, J.; Zhang, H.; Bi, S.; Liu, S.; Liao, C.; Jiang, G. Catalytic degradation of brominated flame retardants in the environment: New techniques and research highlights. Sci. Total Environ. 2022, 848, 157695. [Google Scholar] [CrossRef]
- Ma, S.; Yu, Y.; Yang, Y.; Li, G.; An, T. A new advance in the potential exposure to “old” and “new” halogenated flame retardants in the atmospheric environments and biota: From occurrence to transformation products and metabolites. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1935–1983. [Google Scholar] [CrossRef]
- Wang, G.; Xu, X.; Li, Y. Distribution, transformation and biological effects of polybrominated diphenyl ethers and their derivatives in soil: A review. Res. Environ. Sci. 2021, 34, 755–765. [Google Scholar]
- Li, W.; Wang, S.; Chen, Y.; Liu, L.; Hou, S.; You, H. Integration of transcriptomic and proteomic reveals the toxicological molecular mechanisms of decabromodiphenyl ethane (DBDPE) on Pleurotus ostreatus. Environ. Pollut. 2022, 314, 120263. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, W.; Liu, L.; Qi, H.; You, H. Biodegradation of decabromodiphenyl ethane (DBDPE) by white-rot fungus Pleurotus ostreatus: Characteristics, mechanisms, and toxicological response. J. Hazard. Mater. 2022, 424, 127716. [Google Scholar] [CrossRef]
- Vilaplana, M.; Rodríguez-Rodríguez, C.; Barón, E.; Gorga, M.; Sarrà, M.; Caminal, G.; Eljarrat, E.; Barceló, D. Biodegradation of polybrominated diphenyl ethers in liquid media and sewage sludge by trametes versicolor. Int. J. Environ. Res. 2015, 9, 273–280. [Google Scholar]
- de Freitas, E.N.; Bubna, G.A.; Brugnari, T.; Kato, C.G.; Nolli, M.; Rauen, T.G.; de Peralta Muniz Moreira, R.F.; Peralta, R.A.; Bracht, A.; de Souza, C.G.M.; et al. Removal of bisphenol a by laccases from Pleurotus ostreatus and Pleurotus pulmonarius and evaluation of ecotoxicity of degradation products. Chem. Eng. J. 2017, 330, 1361–1369. [Google Scholar] [CrossRef]
- Innes, L.; Hobbs, P.J.; Bardgett, R.D. The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility. Biol. Fertil. Soils 2004, 40, 7–13. [Google Scholar] [CrossRef]
- Kowalchuk, G.A.; Hol, W.H.G.; Van Veen, J.A. Rhizosphere fungal communities are influenced by Senecio jacobaea pyrrolizidine alkaloid content and composition. Soil Biol. Biochem. 2006, 38, 2852–2859. [Google Scholar] [CrossRef]
- Batten, K.M.; Scow, K.M.; Davies, K.F.; Harrison, S.P. Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol. Invasions 2006, 8, 217–230. [Google Scholar] [CrossRef]
- Allen, E.B.; Allen, M.F.; Helm, D.J.; Trappe, J.M.; Molina, R.; Rincon, E. Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 1995, 170, 47–62. [Google Scholar] [CrossRef]
- Vranova, V.; Rejsek, K.; Skene, K.R.; Janous, D.; Formanek, P. Methods of collection of plant root exudates in relation to plant metabolism and purpose: A review. J. Plant Nutr. Soil Sci. 2013, 176, 175–199. [Google Scholar] [CrossRef]
- O’Leary, M.H. Carbon isotope fractionation in plants. Phytochemistry 1981, 20, 553–567. [Google Scholar] [CrossRef]
- Ge, Y.; Shen, C.; Wang, Y.; Sun, Y.; Schimel, J.; Gargra-Torresday, J.; Holden, P. Carbonaceous nanomaterials have higher effects on soybean rhizosphere prokaryotic communities during the reproductive growth phase than during vegetative growth. Environ. Sci. Technol. 2018, 52, 6636–6646. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Yang, S.; Yang, S.; Wang, Z.; Feng, X.; Liu, H.; Jiang, Y. Variations in soil bacterial taxonomic profiles and putative functions in response to straw incorporation combined with N fertilization during the maize growing season. Agric. Ecosyst. Environ. 2019, 283, 106578. [Google Scholar] [CrossRef]
- D’Orazio, V.; Ghanem, A.; Senesi, N. Phytoremediation of pyrene contaminated soils by different plant species. CLEAN–Soil Air Water 2013, 41, 377–382. [Google Scholar] [CrossRef]
- Li, H.N.; Huang, H.L.; Lü, L.L.; Guo, B.; Wen, B.; Ke, X. Plant uptake and translocation of DBDPE in soil and the micro-mechanisms. Acta Scientiae Circumstantiae 2020, 40, 1848–1857. [Google Scholar]
- Barba-Espin, G.; Diaz-Vivancos, P.; Clemente-Moreno, M.J.; Albacete, A.; Faize, L.; Faize, M.; HernÁNdez, J.A. Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ. 2010, 33, 981–994. [Google Scholar] [CrossRef] [PubMed]
- Sekmen, C.A.H.; Yalcinkaya, T.; Akyol, T.Y.; Gokce, A.; Turkan, I. Pretreatment of seeds with hydrogen peroxide improves deep-sowing tolerance of wheat seedlings. Plant Physiol. Biochem. 2021, 167, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Qin, M.; Chen, F.; Xia, B. Supragingival Microbial Profiles of Permanent and Deciduous Teeth in Children with Mixed Dentition. PLoS ONE 2016, 11, 0146938. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Sun, M.; Xue, Y.; Yang, Q.; Liu, B.; Jia, B.; Zhang, Z. Spatial variations of plant species diversity in urban soil seed banks in Beijing, China: Implications for plant regeneration and succession. Urban For. Urban Green. 2023, 86, 128012. [Google Scholar] [CrossRef]
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014, 30, 614–620. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. Peer J. 2016, 4, e2584. [Google Scholar] [CrossRef]
- Edgar, R.C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv 2016, 15, 081257. [Google Scholar]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef]
- Langille, M.G.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Chen, H.; Feng, Y.; Yang, X.; Yang, B.; Sarkar, B.; Bolan, N.; Meng, J.; Wu, F.; Wong, J.W.C.; Chen, W.; et al. Assessing simultaneous immobilization of lead and improvement of phosphorus availability through application of phosphorus-rich biochar in a contaminated soil: A pot experiment. Chemosphere 2022, 296, 133891. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Tyson, G.W.; Hugenholtz, P.; Beiko, R.G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef]
- Jia, T.; Wang, Y.; Chai, B. Bacterial community characteristics and enzyme activities in bothriochloa ischaemum litter over progressive phytoremediation years in a copper lailings dam. Front. Microbiol. 2020, 11, 565806. [Google Scholar] [CrossRef]
- Rovira, A.D. Plant root excretions in relation to the rhizosphere effect. Plant Soil 1956, 348, 178–194. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Bai, S.H.; Zhang, Y.; Teng, Y.; Xu, Z. Assisted phytoremediation of a co-contaminated soil with biochar amendment: Contaminant removals and bacterial community properties. Geoderma 2019, 348, 115–123. [Google Scholar] [CrossRef]
- Sivaram, A.K.; Subashchandrabose, S.R.; Logeshwaran, P.; Lockington, R.; Naidu, R.; Megharaj, M. Rhizodegradation of PAHs differentially altered by C3 and C4 plants. Sci. Rep. 2020, 10, 16109. [Google Scholar] [CrossRef] [PubMed]
- Spain, A.M.; Krumholz, L.R.; Elshahed, M.S. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J. 2009, 3, 992–1000. [Google Scholar] [CrossRef]
- Maryam, Z.S.; Fatemeh, M.; Mehdi, H.; Sajjad, S. Salinity stress endurance of the plants with the aid of bacterial genes. Front. Genet. 2023, 14, 1049608. [Google Scholar]
- Ehiosun, K.I.; Godin, S.; Urios, L.; Lobinski, R.; Grimaud, R. Degradation of long-chain alkanes through biofilm formation by bacteria isolated from oil-polluted soil. Int. Biodeterior. Biodegrad. 2022, 175, 105508. [Google Scholar] [CrossRef]
- Bai, Y.; Liang, H.; Wang, L.; Tang, T.; Li, Y.; Cheng, L.; Gao, D. Bioremediation of diesel-contaminated soil by fungal solid-state fermentation. Bull. Environ. Contam. Toxicol. 2024, 112, 13. [Google Scholar] [CrossRef]
- Zhao, L.; Jiang, J.; Chen, C.; Zhan, S.; Yang, J.; Yang, S. Efficiency and mechanism of the phytoremediation of decabromodiphenyl ether-contaminated sediments by aquatic macrophyte Scirpus validus. Environ. Sci. Pollut. Res. 2017, 24, 12949–12962. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kuang, S.; Lang, Q.; Wang, L. Bacterial community structure of aged oil sludge contaminated soil revealed by illumina high-throughput sequencing in East China. World J. Microbiol. Biotechnol. 2021, 37, 183. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.; Thomas, S.M. Microbial nitrogen cycles: Physiology, genomics and applications. Curr. Opin. Microbiol. 2001, 4, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Warembourg, F.; Roumet, C.; Lafont, F. Differences in rhizosphere carbon-partitioning among plant species of different families. Plant Soil 2003, 256, 347–357. [Google Scholar] [CrossRef]
- Xu, Y.; Ge, Y.; Lou, Y.; Meng, J.; Shi, L.; Xia, F. Assembly strategies of the wheat root-associated microbiome in soils contaminated with phenanthrene and copper. J. Hazard. Mater. 2021, 412, 125340. [Google Scholar] [CrossRef]
- Story, S.P.; Kline, E.L.; Hughes, T.A.; Riley, M.B.; Hayasaka, S.S. Degradation of aromatic hydrocarbons by Sphingomonas paucimobilis strain EPA505. Arch. Environ. Contam. Toxicol. 2004, 47, 168–176. [Google Scholar] [CrossRef]
- Du, S.; Yu, M.; Liu, F.; Xiao, L.; Zhang, H.; Tao, J.; Gu, W.; Gu, J.; Chen, C. Effect of facility management regimes on soil bacterial diversity and community structure. Chin. J. Eco-Agric. 2017, 25, 1615–1625. [Google Scholar]
- Gupta, P.K.; Gandhi, M. Bioremediation of organic pollutants in soil–water system: A review. BioTech 2023, 12, 36. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, W.; Liu, S.; Zhang, P.; Ye, C.; Liang, H. Revegetation of a barren rare earth mine using native plant species in reciprocal plantation: Effect of phytoremediation on soil microbiological communities. Environ. Sci. Pollut. Res. 2020, 27, 2107–2119. [Google Scholar] [CrossRef]
- Sun, H.; Chen, Q.; Qu, C.; Tian, Y.; Song, J.; Liu, Z.; Guo, J. Occurrence of OCPs & PCBs and their effects on multitrophic biological communities in riparian groundwater of the Beiluo River, China. Ecotoxicol. Environ. Saf. 2023, 253, 114713. [Google Scholar]
- van der Zaan, B.M.; Saia, F.T.; Stams, A.J.; Plugge, C.M.; de Vos, W.M.; Smidt, H.; Langenhoff, A.A.; Gerritse, J. Anaerobic benzene degradation under denitrifying conditions: Peptococcaceae as dominant benzene degraders and evidence for a syntrophic process. Environ. Microbiol. 2012, 14, 1171–1181. [Google Scholar] [CrossRef]
- He, L.; Hong, Q.; Li, S. Characterization of a phenanthrene-degrading strain and cloning of degradation-related gene. Chin. J. Appplied Environ. Biol. 2009, 2009, 682–685. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, W.; Li, S.; Zhang, M.; Liu, G.; Chen, T.; Hu, P.; Wu, X.; Tai, X.; Chen, W. Study on isolation, identification and physiological characteristics of PAHs-degrading bacteria. Huanjing Kexue Xuebao Acta Sci. Circumstantiae 2012, 32, 1033–1040. [Google Scholar]
- Liang, S.; Deng, J.; Jiang, Y.; Wu, S.; Zhou, Y.; Zhu, W.X. Functional distribution of bacterial community under different land use patterns based on FaProTax function prediction. Pol. J. Environ. Stud. 2020, 29, 1245–1261. [Google Scholar] [CrossRef]
- Qiao, Y.; Miao, S.; Han, X.; Yue, S.; Tang, C. Improving soil nutrient availability increases carbon rhizodeposition under maize and soybean in Mollisols. Sci. Total Environ. 2017, 603, 416–424. [Google Scholar] [CrossRef]
- Mengel, K. Responses of various crop species and cultivars to fertilizer application. Plant Soil 1983, 72, 305–319. [Google Scholar] [CrossRef]
- Muneer, M.A.; Chen, X.; Munir, M.Z.; Nisa, Z.-U.; Saddique, M.A.B.; Mehmood, S.; Su, D.; Zheng, C.; Ji, B. Interplant transfer of nitrogen between C3 and C4 plants through common mycorrhizal networks under different nitrogen availability. J. Plant Ecol. 2023, 16, 2. [Google Scholar] [CrossRef]
- Hildebrandt, T.M.; Nunes Nesi, A.; Araújo, W.L.; Braun, H.-P. Amino acid catabolism in plants. Mol. Plant 2015, 8, 1563–1579. [Google Scholar] [CrossRef]
- Zhang, Z.; Mao, C.; Shi, Z.; Kou, X. The amino acid metabolic and carbohydrate metabolic pathway play important roles during salt-stress response in tomato. Front. Plant Sci. 2017, 8, 1231. [Google Scholar] [CrossRef]
- Rucker, R.B.; Steinberg, F.M.; Chowanadisai, W. Organic: Biochemical mechanisms and regulation of vitamins and vitamin-like cofactors. Encycl. Hum. Nutr. (Fourth Ed.) 2023, 2, 215–249. [Google Scholar]
- Naya, L.; Ladrera, R.; Ramos, J.; González, E.M.; Arrese-Igor, C.; Minchin, F.R.; Becana, M. The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol. 2007, 144, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Gao, G.; Wang, Y. Effects of soil properties, heavy metals, and PBDEs on microbial community of e-waste contaminated soil. Ecotoxicol. Environ. Saf. 2019, 180, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, Z.; Karimi, N.; Modarresi, M.; Mollayi, S. Enhancement of compatible solute and secondary metabolites production in Plantago ovata Forsk. by salinity stress. J. Med. Plants Res. 2012, 6, 3495–3500. [Google Scholar]
- Cui, G.; Zhang, Y.; Zhang, W.; Lang, D.; Zhang, X.; Li, Z.; Zhang, X. Response of carbon and nitrogen metabolism and secondary metabolites to drought stress and salt stress in plants. J. Plant Biol. 2019, 62, 387–399. [Google Scholar] [CrossRef]
- Gong, X.; Feng, Y.; Dang, K.; Jiang, Y.; Qi, H.; Feng, B. Linkages of microbial community structure and root exudates: Evidence from microbial nitrogen limitation in soils of crop families. Sci. Total Environ. 2023, 881, 163536. [Google Scholar] [CrossRef]
- Sivaram, A.K.; Logeshwaran, P.; Lockington, R.; Naidu, R.; Megharaj, M. The impact of low molecular weight organic acids from plants with C3 and C4 photosystems on the rhizoremediation of polycyclic aromatic hydrocarbons contaminated soil. Environ. Technol. Innov. 2020, 19, 100957. [Google Scholar] [CrossRef]
- Sivaram, A.K.; Logeshwaran, P.; Subashchandrabose, S.R.; Lockington, R.; Naidu, R.; Megharaj, M. Comparison of plants with C3 and C4 carbon fixation pathways for remediation of polycyclic aromatic hydrocarbon contaminated soils. Sci. Rep. 2018, 8, 2100. [Google Scholar] [CrossRef]
Sample | ASVs | Chao1 | PD_Whole Tree | Shannon | Simpson |
---|---|---|---|---|---|
CK | 649.67 ± 62.34 b | 657.99 ± 71.02 a | 51.86 ± 1.96 a | 7.29 ± 0.11 a | 0.98 ± 0.0047 a |
CK1 | 711.67 ± 223.73 a | 719.58 ± 229.01 a | 50.33 ± 7.97 a | 7.31 ± 0.35 a | 0.98 ± 0.0047 a |
SI (C4) | 526.33 ± 24.14 ab | 526.09 ± 23.98 a | 41.05 ± 2.43 a | 7.08 ± 0.10 a | 0.97 ± 0.0000 a |
ZM (C4) | 619.33 ± 82.40 ab | 620.72 ± 83.42 a | 44.04 ± 4.97 a | 7.23 ± 0.79 a | 0.94 ± 0.0403 a |
AT (C4) | 742.33 ± 87.81 ab | 752.62 ± 88.63 a | 51.76 ± 1.97 a | 7.84 ± 0.26 a | 0.98 ± 0.0047 a |
TA (C3) | 574.67 ± 114.77 ab | 581.04 ± 118.08 a | 38.73 ± 6.75 a | 7.25 ± 0.17 a | 0.98 ± 0.0047 a |
GM (C3) | 636.67 ± 55.93 ab | 641.52 ± 59.08 a | 43.77 ± 2.69 a | 7.78 ± 0.15 a | 0.98 ± 0.0000 a |
MS (C3) | 678.00 ± 120.22 ab | 684.83 ± 125.50 a | 49.34 ± 7.26 a | 7.59 ± 0.20 a | 0.98 ± 0.0047 a |
LP (C3) | 692.67 ± 106.69 a | 698.25 ± 111.01 a | 49.00 ± 8.02 a | 7.62 ± 0.08 a | 0.98 ± 0.0000 a |
Phylum | Class | Order | Family | Genus | Species | |
---|---|---|---|---|---|---|
SI (C4) | 0 | 2 | 11 | 18 | 33 | 92 |
ZM (C4) | 1 | 2 | 18 | 30 | 44 | 143 |
AT (C4) | 0 | 4 | 17 | 32 | 39 | 120 |
TA (C3) | 0 | 0 | 11 | 19 | 65 | 112 |
GM (C3) | 2 | 3 | 14 | 24 | 90 | 130 |
MS (C3) | 1 | 6 | 20 | 30 | 83 | 127 |
LP (C3) | 3 | 8 | 23 | 35 | 109 | 153 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wang, S.; Li, Y.; Liu, W.; Niu, Z. Response of Bacterial Community Structure and Function in Rhizosphere Soil on the Photosynthesis of Selected Plant Types C3 and C4 under Bis(2,4,6-tribromophenoxy) Ethane Exposure. Agriculture 2024, 14, 1637. https://doi.org/10.3390/agriculture14091637
Chen Y, Wang S, Li Y, Liu W, Niu Z. Response of Bacterial Community Structure and Function in Rhizosphere Soil on the Photosynthesis of Selected Plant Types C3 and C4 under Bis(2,4,6-tribromophenoxy) Ethane Exposure. Agriculture. 2024; 14(9):1637. https://doi.org/10.3390/agriculture14091637
Chicago/Turabian StyleChen, Yixuan, Sen Wang, Yuru Li, Wanyu Liu, and Zhenchuan Niu. 2024. "Response of Bacterial Community Structure and Function in Rhizosphere Soil on the Photosynthesis of Selected Plant Types C3 and C4 under Bis(2,4,6-tribromophenoxy) Ethane Exposure" Agriculture 14, no. 9: 1637. https://doi.org/10.3390/agriculture14091637
APA StyleChen, Y., Wang, S., Li, Y., Liu, W., & Niu, Z. (2024). Response of Bacterial Community Structure and Function in Rhizosphere Soil on the Photosynthesis of Selected Plant Types C3 and C4 under Bis(2,4,6-tribromophenoxy) Ethane Exposure. Agriculture, 14(9), 1637. https://doi.org/10.3390/agriculture14091637