Abiotic Stress in Cotton: Insights into Plant Responses and Biotechnological Solutions
Abstract
:1. Introduction
2. Abiotic Stressors Impact on Cotton Plants
2.1. Impact of Drought Stress on Cotton
Stress factor | Impact on Development and Traits | Impact | Citations |
---|---|---|---|
Heat stress | Leaf wilting | + | [44] |
Photosynthesis efficiency | - | [45] | |
Fiber quality | - | [46] | |
Leaf number | - | [47] | |
Stomatal density | - | [48] | |
Trichome density | + | [49] | |
Flowering | - | [50] | |
Boll size | - | [51] | |
Root length | - | [45] | |
Shoot length | - | [52] | |
Premature boll opening | + | [53] | |
Drought | Leaf rolling | + | [54] |
Leaf growth | - | [55] | |
Leaf area | - | [56] | |
Fiber quality | - | [57] | |
Root length | - | [58] | |
Shoot length | - | [59] | |
Stomatal density | + | [60,61] | |
Trichome density | + | [62] | |
Flowering | -- | [63] | |
Leaf number | -- | [64] | |
Boll size | - | [65] | |
Premature boll opening | + | [63] | |
Salinity | Root length | - | [66,67] |
Leaf necrosis | + | [68] | |
Nutrient absorption | - | [25] | |
Fiber quality | - | [69] | |
Stomatal density | + | [70] | |
Boll size | - | [71] | |
Premature boll opening | + | [72] | |
Leaf rolling | + | [73] | |
Leaf area | - | [74] | |
Shoot length | - | [75] | |
Trichome density | - | [76] | |
Flowering delay | + | [77] | |
Leaf number | - | [78] | |
Heavy metal toxicity | Shoot length | - | [79] |
Leaf chlorosis, necrosis | + | [80] | |
Leaf rolling | + | [81] | |
Leaf area | - | [80] | |
Fiber quality | - | [82] | |
Root length | - | [79] | |
Stomatal density | + | [80] | |
Flowering | - | [83] | |
Leaf number | - | [84] | |
Boll size | - | [85] | |
Premature boll opening | - | [85] | |
Water logging | Nutrient deficiency | + | [86] |
Leaf chlorosis | + | [87] | |
Shoot length | - | [88] | |
Leaf area | - | [89] | |
Fiber quality | - | [90] | |
Root length | - | [91] | |
Stomatal density | - | [92] | |
Trichome density | + | [92] | |
Flowering | - | [89] | |
Boll size | - | [92,93] | |
Premature boll opening | + | [94] |
2.2. Impact of Heat Stress on Cotton
2.3. Impact of Salinity Stress on Cotton
Abiotic Stress | Biochemical Traits | Effects on Biochemical Traits | Explant Source | Screening Method | References |
---|---|---|---|---|---|
Drought stress | Proline | Increased levels under drought stress are indicative of osmotic adjustment. | Leaf | High-performance liquid chromatography (HPLC) | [126,127] |
Chlorophyll | Decreased levels under heat stress indicate photoinhibition. | Leaf | HPLC | [128,129] | |
Antioxidant enzyme activity | Enhanced activity under oxidative stress protects against damage. | Leaf | Enzyme assays | [130,131] | |
Ion homeostasis | Alterations occur in nutrient uptake, essential for plant growth. | Root | Ion analysis | [132] | |
Heat stress | Heat shock protein expression | Induced expression under elevated temperatures leads to aiding protein stability. | Leaf | Protein analysis | [133,134] |
Peroxidase (POD) activity | Changes in metabolic pathways impact plant growth and development. | Root | Enzyme assays | [135,136] | |
Lipid peroxidation | Increased levels indicate membrane damage under stress conditions. | Leaf | Thiobarbituric acid assay | [137,138] | |
Soluble sugar content | Accumulation acts as an osmoprotectant, maintaining cellular integrity. | Leaf | Spectrophotometry | [137,139] | |
Total phenolic content | Elevated levels contribute to antioxidant defense against stress. | Leaf | Spectrophotometry | [140,141] | |
Malondialdehyde (MDA) content | Elevated levels indicate lipid peroxidation and cellular damage. | Leaf | Spectrophotometry | [142,143] | |
Superoxide dismutase (SOD) activity | Increased activity under oxidative stress leads to scavenging superoxide radicals. | Leaf | Enzyme assays | [144,145] | |
Catalase (CAT) activity | Enhanced activity under oxidative stress leads to decomposing hydrogen peroxide. | Leaf | Enzyme assays | [146] | |
Carotenoid content | Decreased levels impact photosynthetic efficiency under stress. | Leaf | HPLC | [147] | |
Flavonoid content | Increased synthesis contributes to stress tolerance mechanisms. | Leaf | Spectrophotometry | [148] | |
Ascorbic acid content | Decreased levels affect antioxidant capacity and stress tolerance. | Leaf | Titration method | [149] | |
Glutathione content | Altered levels impact oxidative stress response and redox regulation. | Leaf | Enzymatic assay | [150] | |
Polyphenol oxidase activity | Enhanced activity in response to stress leads to tissue browning. | Leaf tissue | Enzyme assay | [4] | |
Salinity | Proline | Increased levels under saline conditions are indicative of osmotic adjustment. | Leaf | HPLC | [112,115,116,117] |
Chlorophyll | Decreased levels under salinity stress indicate photoinhibition. | Leaf | HPLC | [122,123,124] | |
Antioxidant enzyme activity | Enhanced activity under saline stress protects against oxidative damage. | Leaf | Enzyme assays | [120,130] | |
Ion homeostasis | Altered nutrient uptake due to saline conditions. | Root | Ion analysis | [69,132] | |
Heavy metal toxicity | Antioxidant enzyme activity | Enhanced enzyme activity reflects an upregulated defense response to mitigate oxidative damage caused by metal toxicity. | Leaf | Enzyme assays | [79,84] |
Chlorophyll content | Significant reduction in chlorophyll levels leads to chlorosis and tissue necrosis because of metal accumulation. | Leaf | HPLC | [80,83] | |
Proline accumulation | Increased proline levels serve as a protective osmolyte to counteract the osmotic stress induced by heavy metals. | Leaf | HPLC | [82,85] | |
Water-logging stress | Antioxidant enzyme activity | Elevated enzyme activity indicates a defensive response to the oxidative stress resulting from excess water. | Leaf | Enzyme assays | [86,87] |
Chlorophyll content | Reduction in chlorophyll concentration leads to chlorosis due to impaired photosynthesis under prolonged waterlogged conditions. | Leaf | HPLC | [92,93] | |
Lipid peroxidation | Increased MDA levels suggest oxidative deterioration of cellular membranes under saturated conditions. | Leaf | Thiobarbituric acid assay | [89,94] |
2.4. The Impact of Heavy Metals and Waterlogging on Cotton Growth and Yield
3. Mechanisms of Cotton Plants in Response to Abiotic Stress-Signaling Pathways
3.1. Roles of ABA Signaling Pathway Genes in Cotton’s Abiotic Stress Responses
3.2. Enhancing Cotton Stress Tolerance through Reactive Oxygen Species Signaling
3.3. Role of Heat Shock Proteins in Cotton Stress Tolerance
3.4. Calcium Signaling in Cotton Stress Responses
3.5. Stress-Responsive Genes and Proteins
Sr. No | Genes | Abiotic Stress | Plant Part | Impact on Gene Expression | Regulation | Method | Ref. |
---|---|---|---|---|---|---|---|
1. | GhRD29A, GhDREB1A | Drought | Roots | Activation of genes related to osmotic regulation | Up | RNA-Seq | [207,208] |
2. | GhP5CS, GhBADH | Drought | Leaves | Activation of genes involved in proline biosynthesis | Up | qPCR | [209] |
3. | GhPIP, GhTIP | Drought | Leaves | Regulation of aquaporin genes involved in water transport | Up | RNA-Seq | [210,211,212] |
4. | GhHSP70, GhHSP90 | Heat | Leaves | Upregulation | Up | qRT-PCR | [186,213,214] |
5. | GhMYB, GhbZIP | Heat | Leaves | Activation of transcription factor genes | Up | qPCR | [215] |
6. | GhCAT, GhPOD | Heat | Leaves | Induction of antioxidant enzyme genes | Up | RNA-Seq | [216,217] |
7. | GhSOS1, GhNHX1 | Salinity | Roots | Altered expression of ion transport genes | Up | Microarray | [218,219] |
8. | GhNAC, GhWRKY | Salinity | Roots | Modulation of stress-responsive transcription factor genes | Up | RNA-Seq | [220,221,222,223] |
9. | GhHKT1, GhNHX2 | Salinity | Roots | Alteration in ion homeostasis-related gene expression | Up | RNA-Seq | [224,225] |
10. | GhLEA, GhRAB | Water-logging | Roots | Induction of genes related to water logging tolerance | Up | Microarray | [226,227] |
11. | GhAPX, GhSOD | Oxidative stress | Leaves | Upregulation of antioxidant enzyme genes | Up | qRT-PCR | [228,229] |
12. | GhDHN, GhERF | Cold stress | Leaves | Modulation of genes related to cold response | Up | qRT-PCR | [230,231] |
13. | GhMT1, GhPCS | Heavy metal toxicity | Roots | Induction of metal detoxification genes | Up | qPCR | [232,233,234] |
14. | GhUVR8, GhCOP1 | UV-B radiation | Leaves | Activation of genes involved in UV protection | Up | RNA-Seq | [235,236] |
15. | GhPAL, GhCHS | UV-B radiation | Leaves | Regulation of genes involved in phenylpropanoid biosynthesis | Up | qRT-PCR | [237,238,239,240] |
4. Breeding and Biotechnological Approaches to Improving Abiotic Stress Tolerance in Cotton
4.1. Breeding for Stress Tolerance
4.2. Transgenic Approaches
4.3. CRISPR/Cas in Cotton: Challenges and Solutions
5. Future Prospects and Challenges
5.1. Advanced Biotechnological Interventions in Mitigating Abiotic Stress
5.2. Challenges of Mitigating Abiotic Stress in Cotton
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kopecká, R.; Kameniarová, M.; Černý, M.; Brzobohatý, B.; Novák, J. Abiotic Stress in Crop Production. Int. J. Mol. Sci. 2023, 24, 6603. [Google Scholar] [CrossRef] [PubMed]
- Jabran, K.; Ul-Allah, S.; Chauhan, B.S. An Introduction to Global Production Trends and Uses, History and Evolution, and Genetic and Biotechnological Improvements in Cotton, Cotton Production. In Cotton Production; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; Volume 18, pp. 1–22. [Google Scholar] [CrossRef]
- Saud, S.; Wang, L. Mechanism of Cotton Resistance to Abiotic Stress, and Recent Research Advances in the Osmoregulation Related Genes. Front. Plant Sci. 2022, 13, 972635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S. Recent Advances of Polyphenol Oxidases in Plants. Molecules 2023, 28, 2158. [Google Scholar] [CrossRef]
- Cotton Production Under Abiotic Stress; Karademir, E.; Karademir, C. (Eds.) iKSAD Publishing House: Cankaya, Türkiye, 2021; ISBN 9786258061703. [Google Scholar]
- Voora, V.; Bermudez, S.; Farrell, J.J.; Larrea, C.; Luna, E. Cotton Prices and Sustainability Market Overview; iKSAD Publishing House: Cankaya, Türkiye, 2023. [Google Scholar]
- Bita, C.; Gerats, T. Plant Tolerance to High Temperature in a Changing Environment: Scientific Fundamentals and Production of Heat Stress-Tolerant Crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef]
- Noreen, S.; Ashraf, M.; Hussain, M.; Perveen, S.; Ahmad, R. Abiotic Stresses Mediated Changes in Morphophysiology of Cotton Plant. In Cotton Production and Uses; Ahmad, S., Hasanuzzaman, M., Eds.; Springer: Singapore, 2020; pp. 377–393. [Google Scholar] [CrossRef]
- Zahoor, R.; Dong, H.; Abid, M.; Zhao, W.; Wang, Y.; Zhou, Z. Potassium Fertilizer Improves Drought Stress Alleviation Potential in Cotton by Enhancing Photosynthesis and Carbohydrate Metabolism. Environ. Exp. Bot. 2017, 137, 73–83. [Google Scholar] [CrossRef]
- Zahoor, R.; Zhao, W.; Abid, M.; Dong, H.; Zhou, Z. Title: Potassium Application Regulates Nitrogen Metabolism and Osmotic Adjustment in Cotton (Gossypium hirsutum L.) Functional Leaf under Drought Stress. J. Plant Physiol. 2017, 215, 30–38. [Google Scholar] [CrossRef]
- Liu, Y.; Snider, J.L.; Bhattarai, A.; Collins, G. Economic Penalties Associated with Irrigation during High Rainfall Years in the Southeastern United States. Agric. Water Manag. 2022, 272, 107825. [Google Scholar] [CrossRef]
- Constable, G.A.; Bange, M.P. The Yield Potential of Cotton (Gossypium hirsutum L.). Field Crops Res. 2015, 182, 98–106. [Google Scholar] [CrossRef]
- Pilon, C.; Snider, J.L.; Sobolev, V.; Chastain, D.R.; Sorensen, R.B.; Meeks, C.D.; Massa, A.N.; Walk, T.; Singh, B.; Earl, H.J. Assessing Stomatal and Non-Stomatal Limitations to Carbon Assimilation under Progressive Drought in Peanut (Arachis hypogaea L.). J. Plant Physiol. 2018, 231, 124–134. [Google Scholar] [CrossRef]
- Abdelraheem, A.; Adams, N.; Zhang, J. Effects of Drought on Agronomic and Fiber Quality in an Introgressed Backcross Inbred Line Population of Upland Cotton under Field Conditions. Field Crops Res. 2020, 254, 107850. [Google Scholar] [CrossRef]
- Bibi, A.C.; Oosterhuis, D.M.; Gonias, E.D. Exogenous Application of Putrescine Ameliorates the Effect of High Temperature in Gossypium hirsutum L. Flowers and Fruit Development. J. Agron. Crop Sci. 2010, 196, 205–211. [Google Scholar] [CrossRef]
- Shelake, R.M.; Wagh, S.G.; Patil, A.M.; Červený, J.; Waghunde, R.R.; Kim, J.Y. Heat Stress and Plant-Biotic Interactions: Advances and Perspectives. Plants 2024, 13, 2022. [Google Scholar] [CrossRef]
- Kamel, A.; Gamil, W.F.D. Direct Effects of Temperature Changes on Biochemical and Enzymatic Responses of Cotton Leafworm, Spodoptera littoralis (Boisd.). EAJB A Entomol. 2018, 11, 121–136. [Google Scholar] [CrossRef]
- Snider, J.L.; Collins, G.D.; Whitaker, J.; Perry, C.D.; Chastain, D.R. Electron Transport through Photosystem II Is Not Limited by A Wide Range of Water Deficit Conditions in Field-Grown Gossypium hirsutum. J. Agron. Crop Sci. 2014, 200, 77–82. [Google Scholar] [CrossRef]
- Zhao, W.; Dong, H.; Zhou, Z.; Wang, Y.; Hu, W. Potassium (K) application alleviates the negative effect of drought on cotton fiber strength by sustaining higher sucrose content and carbohydrate conversion rate. Plant Physiol. Biochem. 2021, 157, 105–113. [Google Scholar] [CrossRef]
- Ju, F.; Pang, J.; Sun, L.; Gu, J.; Wang, Z.; Wu, X.; Ali, S.; Wang, Y.; Zhao, W.; Wang, S.; et al. Integrative transcriptomic, metabolomic and physiological analyses revealed the physiological and molecular mechanisms by which potassium regulates the salt tolerance of cotton (Gossypium hirsutum L.) roots. Ind. Crops Prod. 2023, 193, 116177. [Google Scholar] [CrossRef]
- Zahid, K.R.; Ali, F.; Shah, F.; Younas, M.; Shah, T.; Shahwar, D.; Hassan, W.; Ahmad, Z.; Qi, C.; Lu, Y.; et al. Response and Tolerance Mechanism of Cotton (Gossypium hirsutum L.) to Elevated Temperature Stress: A Review. Front. Plant Sci. 2016, 7, 937. [Google Scholar] [CrossRef]
- Saeed, M.; Dahab, A.H.A.; Wangzhen, G.; Tianzhen, Z. A Cascade of Recently Discovered Molecular Mechanisms Involved in Abiotic Stress Tolerance of Plants. Omics 2012, 16, 188–199. [Google Scholar] [CrossRef]
- Chakma, S.P.; Chileshe, S.M.; Thomas, R.; Krishna, P. Cotton Seed Priming with Brassinosteroid Promotes Germination and Seedling Growth. Agronomy 2021, 11, 566. [Google Scholar] [CrossRef]
- Lv, F.; Liu, J.; Ma, Y.; Chen, J.; Abudurezikekey, A.K.; Wang, Y.; Chen, B.; Meng, Y.; Zhou, Z. Effect of Shading on Cotton Yield and Quality on Different Fruiting Branches. Crop. Sci. 2013, 53, 2670–2678. [Google Scholar] [CrossRef]
- Li, T.; Dai, J.; Zhang, Y.; Kong, X.; Li, C.; Dong, H. Topical Shading Substantially Inhibits Vegetative Branching by Altering Leaf Photosynthesis and Hormone Contents of Cotton Plants. Field Crops Res. 2019, 238, 18–26. [Google Scholar] [CrossRef]
- Xu, B.; Zhou, Z.-G.; Guo, L.-T.; Xu, W.-Z.; Zhao, W.-Q.; Chen, B.-L.; Meng, Y.-L.; Wang, Y.-H. Susceptible Time Window and Endurable Duration of Cotton Fiber Development to High Temperature Stress. J. Integr. Agric. 2017, 16, 1936–1945. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, Y.; Yi, X.; Zuo, W.; Lei, Z.; Sui, L.; Zhang, W. Characters in Light-Response Curves of Canopy Photosynthetic Use Efficiency of Light and N in Responses to Plant Density in Field-Grown Cotton. Field Crops Res. 2017, 203, 192–200. [Google Scholar] [CrossRef]
- Ephrath, J.E.; Marani, A.; Bravdo, B.A. Effects of Moisture Stress on Stomatal Resistance and Photosynthetic Rate in Cotton (Gossypium hirsutum) 1. Controlled Levels of Stress. Field Crops Res. 1990, 23, 117–131. [Google Scholar] [CrossRef]
- Brugnoli, E.; Björkman, O. Growth of cotton under continuous salinity stress: Influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 1992, 187, 335–347. [Google Scholar] [CrossRef]
- Siddique, Z.; Jan, S.; Imadi, S.R.; Gul, A.; Ahmad, P. Drought Stress and Photosynthesis in Plants. In Water Stress and Crop Plants: A Sustainable Approach; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; Volume 1, pp. 1–11. [Google Scholar] [CrossRef]
- Wu, S.; Hu, C.; Tan, Q.; Li, L.; Shi, K.; Zheng, Y.; Sun, X. Drought Stress Tolerance Mediated by Zinc-Induced Antioxidative Defense and Osmotic Adjustment in Cotton (Gossypium hirsutum). Acta Physiol. Plant 2015, 37, 167. [Google Scholar] [CrossRef]
- Chandrasekhar, C.; Pusadkar, P.; Shilpa, B.; Cn, C.; Pratik, P. Evaluation of Physiological and Morphological Responses Associated with Cotton Subjected to Drought Stress Conditions. Res. J. Biotech. 2015, 10, 85–90. [Google Scholar]
- Gao, M.; Snider, J.L.; Bai, H.; Hu, W.; Wang, R.; Meng, Y.; Wang, Y.; Chen, B.; Zhou, Z. Drought Effects on Cotton (Gossypium hirsutum L.) Fiber Quality and Fiber Sucrose Metabolism during the Flowering and Boll-Formation Period. J. Agron. Crop Sci. 2020, 206, 309–321. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.; Dong, H.; Li, C. Waterlogging Stress in Cotton: Damage, Adaptability, Alleviation Strategies, and Mechanisms. Crop. J. 2021, 9, 257–270. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.-M.; Da Silva, J.B.V. Effects of Drought on Primary Photosynthetic Processes of Cotton Leaves. Plant Physiol. 1987, 83, 360–364. [Google Scholar] [CrossRef]
- Dubey, R.; Pandey, B.K.; Sawant, S.V.; Kalinganire, A. Drought Stress Inhibits Stomatal Development to Improve Water Use Efficiency in Cotton. Acta Physiol. Plant. 2023, 45, 30. [Google Scholar] [CrossRef]
- Zafar, M.M.; Chattha, W.S.; Khan, A.I.; Zafar, S.; Subhan, M.; Saleem, H.; Ali, A.; Ijaz, A.; Anwar, Z.; Qiao, F.; et al. Drought and Heat Stress on Cotton Genotypes Suggested Agro-Physiological and Biochemical Features for Climate Resilience. Front. Plant Sci. 2023, 14, 1265700. [Google Scholar] [CrossRef] [PubMed]
- Padmalatha, K.V.; Dhandapani, G.; Kanakachari, M.; Kumar, S.; Dass, A.; Patil, D.P.; Rajamani, V.; Kumar, K.; Pathak, R.; Rawat, B.; et al. Genome-Wide Transcriptomic Analysis of Cotton under Drought Stress Reveal Significant down-Regulation of Genes and Pathways Involved in Fiber Elongation and up-Regulation of Defense Responsive Genes. Plant Mol. Biol. 2012, 78, 223–246. [Google Scholar] [CrossRef]
- Duan, B.; Xie, X.; Jiang, Y.; Zhu, N.; Zheng, H.; Liu, Y.; Sun, Y. GhMYB44 Enhances Stomatal Closure to Confer Drought Stress Tolerance in Cotton and Arabidopsis. Plant Physiol. Biochem. 2023, 198, 107692. [Google Scholar] [CrossRef]
- Khan, A.; Pan, X.; Najeeb, U.; Tan, D.K.Y.; Fahad, S.; Zahoor, R.; Luo, H. Coping with Drought: Stress and Adaptive Mechanisms, and Management through Cultural and Molecular Alternatives in Cotton as Vital Constituents for Plant Stress Resilience and Fitness. Biol. Res. 2018, 51, 47. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Rosero, A.; Granda, L.; Berdugo-Cely, J.A.; Šamajová, O.; Šamaj, J.; Cerkal, R. A Dual Strategy of Breeding for Drought Tolerance and Introducing Drought-Tolerant, Underutilized Crops into Production Systems to Enhance Their Resilience to Water Deficiency. Plants 2020, 9, 1263. [Google Scholar] [CrossRef]
- Ullah, A.; Sun, H.; Yang, X.; Zhang, X. Drought coping strategies in cotton: Increased crop per drop. Plant Biotechnol. J. 2017, 15, 271–284. [Google Scholar] [CrossRef]
- Birrer, K.F.; Conaty, W.C.; Cottee, N.S.; Sargent, D.; Francis, M.E.; Cahill, D.M.; Long, R.L. Can Heat Stress and Water Deficit Affect Cotton Fiber Wax Content in Field-Grown Plants? Ind. Crops Prod. 2021, 168, 113559. [Google Scholar] [CrossRef]
- Carmo-Silva, A.E.; Gore, M.A.; Andrade-Sanchez, P.; French, A.N.; Hunsaker, D.J.; Salvucci, M.E. Decreased CO2 Availability and Inactivation of Rubisco Limit Photosynthesis in Cotton Plants under Heat and Drought Stress in the Field. Environ. Exp. Bot. 2012, 83, 1–11. [Google Scholar] [CrossRef]
- Kim, H.J.; Kato, N.; Ndathe, R.; Thyssen, G.N.; Jones, D.C.; Ratnayaka, H.H. Evidence for Thermosensitivity of the Cotton (Gossypium hirsutum L.) Immature Fiber (Im) Mutant via Hypersensitive Stomatal Activity. PLoS ONE 2021, 16, e0259562. [Google Scholar] [CrossRef] [PubMed]
- Loka, D.A.; Oosterhuis, D.M.; Baxevanos, D.; Noulas, C.; Hu, W. Single and Combined Effects of Heat and Water Stress and Recovery on Cotton (Gossypium hirsutum L.) Leaf Physiology and Sucrose Metabolism. Plant Physiol. Biochem. 2020, 148, 166–179. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Fan, R.; Sun, F.; Qu, Y.; Zheng, K.; Chen, Q.; Chen, Q. Identification of Exogenous ABA and Heat Stress Tolerance in Various Cotton Genotypes. Plant Genet. Resour. Characterisation Util. 2020, 18, 404–416. [Google Scholar] [CrossRef]
- Shahzad, M.; Khan, Z.; Nazeer, W.; Arshad, S.F.; Ahmad, F. Effect of Drought on Trichome Density and Length in Cotton (Gossypium hirsutum). J. Bioresour. Manag. 2021, 8, 154–167. [Google Scholar] [CrossRef]
- Echer, F.R.; Oosterhuis, D.M.; Loka, D.A.; Rosolem, C.A. High Night Temperatures during the Floral Bud Stage Increase the Abscission of Reproductive Structures in Cotton. J. Agron. Crop Sci. 2014, 200, 191–198. [Google Scholar] [CrossRef]
- Witten, T.K. Heat Unit Accumulation to Determine Boll Maturity and the Impact upon Fiber Properties and Lint Yield of Cotton; Texas A&M University: College Station, TX, USA, 2003; p. 264. [Google Scholar]
- Ahmad, S.; Hasanuzzaman, M. Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies; Springer: Singapore, 2020; ISBN 9789811514722. [Google Scholar]
- Oosterhuis, D.M.; Snider, J.L. High Temperature Stress on Floral Development and Yield of Cotton; In Stress Physiology in Cotton; The Cotton Foundation: Cordova, TN, USA, 2011; Volume 7, pp. 1–24. [Google Scholar]
- Mahmood, T.; Khalid, S.; Abdullah, M.; Ahmed, Z.; Shah, M.K.N.; Ghafoor, A.; Du, X. Insights into Drought Stress Signaling in Plants and the Molecular Genetic Basis of Cotton Drought Tolerance. Cells 2020, 9, 105. [Google Scholar] [CrossRef]
- Mamatha, K.; Jaybhaye, P. Impact of Drought Weather Condition on Bt Cotton Growth, Development and Yield. Int. J. Curr. Microbiol. Appl. Sci. 2018, 6, 2332–2338. [Google Scholar]
- Ödemїş, B.; Candemїr, D.K. The Effects of Water Stress on Cotton Leaf Area and Leaf Morphology. J. Agric. Nat. 2023, 26, 140–149. [Google Scholar] [CrossRef]
- Karademir, C.; Karademir, E.; Ekinci, R.; Berekatoǧlu, K. Yield and Fiber Quality Properties of Cotton (Gossypium hirsutum L.) under Water Stress Non-Stress Conditions. Afr. J. Biotechnol. 2011, 10, 12575–12583. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, J.; Chen, T.T.; Zhao, X.H.; Zhang, S.P.; Liu, S.D.; Dong, H.L.; Feng, L.; Yu, S.X. Effect of Drought Stress on Lipid Peroxidation and Proline Content in Cotton Roots. J. Anim. Plant Sci. 2014, 24, 1729–1736. [Google Scholar]
- Gondal, M.R.; Saleem, M.Y.; Rizvi, S.A.; Riaz, A.; Naseem, W.; Muhammad, G.; Hayat, S.; Iqbal, M. Assessment of Drought Tolerance in Various Cotton Genotypes under Simulated Osmotic Settings. Asian J. Agric. Biol. 2021, 2, 1–10. [Google Scholar] [CrossRef]
- Wang, K.; Gao, Y.; Li, S.; Zhang, M.; Wu, Z.; Liu, L.; Sun, H.; Li, C.; Zhang, Y. Response of Leaf Stomata and Photosynthetic Parameters to Short-Term Drought Stress in Cotton (Gossypium hirsutum L.). Chin. J. Eco-Agric. 2019, 27, 901–907. [Google Scholar] [CrossRef]
- Devi, M.J.; Reddy, V.R. Transpiration Response of Cotton to Vapor Pressure Deficit and Its Relationship with Stomatal Traits. Front. Plant Sci. 2018, 9, 1572. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.K.; Sangwan, R.S.; Sabir, F.; Srivastava, A.K.; Sangwan, N.S. Effect of Prolonged Water Stress on Specialized Secondary Metabolites, Peltate Glandular Trichomes, and Pathway Gene Expression in Artemisia annua L. Plant Physiol. Biochem. 2014, 74, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.F.; Raza, M.A.S.; Ahmad, S.; Khan, I.H.; Shahid, A.M. Understanding and Mitigating the Impacts of Drought Stress in Cotton—A Review. Pak. J. Agric. Sci. 2016, 53, 609–623. [Google Scholar]
- Alishah, O.; Ahmadikhah, A. The Effects of Drought Stress on Improved Cotton Varieties in Golesatn Province of Iran. Int. J. Plant Prod. 2012, 3, 17–26. [Google Scholar] [CrossRef]
- Wang, R.; Ji, S.; Zhang, P.; Meng, Y.; Wang, Y.; Chen, B.; Zhou, Z. Drought Effects on Cotton Yield and Fiber Quality on Different Fruiting Branches. Crop Sci. 2016, 56, 1265–1276. [Google Scholar] [CrossRef]
- Mai, W.X.; Tian, C.Y.; Li, C.J. Soil Salinity Dynamics under Drip Irrigation and Mulch Film and Their Effects on Cotton Root Length. Commun. Soil. Sci. Plant Anal. 2013, 44, 1489–1502. [Google Scholar] [CrossRef]
- Bernstein, N.; Kafkafi, U. 44 Root Growth Under Salinity Stress; CRC Press: Boca Raton, FL, USA, 2002; pp. 1222–1250. [Google Scholar]
- Mühling, K.H.; Läuchli, A. Effect of salt stress on growth and cation compartmentation in leaves of two plant species differing in salt tolerance. J. Plant Physiol. 2002, 159, 137–146. [Google Scholar] [CrossRef]
- Munawar, W.; Hameed, A.; Khan, M.K.R. Differential Morphophysiological and Biochemical Responses of Cotton Genotypes Under Various Salinity Stress Levels during Early Growth Stage. Front. Plant Sci. 2021, 12, 622309. [Google Scholar] [CrossRef]
- Brugnoli, E.; Lauteri, M. Effects of Salinity on Stomatal Conductance, Photosynthetic Capacity, and Carbon Isotope Discrimination of Salt-Tolerant (Gossypium hirsutum L.) and Salt-Sensitive (Phaseolus vulgaris L.) C3 Non-Halophytes. Plant Physiol. 1991, 95, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Razaji, A.; Paknejad, F.; Moarefi, M.; Mahdavi Damghani, A.; Nabi Ilkaee, M. Meta-Analysis of the Effects of Salinity Stress on Cotton (Gossypium spp.) Growth Yield Iran. Tarim. Bilim. 2020, 26, 94–103. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Zhang, J.; Cao, W. Effects of Different Salt Stress on Physiological Growth and Yield of Drip Irrigation Cotton (Gossypium hirsutum L.). Intell. Autom. Soft Comput. 2020, 26, 949–959. [Google Scholar] [CrossRef]
- Kadioglu, A.; Terzi, R.; Saruhan, N.; Saglam, A. Current Advances in the Investigation of Leaf Rolling Caused by Biotic and Abiotic Stress Factors. Plant Sci. 2012, 182, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Kanagaraj, G.; Manikandan, K.; Desingh, R. Growth and carbohydrate metabolism of two cotton varieties under salinity stress. Plant Arch. 2009, 9, 413–415. [Google Scholar]
- Chaudhary, M.T.; Shakeel, A.; Rana, I.A.; Azhar, M.T. Evaluation of Morpho-Physiological and Biochemical Attributes of Cotton under Salt Stress. Int. J. Agric. Biol. 2020, 24, 1061–1069. [Google Scholar] [CrossRef]
- Quijano-Medina, T.; Turlings, T.C.J.; Sosenski, P.; Grandi, L.; Cervera, J.C.; Moreira, X.; Abdala-Roberts, L. Effects of Soil Salinity on the Expression of Direct and Indirect Defences in Wild Cotton Gossypium hirsutum. J. Ecol. 2021, 109, 354–368. [Google Scholar] [CrossRef]
- Sharif, I.; Aleem, S.; Farooq, J.; Rizwan, M.; Younas, A.; Sarwar, G.; Chohan, S.M. Salinity Stress in Cotton: Effects, Mechanism of Tolerance and Its Management Strategies. Physiol. Mol. Biol. Plants 2019, 25, 807–820. [Google Scholar] [CrossRef]
- Zhang, H.J.; Dong, H.Z.; Li, W.J.; Zhang, D.M. Effects of Soil Salinity and Plant Density on Yield and Leaf Senescence of Field-Grown Cotton. J. Agron. Crop Sci. 2012, 198, 27–37. [Google Scholar] [CrossRef]
- Rajjak Shaikh, I.; Rajjak Shaikh, P.; Ahmed Shaikh, R.; Abdulla Shaikh, A. Phytotoxic Effects of Heavy Metals (Cr, Cd, Mn and Zn) on Wheat (Triticum Aestivum L.) Seed Germination and Seedlings Growth in Black Cotton Soil of Nanded, India. J. Res. J. Chem. Sci. 2013, 3, 14–23. [Google Scholar]
- Ozyigit, I.I.; Vardar, F.; Yasar, U.; Akinci, S. Long-Term Effects of Aluminum and Cadmium on Growth, Leaf Anatomy, and Photosynthetic Pigments of Cotton. Commun. Soil. Sci. Plant Anal. 2013, 44, 3076–3091. [Google Scholar] [CrossRef]
- Barce, J.; Poschenrieder, C. Plant Water Relations as Affected by Heavy Metal Stress: A Review. J. Plant Nutr. 1990, 13, 1–37. [Google Scholar] [CrossRef]
- Li, L.; Yan, X.; Li, J.; Tian, Y.; Ren, P. Advances in Cotton Tolerance to Heavy Metal Stress and Applications to Remediate Heavy Metal-Contaminated Farmland Soil. Phyton 2020, 90, 35–50. [Google Scholar] [CrossRef]
- Priya, S.; Ghosh, R. Monitoring Effects of Heavy Metal Stress on Biochemical and Spectral Parameters of Cotton Using Hyperspectral Reflectance. Environ. Monit. Assess. 2023, 195, 112. [Google Scholar] [CrossRef] [PubMed]
- An, M.J.; Wang, H.J.; Fan, H.; Ippolito, J.A.; Meng, C.; Yulian, E.; Li, Y.; Wang, K.; Wei, C. Effects of Modifiers on the Growth, Photosynthesis, and Antioxidant Enzymes of Cotton Under Cadmium Toxicity. J. Plant Growth Regul. 2019, 38, 1196–1205. [Google Scholar] [CrossRef]
- Wu, H.; Wu, F.; Zhang, G.; Bachir, L.D.M. Effect of Cadmium on Uptake and Translocation of Three Microelements in Cotton. J. Plant Nutr. 2005, 27, 2019–2032. [Google Scholar] [CrossRef]
- Hocking, P.J.; Reicosky, D.C.; Meyer, W.S. Effects of intermittent waterlogging on the mineral nutrition of cotton. Plant Soil. 1987, 101, 211–221. [Google Scholar] [CrossRef]
- Bange, M.P.; Milroy, S.P.; Thongbai, P. Growth and Yield of Cotton in Response to Waterlogging. Field Crops Res. 2004, 88, 129–142. [Google Scholar] [CrossRef]
- Somaddar, U.; Mia, S.; Khalil, M.I.; Sarker, U.K.; Uddin, M.R.; Kaysar, M.S.; Chaki, A.K.; Robin, A.H.K.; Hashem, A.; Abd_Allah, E.F.; et al. Effect of Reproductive Stage-Waterlogging on the Growth and Yield of Upland Cotton (Gossypium hirsutum). Plants 2023, 12, 1548. [Google Scholar] [CrossRef]
- Guang, C.; Xiugui, W.; Yu, L.; Wenbing, L. Effect of Water Logging Stress on Cotton Leaf Area Index and Yield. Procedia Eng. 2012, 28, 202–209. [Google Scholar] [CrossRef]
- Beegum, S.; Truong, V.; Bheemanahalli, R.; Brand, D.; Reddy, V.; Reddy, K.R. Developing Functional Relationships between Waterlogging and Cotton Growth and Physiology-towards Waterlogging Modeling. Front. Plant Sci. 2023, 14, 1174682. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Yang, C.; Zhang, G.; Zhang, L.; Yang, F.; Guo, W. Root Recovery Development and Activity of Cotton Plants after Waterlogging. Agron. J. 2015, 107, 2038–2046. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, X.; Yang, G.; Li, Z.; Lu, H.; Kong, X.; Eneji, A.E.; Dong, H. Physiological and Molecular Adjustment of Cotton to Waterlogging at Peak-Flowering in Relation to Growth and Yield. Field Crops Res. 2015, 179, 164–172. [Google Scholar] [CrossRef]
- Kuai, J.; Chen, Y.; Wang, Y.; Meng, Y.; Chen, B.; Zhao, W.; Zhou, Z. Effect of Waterlogging on Carbohydrate Metabolism and the Quality of Fiber in Cotton (Gossypium hirsutum L.). Front. Plant Sci. 2016, 7, 877. [Google Scholar] [CrossRef]
- Wu, H.; Wang, X.; Xu, M.; Zhang, J. The Effect of Water Deficit and Waterlogging on the Yield Components of Cotton. Crop Sci. 2018, 58, 1751–1761. [Google Scholar] [CrossRef]
- Ton, P. Cotton & Climate Change: Impacts and Options to Mitigate and Adapt. Int. Trade Cent. 2011, 32, 42267. [Google Scholar]
- Oyebamiji, Y.O.; Shamsudin, N.A.A.; Ikmal, A.M.; Rafii, M.O.H.D. Heat Stress in Vegetables: Impacts and Management Strategies—A Review. Sains Malays. 2023, 52, 1925–1938. [Google Scholar] [CrossRef]
- Sarwar, M.; Saleem, M.F.; Ullah, N.; Iqbal, J.; Ijaz, M.; Iqbal, M.S. Superior Leaf Physiological Performance Contributes to Sustaining the Final Yield of Cotton (Gossypium hirsutum L.) Genotypes under Terminal Heat Stress. Physiol. Mol. Biol. Plants 2023, 29, 739–753. [Google Scholar] [CrossRef]
- Chen, Z.; Tao, X.; Khan, A.; Tan, D.K.Y.; Luo, H. Biomass Accumulation, Photosynthetic Traits and Root Development of Cotton as Affected by Irrigation and Nitrogen-Fertilization. Front. Plant Sci. 2018, 9, 173. [Google Scholar] [CrossRef]
- Masoomi-Aladizgeh, F.; Najeeb, U.; Hamzelou, S.; Pascovici, D.; Amirkhani, A.; Tan, D.K.; Atwell, B.J. Pollen Development in Cotton (Gossypium hirsutum) is Highly Sensitive to Heat Exposure during the Tetrad Stage. Plant Cell Environ. 2021, 44, 2150–2166. [Google Scholar] [CrossRef]
- Dos Santos, T.B.; Ribas, A.F.; de Souza, S.G.H.; Budzinski, I.G.F.; Domingues, D.S. Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses 2022, 2, 113–135. [Google Scholar] [CrossRef]
- Singh, K.; Wijewardana, C.; Gajanayake, B.; Lokhande, S.; Wallace, T.; Jones, D.; Reddy, K.R. Genotypic Variability among Cotton Cultivars for Heat and Drought Tolerance Using Reproductive and Physiological Traits. Euphytica 2018, 214, 57. [Google Scholar] [CrossRef]
- Sadau, S.B.; Liu, Z.; Ninkuu, V.; Guan, L.; Sun, X. DREB Transcription Factors Are Crucial Regulators of Abiotic Stress Responses in Gossypium Spp. Plant Stress 2024, 11, 100350. [Google Scholar] [CrossRef]
- Yousaf, M.I.; Hussain, Q.; Alwahibi, M.S.; Aslam, M.Z.; Khalid, M.Z.; Hussain, S.; Elshikh, M.S. Impact of Heat Stress on Agro-Morphological, Physio-Chemical, and Fiber-Related Parameters in Upland Cotton (Gossypium hirsutum L.) Genotypes. J. King Saud. Univ. Sci. 2023, 35, 102379. [Google Scholar] [CrossRef]
- Zafar, S.A.; Noor, M.A.; Waqas, M.A.; Wang, X.; Shaheen, T.; Raza, M.; UrRahman, M. Temperature Extremes in Cotton Production and Mitigation Strategies. In Past, Present and Future Trends in Cotton Breeding; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- Abro, A.A.; Anwar, M.; Javwad, M.U.; Zhang, M.; Liu, F.; Jiménez-Ballesta, R.; Salama, E.A.A.; Ahmed, M.A.A. Morphological and Physio-Biochemical Responses under Heat Stress in Cotton: Overview. Biotechnol. Rep. 2023, 1, 40. [Google Scholar] [CrossRef]
- Liu, J.; Meng, Y.; Chen, J.; Lv, F.; Ma, Y.; Chen, B.; Wang, Y.; Zhou, Z.; Oosterhuis, D.M. Effect of Late Planting and Shading on Cotton Yield and Fiber Quality Formation. Field Crops Res. 2015, 183, 1–13. [Google Scholar] [CrossRef]
- Abbas, K.; Li, J.; Gong, B.; Lu, Y.; Wu, X.; Lü, G.; Gao, H. Drought Stress Tolerance in Vegetables: The Functional Role of Structural Features, Key Gene Pathways, and Exogenous Hormones. Int. J. Mol. Sci. 2023, 24, 13876. [Google Scholar] [CrossRef]
- Wang, N.; Qiao, W.; Liu, X.; Shi, J.; Xu, Q.; Zhou, H.; Yan, G.; Huang, Q. Relative Contribution of Na+/K+ Homeostasis, Photochemical Efficiency and Antioxidant Defense System to Differential Salt Tolerance in Cotton (Gossypium hirsutum L.) Cultivars. Plant Physiol. Biochem. 2017, 119, 121–131. [Google Scholar] [CrossRef]
- Zhang, J.; Abdelraheem, A.; Wedegaertner, T. Genetic Variation of Waterlogging Tolerance in Pima (Gossypium barbadense) Cotton and Glanded and Glandless Upland Cotton (Gossypium hirsutum) under Field Conditions. Ind. Crops Prod. 2019, 129, 169–174. [Google Scholar] [CrossRef]
- Guo, J.; Lu, X.; Tao, Y.; Guo, H.; Min, W. Comparative Economics and Metabolic Responses and Adaptive Strategies of Cotton to Salt and Alkali Stress. Front. Plant Sci. 2022, 13, 871387. [Google Scholar] [CrossRef]
- Atta, K.; Mondal, S.; Gorai, S.; Singh, A.P.; Kumari, A.; Ghosh, T.; Jespersen, D. Impacts of Salinity Stress on Crop Plants: Improving Salt Tolerance through Genetic and Molecular Dissection. Front. Plant Sci. 2023, 14, 1241736. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.; Shulaev, V.; Mittler, R. Reactive Oxygen Signaling and Abiotic Stress. Physiol. Plant. 2008, 133, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Sabagh, A.E.; Islam, M.S.; Iqbal, M.A.; Hossain, A.; Mubeen, M.; Jabeen, T.; Fahad, S. Salinity Stress in Cotton: Adverse Effects, Survival Mechanisms and Management Strategies. In Engineering Tolerance in Crop Plants Against Abiotic Stress; CRC Press: Boca Raton, FL, USA, 2021; pp. 59–80. [Google Scholar] [CrossRef]
- Chaudhary, M.T.; Majeed, S.; Rana, I.A. Impact of salinity stress on cotton and opportunities for improvement through conventional and biotechnological approaches. BMC Plant Biol. 2024, 24, 20. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, B.C.; Oelmüller, R. Reactive Oxygen Species Generation and Signaling in Plants. Plant Signal. Behav. 2012, 7, 1621–1633. [Google Scholar] [CrossRef] [PubMed]
- Sekmen, A.H.; Ozgur, R.; Uzilday, B.; Turkan, I. Reactive Oxygen Species Scavenging Capacities of Cotton (Gossypium hirsutum) Cultivars under Combined Drought and Heat Induced Oxidative Stress. Environ. Exp. Bot. 2014, 99, 141–149. [Google Scholar] [CrossRef]
- Meloni, D.A.; Oliva, M.A.; Martinez, C.A.; Cambraia, J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot. 2003, 49, 69–76. [Google Scholar] [CrossRef]
- Siddiki, S.A.; Wagh, S.G.; Sul, R.S.; Pawar, K.R.; Harke, S.N. Comparative Studies among Different Genotypes of Soybean (Glycine max L.) against Salinity Stress. Curr. J. Appl. Sci. Technol. 2020, 39, 91–100. [Google Scholar] [CrossRef]
- Masood, A.; Shah, N.A.; Zeeshan, M.; Abraham, G. Differential Response of Antioxidant Enzymes to Salinity Stress in Two Varieties of Azolla (Azolla pinnata and Azolla filiculoides). Environ. Exp. Bot. 2006, 58, 216–222. [Google Scholar] [CrossRef]
- Rajguru, S.N.; Banks, S.W.; Gossett, D.R.; Lucas, M.C.; Fowler, T.E.; Millhollon, E.P.; Rajguru, S.N.; Banks, S.W.; Gossett, D.R.; Lucas, M.C.; et al. Antioxidant Response to Salt Stress during Fiber Development in Cotton Ovules. J. Cotton Sci. 1999, 3, 11–18. [Google Scholar]
- Liu, J.; Zhu, J.-K. Proline Accumulation and Salt-Stress-Lnduced Gene Expression in a Salt-Hypersensitive Mutant of Arabidopsis. Plant Physiol. 1997, 114, 591–596. [Google Scholar] [CrossRef]
- Dikilitas, M.; Simsek, E.; Roychoudhury, A. Role of Proline and Glycine Betaine in Overcoming Abiotic Stresses. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 1–23. [Google Scholar]
- Qamer, Z.; Chaudhary, M.T.; Du, X.; Hinze, L.; Azhar, M.T. Review of Oxidative Stress and Antioxidative Defense Mechanisms in Gossypium hirsutum L. in Response to Extreme Abiotic Conditions. J. Cotton Res. 2021, 4, 9. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, D.; Zhou, Z.; Zahoor, R.; Chen, B.; Meng, Y. Soil Water and Salt Affect Cotton (Gossypium hirsutum L.) Photosynthesis, Yield and Fiber Quality in Coastal Saline Soil. Agric. Water Manag. 2017, 187, 112–121. [Google Scholar] [CrossRef]
- Singh, C.; Rajkumar, B.; Kumar, V. Differential Responses of Antioxidants and Osmolytes in Upland Cotton (Gossypium hirsutum) Cultivars Contrasting in Drought Tolerance. Plant Stress 2021, 2, 100031. [Google Scholar] [CrossRef]
- Li, H.; Sun, H.; Ping, W.; Liu, L.; Zhang, Y.; Zhang, K.; Bai, Z.; Li, A.; Zhu, J.; Li, C. Exogenous Ethylene Promotes the Germination of Cotton Seeds Under Salt Stress. J. Plant Growth Regul. 2023, 42, 3923–3933. [Google Scholar] [CrossRef]
- Jiang, D.; Lu, B.; Liu, L.; Duan, W.; Meng, Y.; Li, J.; Zhang, K.; Sun, H.; Zhang, Y.; Dong, H.; et al. Exogenous Melatonin Improves the Salt Tolerance of Cotton by Removing Active Oxygen and Protecting Photosynthetic Organs. BMC Plant Biol. 2021, 21, 331. [Google Scholar] [CrossRef]
- Guo, H.; Hu, Z.; Zhang, H.; Min, W.; Hou, Z. Comparative Effects of Salt and Alkali Stress on Antioxidant System in Cotton (Gossypium hirsutum L.) Leaves. Open Chem. 2019, 17, 1352–1360. [Google Scholar] [CrossRef]
- An, M.; Wang, X.; Chang, D.; Wang, S.; Hong, D.; Fan, H.; Wang, K. Application of Compound Material Alleviates Saline and Alkaline Stress in Cotton Leaves through Regulation of the Transcriptome. BMC Plant Biol. 2020, 20, 462. [Google Scholar] [CrossRef]
- Iqbal, A.; Dong, Q.; Wang, X.; Gui, H.; Zhang, H.; Zhang, X.; Song, M. High Nitrogen Enhance Drought Tolerance in Cotton through Antioxidant Enzymatic Activities, Nitrogen Metabolism and Osmotic Adjustment. Plants 2020, 9, 178. [Google Scholar] [CrossRef]
- Sun, J.; Li, S.; Guo, H.; Hou, Z. Ion Homeostasis and Na+ Transport-Related Gene Expression in Two Cotton (Gossypium hirsutum L.) Varieties under Saline, Alkaline and Saline-Alkaline Stresses. PLoS ONE 2021, 16, e0256000. [Google Scholar] [CrossRef]
- Batcho, A.A.; Sarwar, M.B.; Rashid, B.; Hassan, S.; Husnain, T. Heat Shock Protein Gene Identified from Agave Sisalana (AsHSP70) Confers Heat Stress Tolerance in Transgenic Cotton (Gossypium hirsutum). Theor. Exp. Plant Physiol. 2021, 33, 141–156. [Google Scholar] [CrossRef]
- Ni, Z.; Liu, N.; Yu, Y.; Bi, C.; Chen, Q.; Qu, Y. The Cotton 70-kDa Heat Shock Protein GhHSP70-26 Plays a Positive Role in the Drought Stress Response. Environ. Exp. Bot. 2021, 191, 104628. [Google Scholar] [CrossRef]
- Shen, J.; Chen, D.; Zhang, X.; Song, L.; Dong, J.; Xu, Q.; Hu, M.; Cheng, Y.; Shen, F.; Wang, W. Mitigation of Salt Stress Response in Upland Cotton (Gossypium hirsutum) by Exogenous Melatonin. J. Plant Res. 2021, 134, 857–871. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Liu, L.; Zhang, Y.; Sun, H.; Zhang, K.; Bai, Z.; Dong, H.; Liu, Y.; Li, C. Tandem Mass Tag-Based (TMT) Quantitative Proteomics Analysis Reveals the Response of Fine Roots to Drought Stress in Cotton (Gossypium hirsutum L.). BMC Plant Biol. 2020, 20, 328. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, J.; Yan, K.; Zhou, Z.; Zhao, W.; Zhang, X.; Pu, Y.; Yu, R. Beneficial Effects of Abscisic Acid and Melatonin in Overcoming Drought Stress in Cotton (Gossypium hirsutum L.). Physiol. Plant. 2021, 173, 2041–2054. [Google Scholar] [CrossRef]
- Fu, Y.; Lang, X.; Hamani, A.K.M.; Weihao, S.; Wang, H.; Amin, A.S.; Wang, X.; Qin, A.; Gao, Y. Foliar Application of Melatonin Positively Affects the Physio-Biochemical Characteristics of Cotton (Gossypium hirsutum L.) under the Combined Effects of Low Temperature and Salinity Stress. Plants 2023, 12, 3730. [Google Scholar] [CrossRef]
- Khattak, W.A.; He, J.; Abdalmegeed, D.; Hu, W.; Wang, Y.; Zhou, Z. Foliar Melatonin Stimulates Cotton Boll Distribution Characteristics by Modifying Leaf Sugar Metabolism and Antioxidant Activities during Drought Conditions. Physiol. Plant. 2022, 174, e13526. [Google Scholar] [CrossRef]
- Ju, F.; Pang, J.; Huo, Y.; Zhu, J.; Yu, K.; Sun, L.; Loka, D.A.; Hu, W.; Zhou, Z.; Wang, S.; et al. Potassium Application Alleviates the Negative Effects of Salt Stress on Cotton (Gossypium hirsutum L.) Yield by Improving the Ionic Homeostasis, Photosynthetic Capacity and Carbohydrate Metabolism of the Leaf Subtending the Cotton Boll. Field Crop. Res. 2021, 272, 108288. [Google Scholar] [CrossRef]
- Xiong, X.P.; Sun, S.C.; Zhu, Q.H.; Zhang, X.Y.; Li, Y.J.; Liu, F.; Xue, F.; Sun, J. The Cotton Lignin Biosynthetic Gene Gh4CL30 Regulates Lignification and Phenolic Content and Contributes to Verticillium Wilt Resistance. Mol. Plant-Microbe Interact. 2021, 34, 240–254. [Google Scholar] [CrossRef]
- Hamani, A.K.M.; Wang, G.; Soothar, M.K.; Shen, X.; Gao, Y.; Qiu, R.; Mehmood, F. Responses of Leaf Gas Exchange Attributes, Photosynthetic Pigments and Antioxidant Enzymes in NaCl-Stressed Cotton (Gossypium hirsutum L.) Seedlings to Exogenous Glycine Betaine And Salicylic Acid. BMC Plant Biol. 2020, 20, 434. [Google Scholar] [CrossRef]
- Li, L.; Qi, Q.; Zhang, H.; Dong, Q.; Iqbal, A.; Gui, H.; Kayoumu, M.; Song, M.; Zhang, X.; Wang, X. Ameliorative Effects of Silicon against Salt Stress in Gossypium hirsutum L. Antioxidants 2022, 11, 1520. [Google Scholar] [CrossRef] [PubMed]
- Samrana, S.; Ali, A.; Muhammad, U.; Azizullah, A.; Ali, H.; Khan, M.; Naz, S.; Khan, M.D.; Zhu, S.; Chen, J. Physiological, Ultrastructural, Biochemical, and Molecular Responses of Glandless Cotton to Hexavalent Chromium (Cr6+) Exposure. Environ. Pollut. 2020, 266, 115394. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, X.; Yang, P.; Wu, R.; Wang, S.; He, S.; Zhou, Q. Potassium Application Promote Cotton Acclimation to Soil Waterlogging Stress by Regulating Endogenous Protective Enzymes Activities and Hormones Contents. Plant Physiol. Biochem. 2022, 185, 336–343. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; He, W.; Snider, J.L.; Zhou, Z. Short-Term Soil-Waterlogging Contributes to Cotton Cross Tolerance to Chronic Elevated Temperature by Regulating ROS Metabolism in the Subtending Leaf. Plant Physiol. Biochem. 2019, 139, 333–341. [Google Scholar] [CrossRef]
- Bettmann, G.T.; Ratnayaka, H.H.; Molin, W.T.; Sterling, T.M. Physiological and Antioxidant Responses of Cotton and Spurred Anoda (Anoda cristata) under Nitrogen Deficiency. Weed Sci. 2006, 54, 641–650. [Google Scholar] [CrossRef]
- Ibrahim, W.; Zhu, Y.; Chen, Y.; Qiu, C.; Zhu, S.; Wu, F. Genotypic Differences in Leaf Secondary Metabolism, Plant Hormones and Yield under Alone and Combined Stress of Drought and Salinity in Cotton Genotypes. Physiol. Plant. 2019, 165, 343–355. [Google Scholar] [CrossRef]
- Hu, W.; Huang, Y.; Bai, H.; Liu, Y.; Wang, S.; Zhou, Z. Influence of Drought Stress on Pistil Physiology and reproductive Success of Two Gossypium hirsutumcultivars Differing in Drought Tolerance. Physiol. Plant. 2020, 168, 909–920. [Google Scholar] [CrossRef]
- Khan, M.; Daud, M.K.; Basharat, A.; Khan, M.J.; Azizullah, A.; Muhammad, N.; Muhammad, N.; Rehman, Z.U.; Zhu, S.J. Alleviation of Lead-Induced Physiological, Metabolic, and Ultramorphological Changes in Leaves of Upland Cotton through Glutathione. Environ. Sci. Pollut. Res. 2016, 23, 8431–8440. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhu, G.; Zhou, G.; Song, X.; Ibrahim, M.E.H.; Salih, E.G.I.; Hussain, S.; Younas, M.U. Pivotal Role of Phytohormones and Their Responsive Genes in Plant Growth and Their Signaling and Transduction Pathway under Salt Stress in Cotton. Int. J. Mol. Sci. 2022, 23, 7339. [Google Scholar] [CrossRef]
- Liu, Z.; Ge, X.; Yang, Z.; Zhang, C.; Zhao, G.; Chen, E.; Liu, J.; Zhang, X.; Li, F. Genome-Wide Identification and Characterization of SnRK2 Gene Family in Cotton (Gossypium hirsutum L.). BMC Genet. 2017, 18, 54. [Google Scholar] [CrossRef]
- Yan, Q.; Cui, X.; Lin, S.; Gan, S.; Xing, H.; Dou, D. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses. PLoS ONE 2016, 11, e0162253. [Google Scholar] [CrossRef]
- Gadallah, M. Effect of water stress, abscisic acid and proline on cotton plants. J. Arid. Environ. 1995, 30, 315–325. [Google Scholar] [CrossRef]
- Iqbal, Z.; Iqbal, M.S.; Singh, S.P.; Buaboocha, T. Ca2+/Calmodulin Complex Triggers CAMTA Transcriptional Machinery Under Stress in Plants: Signaling Cascade and Molecular Regulation. Front. Plant Sci. 2020, 11, 598327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, L.; Xu, X.; Cai, C.; Guo, W. Genome-Wide Identification of Mitogen-Activated Protein Kinase Gene Family in Gossypium raimondii and the Function of Their Corresponding Orthologs in Tetraploid Cultivated Cotton. BMC Plant Biol. 2014, 14, 345. [Google Scholar] [CrossRef]
- Zhang, X.; Mi, X.; Chen, C.; Wang, H.; Guo, W. Identification on Mitogen-Activated Protein Kinase Signaling Cascades by Integrating Protein Interaction with Transcriptional Profiling Analysis in Cotton. Sci. Rep. 2018, 8, 8178. [Google Scholar] [CrossRef]
- Le Gall, H.; Philippe, F.; Domon, J.-M.; Gillet, F.; Pelloux, J.; Rayon, C. Cell Wall Metabolism in Response to Abiotic Stress. Plants 2015, 4, 112–166. [Google Scholar] [CrossRef]
- Zafar, M.M.; Zhang, H.; Ge, P.; Iqbal, M.S.; Muneeb, A.; Parvaiz, A.; Maqsood, J.; Sarfraz, Z.; Kassem, H.S.; Ismail, H.; et al. Exploiting Morphophysiological Traits for Yield Improvement in Upland Cotton under Salt Stress. J. Nat. Fibers 2023, 20, 2282048. [Google Scholar] [CrossRef]
- Muhammad, N.; Luo, T.; Gui, H.; Dong, Q.; Anwar, M.; Wang, Q.; Pang, N.; Zhang, X.; Wang, X.; Song, M. Recent Advancement on Physiological and Molecular Response to Cotton under Salt Stress: A Review. Preprints 2023, 2023071469. [Google Scholar] [CrossRef]
- Baillo, E.H.; Kimotho, R.N.; Zhang, Z.; Xu, P. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement. Genes 2019, 10, 771. [Google Scholar] [CrossRef]
- Abid, M.A.; Liang, C.; Malik, W.; Meng, Z.; Tao, Z.; Meng, Z.; Ashraf, J.; Guo, S.; Zhang, R. Cascades of Ionic and Molecular Networks Involved in Expression of Genes Underpin Salinity Tolerance in Cotton. J. Plant Growth Regul. 2018, 37, 668–679. [Google Scholar] [CrossRef]
- Sun, R.; Tian, R.; Ma, D.; Wang, S.; Liu, C. Comparative Transcriptome Study Provides Insights into Acquisition of Embryogenic Ability in Upland Cotton during Somatic Embryogenesis. J. Cotton Res. 2018, 1, 9. [Google Scholar] [CrossRef]
- Xiong, X.P.; Sun, S.C.; Zhang, X.Y.; Li, Y.J.; Liu, F.; Zhu, Q.H.; Xue, F.; Sun, J. GhWRKY70D13 Regulates Resistance to Verticillium dahliae in Cotton through the Ethylene and Jasmonic Acid Signaling Pathways. Front. Plant Sci. 2020, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Yu, F.; Gao, Z.; An, H.; Cao, X.; Guo, X. GhWRKY3, A Novel Cotton (Gossypium hirsutum L.) WRKY Gene, Is Involved in Diverse Stress Responses. Mol. Biol. Rep. 2011, 38, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Wasilewska, A.; Vlad, F.; Sirichandra, C.; Redko, Y.; Jammes, F.; Valon, C.; Frey, N.F.D.; Leung, J. An Update on Abscisic Acid Signaling in Plants and More. Mol. Plant 2008, 1, 198–217. [Google Scholar] [CrossRef]
- Zhang, D.; Li, J.; Niu, X.; Deng, C.; Song, X.; Li, W.; Cheng, Z.; Xu, Q.; Zhang, B.; Guo, W. GhANN1 modulates the salinity tolerance by regulating ABA biosynthesis, ion homeostasis and phenylpropanoid pathway in cotton. Environ. Exp. Bot. 2021, 185, 104427. [Google Scholar] [CrossRef]
- Basso, M.F.; Costa, J.A.; Ribeiro, T.P.; Arraes, F.B.M.; Lourenço-Tessutti, I.T.; Macedo, A.F.; Neves, M.R.D.; Nardeli, S.M.; Arge, L.W.; Perez, C.E.A.; et al. Overex-pression of the CaHB12 transcription factor in cotton (Gossypium hirsutum) improves drought tolerance. Plant Physiol. Biochem. 2021, 165, 80–93. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, G.; Zhou, H.; Yin, S.; Li, Y.; Ma, C.; Chen, P.; Sun, L.; Hao, F. GhPYL9-5D and GhPYR1-3 A positively regulate Arabidopsis and cotton responses to ABA, drought, high salinity and osmotic stress. BMC Plant Biol. 2023, 23, 310. [Google Scholar] [CrossRef]
- Liu, R.; Shen, Y.; Wang, M.; Liu, R.; Cui, Z.; Li, P.; Wu, Q.; Shen, Q.; Chen, J.; Zhang, S.; et al. GhMYB102 promotes drought resistance by regulating drought-responsive genes and ABA biosynthesis in cotton (Gossypium hirsutum L.). Plant Sci. 2023, 329, 111608. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, B.; Xia, L.; Yue, D.; Han, B.; Sun, W.; Wang, F.; Lindsey, K.; Zhang, X.; Yang, X. The GhMAP3K62-GhMKK16-GhMPK32 kinase cascade regulates drought tolerance by activating GhEDT1-mediated ABA accumulation in cotton. J. Adv. Res. 2023, 51, 13–25. [Google Scholar] [CrossRef]
- Qi, Q.; Wang, N.; Ruan, S.; Muhammad, N.; Zhang, H.; Shi, J.; Dong, Q.; Xu, Q.; Song, M.; Yan, G.; et al. Mepiquat chloride priming confers the ability of cotton seed to tolerate salt by promoting ABA-operated GABA signaling control of the ascorbate–glutathione cycle. J. Cotton Res. 2023, 6, 24. [Google Scholar] [CrossRef]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants 2021, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Kumar, A.; Kaur, N. ROS and Oxidative Burst: Roots in Plant Development. Plant Divers. 2020, 42, 33–43. [Google Scholar] [CrossRef]
- Qian, J.; Shan, R.; Shi, Y.; Li, H.; Xue, L.; Song, Y.; Zhao, T.; Zhu, S.; Chen, J.; Jiang, M. Zinc Oxide Nanoparticles Alleviate Salt Stress in Cotton (Gossypium hirsutum L.) by Adjusting Na+/K+ Ratio and Antioxidative Ability. Life 2024, 14, 595. [Google Scholar] [CrossRef]
- Yu, L.; Wu, S.; Peng, Y.; Liu, R.; Chen, X.; Zhao, P.; Xu, P.; Zhu, J.; Jiao, G.; Pei, Y.; et al. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol. J. 2016, 14, 72–84. [Google Scholar] [CrossRef]
- Guo, Q.; Meng, S.; Tao, S.; Feng, J.; Fan, X.; Xu, P.; Xu, Z.; Shen, X. Overexpression of a samphire high-affinity potassium transporter gene SbHKT1 enhances salt tolerance in transgenic cotton. Acta Physiol. Plant. 2020, 42, 36. [Google Scholar] [CrossRef]
- Zhang, B.; Chang, L.; Sun, W.; Ullah, A.; Yang, X. Overexpression of an expansin-like gene, GhEXLB2 enhanced drought tolerance in cotton. Plant Physiol. Biochem. 2021, 162, 468–475. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Hu, L.; Ye, Y.; Chen, J.; Li, J.; Pei, B.; Wang, G.; Chen, S.; Cheng, Y.; et al. The cotton GhMYB4 gene enhances salt and drought tolerance in transgenic Arabidopsis. Agron. J. 2021, 113, 4762–4776. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, W.; Huang, G.; Liu, B.; Wang, A.; Zhu, J.; Guo, X. The SikCuZnSOD3 gene improves abiotic stress resistance in transgenic cotton. Mol. Breed. 2021, 41, 26. [Google Scholar] [CrossRef]
- Liu, M.; Cui, Y.; Peng, F.; Wang, S.; Cui, R.; Liu, X.; Zhang, Y.; Huang, H.; Fan, Y.; Jiang, T.; et al. Antioxidant system was triggered to alleviate salinity stress by cytokinin oxidase/dehydrogenase gene GhCKX6b-Dt in cotton. Environ. Sci. Eur. 2023, 35, 1–16. [Google Scholar] [CrossRef]
- Owusu, A.G.; Lv, Y.-P.; Liu, M.; Wu, Y.; Li, C.-L.; Guo, N.; Li, D.-H.; Gao, J.-S. Transcriptomic and metabolomic analyses reveal the potential mechanism of waterlogging resistance in cotton (Gossypium hirsutum L.). Front. Plant Sci. 2023, 14, 1088537. [Google Scholar] [CrossRef]
- Rehman, A.; Khan, S.; Sun, F.; Peng, Z.; Feng, K.; Wang, N.; Jia, Y.; Pan, Z.; He, S.; Wang, L.; et al. Exploring the Nano-Wonders: Unveiling the Role of Nanoparticles in Enhancing Salinity and Drought Tolerance in Plants. Front. Plant Sci. 2024, 14, 1324176. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, A.; Abbas, W.; Rao, A.Q.; Hussain, T.; Iqbal, M.M.; Shahid, A.A.; Husnain, T.; Riazuddin, S. Gossypium arboreum GHSP26 Enhances Drought Tolerance in Gossypium hirsutum. Biotechnol. Prog. 2009, 26, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, A.; Anwar, Z.; Ali, A.; Ditta, A.; Shani, M.Y.; Haidar, S.; Khan, M.K.R. Unraveling the Genetic and Molecular Basis of Heat Stress in Cotton. Front. Genet. 2024, 15, 1296622. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Q.; Qu, Y.; Deng, X.; Zheng, K.; Wang, N.; Shi, J.; Zhang, Y.; Chen, Q.; Yan, G. Development and identification of molecular markers of GhHSP70-26 related to heat tolerance in cotton. Gene 2023, 874, 147486. [Google Scholar] [CrossRef]
- Abdullah, M.; Ahmad, F.; Zang, Y.; Jin, S.; Ahmed, S.; Li, J.; Islam, F.; Ahmad, M.; Zhang, Y.; Hu, Y.; et al. HEAT-RESPONSIVE PROTEIN regulates heat stress via fine-tuning ethylene/auxin signaling pathways in cotton. Plant Physiol. 2022, 191, 772–788. [Google Scholar] [CrossRef]
- Ling, P.; Ju, J.; Zhang, X.; Wei, W.; Luo, J.; Li, Y.; Hai, H.; Shang, B.; Cheng, H.; Wang, C.; et al. The Silencing of GhPIP5K2 and GhPIP5K22 Weakens Abiotic Stress Tolerance in Upland Cotton (Gossypium hirsutum). Int. J. Mol. Sci. 2024, 25, 1511. [Google Scholar] [CrossRef]
- Sadau, S.B.; Ahmad, A.; Tajo, S.M.; Ibrahim, S.; Kazeem, B.B.; Wei, H.; Yu, S. Overexpression of GhMPK3 from Cotton Enhances Cold, Drought, and Salt Stress in Arabidopsis. Agronomy 2021, 11, 1049. [Google Scholar] [CrossRef]
- Ding, R.; Li, J.; Wang, J.; Li, Y.; Ye, W.; Yan, G.; Yin, Z. Molecular traits of MAPK kinases and the regulatory mechanism of GhMAPKK5 alleviating drought/salt stress in cotton. Plant Physiol. 2024, kiae415. [Google Scholar] [CrossRef]
- Yin, Z.; Zhu, W.; Zhang, X.; Chen, X.; Wang, W.; Lin, H.; Wang, J.; Ye, W. Molecular Characterization, Expression and Interaction of MAPK, MAPKK and MAPKKK Genes in Upland Cotton. Genomics 2021, 113, 1071–1086. [Google Scholar] [CrossRef]
- Su, Y.; Guo, A.; Huang, Y.; Wang, Y.; Hua, J. GhCIPK6a increases salt tolerance in transgenic upland cotton by involving in ROS scavenging and MAPK signaling pathways. BMC Plant Biol. 2020, 20, 421. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Z.; Li, F.; Ye, W.; Wang, J.; Song, G.; Yue, Z.; Cong, L.; Shang, H.; Zhu, S.; et al. The Draft Genome of a Diploid Cotton Gossypium raimondii. Nat. Genet. 2012, 44, 1098–1103. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.-L.; Guo, Y.-N.; Ondati, E.; Pang, C.-Y.; Wei, H.-L.; Song, M.-Z.; Fan, S.-L.; Yu, S.-X. Identification and expression analysis of group III WRKY transcription factors in cotton. J. Integr. Agric. 2016, 15, 2469–2480. [Google Scholar] [CrossRef]
- Yan, H.; Jia, H.; Chen, X.; Hao, L.; An, H.; Guo, X. The Cotton WRKY Transcription Factor GhWRKY17 Functions in Drought and Salt Stress in Transgenic Nicotiana benthamiana Through ABA Signaling and the Modulation of Reactive Oxygen Species Production. Plant Cell Physiol. 2014, 55, 2060–2076. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Liu, D.; Hao, L.; Wu, C.-A.; Guo, X.; Li, H. GhWRKY39, a Member of the WRKY Transcription Factor Family in Cotton, Has a Positive Role in Disease Resistance and Salt Stress Tolerance. Plant Cell Tissue Organ Cult. 2014, 118, 17–32. [Google Scholar] [CrossRef]
- Hou, S.; Zhu, G.; Li, Y.; Li, W.; Fu, J.; Niu, E.; Li, L.; Zhang, D.; Guo, W. Genome-Wide Association Studies Reveal Genetic Variation and Candidate Genes of Drought Stress Related Traits in Cotton (Gossypium hirsutum L.). Front. Plant Sci. 2018, 9, 1276. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, Y.; Jiang, W.; Fang, L.; Guan, X.; Chen, J.; Zhang, J.; Saski, C.A.; Scheffler, B.E.; Stelly, D.M.; et al. Sequencing of Allotetraploid Cotton (Gossypium hirsutum L. acc. TM-1) Provides a Resource for Fiber Improvement. Nat. Biotechnol. 2015, 33, 531–537. [Google Scholar] [CrossRef]
- Banerjee, A.; Roychoudhury, A. WRKY Proteins: Signaling and Regulation of Expression during Abiotic Stress Responses. Sci. World J. 2015, 2015, 807560. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, S.; Ye, N.; Jiang, M.; Cao, J.; Zhang, J. WRKY transcription factors in plant responses to stresses. J. Integr. Plant Biol. 2017, 59, 86–101. [Google Scholar] [CrossRef]
- Rushton, P.J.; Somssich, I.E.; Ringler, P.; Shen, Q.J. WRKY transcription factors. Trends Plant Sci. 2010, 15, 247–258. [Google Scholar] [CrossRef]
- Schluttenhofer, C.; Yuan, L. Regulation of Specialized Metabolism by WRKY Transcription Factors. Plant Physiol. 2015, 167, 295–306. [Google Scholar] [CrossRef]
- Wagh, S.G.; Kobayashi, K.; Yaeno, T.; Yamaoka, N.; Masuta, C.; Nishiguchi, M. Rice necrosis mosaic virus, a fungal transmitted Bymovirus: Complete nucleotide sequence of the genomic RNAs and subgrouping of bymoviruses. J. Gen. Plant Pathol. 2016, 82, 38–42. [Google Scholar] [CrossRef]
- Wagh, S.G.; Alam, M.M.; Kobayashi, K.; Yaeno, T.; Yamaoka, N.; Toriba, T.; Hirano, H.-Y.; Nishiguchi, M. Analysis of rice RNA-dependent RNA polymerase 6 (OsRDR6) gene in response to viral, bacterial and fungal pathogens. J. Gen. Plant Pathol. 2016, 82, 12–17. [Google Scholar] [CrossRef]
- Wagh, S.G.; Daspute, A.A.; Akhter, S.M.; Bhor, S.A.; Kobayashi, K.; Yaeno, T.; Nishiguchi, M. Relationship between Resistance to Rice necrosis mosaic virus and the Expression Levels of Rice RNA-dependent RNA polymerase 6 (OsRDR6) in Various Rice Cultivars. Jpn. Agric. Res. Q. JARQ 2021, 55, 127–135. [Google Scholar] [CrossRef]
- Yu, F.; Huaxia, Y.; Lu, W.; Wu, C.; Cao, X.; Guo, X. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development. BMC Plant Biol. 2012, 12, 144. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lu, X.; Chen, X.; Malik, W.A.; Wang, D.; Zhao, L.; Wang, J.; Wang, S.; Guo, L.; Cui, R.; et al. Transcriptome Analysis of Upland Cotton Revealed Novel Pathways to Scavenge Reactive Oxygen Species (ROS) Responding to Na2SO4 Tolerance. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Dong, T.; Su, J.; Li, H.; Du, Y.; Wang, Y.; Chen, P.; Duan, H. Genome-Wide Identification of the WRKY Gene Family in Four Cotton Varieties and the Positive Role of GhWRKY31 in Response to Salt and Drought Stress. Plants 2024, 13, 1814. [Google Scholar] [CrossRef]
- Guo, W.; Li, G.; Wang, N.; Yang, C.; Zhao, Y.; Peng, H.; Liu, D.; Chen, S. A Na+/H+ antiporter, K2-NhaD, improves salt and drought tolerance in cotton (Gossypium hirsutum L.). Plant Mol. Biol. 2020, 102, 553–567. [Google Scholar] [CrossRef]
- Zhu, Y. The Roles of Cotton (Gossypium hirsutum) Aquaporins in Cell Expansion. Ph.D. Thesis, University of Newcastle, Newcastle, Australia, 2016. [Google Scholar]
- Guo, A.; Hao, J.; Su, Y.; Li, B.; Zhao, N.; Zhu, M.; Huang, Y.; Tian, B.; Shi, G.; Hua, J. Two Aquaporin Genes, GhPIP2;7 and GhTIP2;1, Positively Regulate the Tolerance of Upland Cotton to Salt and Osmotic Stresses. Front. Plant Sci. 2022, 12, 780486. [Google Scholar] [CrossRef]
- Liang, P.; Guo, M.; Wang, D.; Li, T.; Li, R.; Li, D.; Zhang, L. Molecular and Functional Characterization of Heat-Shock Protein 70 in Aphis gossypii under Thermal and Xenobiotic Stresses. Pestic. Biochem. Physiol. 2024, 199, 105774. [Google Scholar] [CrossRef]
- Sable, A.; Rai, K.M.; Choudhary, A.; Yadav, V.K.; Agarwal, S.K.; Sawant, S.V. Inhibition of Heat Shock Proteins HSP90 and HSP70 Induce Oxidative Stress, Suppressing Cotton Fiber Development. Sci. Rep. 2018, 8, 3620. [Google Scholar] [CrossRef]
- Peng, Z.; He, S.; Gong, W.; Sun, J.; Pan, Z.; Xu, F.; Lu, Y.; Du, X. Comprehensive Analysis of Differentially Expressed Genes and Transcriptional Regulation Induced by Salt Stress in Two Contrasting Cotton Genotypes. BMC Genom. 2014, 15, 2053. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, H.; Hou, Z.; Li, Y.; Yang, C.; Wang, D.; Song, C. Screening of Abiotic Stress-Responsive Cotton Genes Using a Cotton Full-Length cDNA Overexpressing Arabidopsis Library. J. Integr. Plant Biol. 2020, 62, 998–1016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cheng, M.; Cao, N.; Li, Y.; Wang, S.; Zhou, Z.; Hu, W. Drought Stress and High Temperature Affect the Antioxidant Metabolism of Cotton (Gossypium hirsutum L.) Anthers and Reduce Pollen Fertility. Agronomy 2023, 13, 2550. [Google Scholar] [CrossRef]
- Cushman, K.R.; Pabuayon, I.C.M.; Hinze, L.L.; Sweeney, M.E.; Reyes, B.G.d.L. Networks of Physiological Adjustments and Defenses, and Their Synergy With Sodium (Na+) Homeostasis Explain the Hidden Variation for Salinity Tolerance Across the Cultivated Gossypium hirsutum Germplasm. Front. Plant Sci. 2020, 11, 588854. [Google Scholar] [CrossRef]
- Zeng, W.; Mostafa, S.; Lu, Z.; Jin, B. Melatonin-Mediated Abiotic Stress Tolerance in Plants. Front. Plant Sci. 2022, 13, 847175. [Google Scholar] [CrossRef]
- Yu, H.; Guo, Q.; Ji, W.; Wang, H.; Tao, J.; Xu, P.; Chen, X.; Ali, W.; Wu, X.; Shen, X.; et al. Transcriptome Expression Profiling Reveals the Molecular Response to Salt Stress in Gossypium anomalum Seedlings. Plants 2024, 13, 312. [Google Scholar] [CrossRef]
- Geng, Z.; Dou, H.; Liu, J.; Zhao, G.; An, Z.; Liu, L.; Zhao, N.; Zhang, H.; Wang, Y. GhFB15 is an F-Box Protein That Modulates the Response to Salinity by Regulating Flavonoid Biosynthesis. Plant Sci. 2024, 338, 111899. [Google Scholar] [CrossRef]
- Huang, G.-Q.; Li, W.; Zhou, W.; Zhang, J.-M.; Li, D.-D.; Gong, S.-Y.; Li, X.-B. Seven Cotton Genes Encoding Putative NAC Domain Proteins Are Preferentially Expressed in Roots and in Responses to Abiotic Stress during Root Development. Plant Growth Regul. 2013, 71, 101–112. [Google Scholar] [CrossRef]
- Ren, W.; Chen, L. Integrated Transcriptome and Metabolome Analysis of Salinity Tolerance in Response to Foliar Application of β-Alanine in Cotton Seedlings. Genes 2023, 14, 1825. [Google Scholar] [CrossRef]
- Chen, L.; Sun, H.; Kong, J.; Xu, H.; Yang, X. Integrated Transcriptome and Proteome Analysis Reveals Complex Regulatory Mechanism of Cotton in Response to Salt Stress. J. Cotton Res. 2021, 4, 11. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Z.; Wei, H.; Cheng, S.; Hao, P.; Yu, S.; Wang, H. Silencing of GhKEA4 and GhKEA12 Revealed Their Potential Functions Under Salt and Potassium Stresses in Upland Cotton. Front. Plant Sci. 2021, 12, 789775. [Google Scholar] [CrossRef]
- Joshi, B.; Singh, S.; Tiwari, G.J.; Kumar, H.; Boopathi, N.M.; Jaiswal, S.; Adhikari, D.; Kumar, D.; Sawant, S.V.; Iquebal, M.A.; et al. Genome-Wide Association Study of Fiber Yield-Related Traits Uncovers the Novel Genomic Regions and Candidate Genes in Indian Upland Cotton (Gossypium hirsutum L.). Front. Plant Sci. 2023, 14, 1252746. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Guo, W. Genome-Wide Characterization of the Rab Gene Family in Gossypium by Comparative Analysis. Bot. Stud. 2017, 58, 26. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.H.; Wang, F.L.; Cheng, X.Q.; Zhu, Q.H.; Sun, Y.Q.; Zhu, H.G.; Sun, J. Polyamine and Its Metabolite H2O2 Play a Key Role in the Conversion of Embryogenic Callus into Somatic Embryos in Upland Cotton (Gossypium hirsutum L.). Front. Plant Sci. 2015, 6, 1063. [Google Scholar] [CrossRef]
- Muhammad, U.; Zhang, Y.; Ali, A.; Li, H.; Han, Y.; Sun, Y.; Wang, J.; Wang, W.; Samrana, S.; Khan, S.; et al. Melatonin Reduces Cadmium Accumulation through Cell Wall Fraction Fixation Capacity in Cotton Seedlings. Plant Stress 2024, 12, 100444. [Google Scholar] [CrossRef]
- Lu, L.; Qanmber, G.; Li, J.; Pu, M.; Chen, G.; Li, S.; Liu, L.; Qin, W.; Ma, S.; Wang, Y.; et al. Identification and Characterization of the ERF Subfamily B3 Group Revealed GhERF13.12 Improves Salt Tolerance in Upland Cotton. Front. Plant Sci. 2021, 12, 705883. [Google Scholar] [CrossRef]
- Kirungu, J.N.; Magwanga, R.O.; Pu, L.; Cai, X.; Xu, Y.; Hou, Y.; Zhou, Y.; Cai, Y.; Hao, F.; Zhou, Z.; et al. Knockdown of Gh_A05G1554 (GhDHN_03) and Gh_D05G1729 (GhDHN_04) Dehydrin Genes, Reveals Their Potential Role in Enhancing Osmotic and Salt Tolerance in Cotton. Genomics 2020, 112, 1902–1915. [Google Scholar] [CrossRef]
- Wu, C.-A.; Yang, G.-D.; Meng, Q.-W.; Zheng, C.-C. The Cotton GhNHX1 Gene Encoding a Novel Putative Tonoplast Na+/H+ Antiporter Plays an Important Role in Salt Stress. Plant Cell Physiol. 2004, 45, 600–607. [Google Scholar] [CrossRef]
- Li, Y.; Wu, X.; Zhang, Y.; Zhang, Q. CRISPR/Cas Genome Editing Improves Abiotic and Biotic Stress Tolerance of Crops. Front. Genome Ed. 2022, 4, 987817. [Google Scholar] [CrossRef]
- Yan, J.; Li, H.; Li, Y.; Zhang, N.; Zhang, S. Abscisic Acid Synthesis and Root Water Uptake Contribute to Exogenous Methyl Jasmonate-Induced Improved Tomato Drought Resistance. Plant Biotechnol. Rep. 2022, 16, 183–193. [Google Scholar] [CrossRef]
- Tossi, V.E.; Regalado, J.J.; Iannicelli, J.; Laino, L.E.; Burrieza, H.P.; Escandón, A.S.; Pitta-Álvarez, S.I. Beyond Arabidopsis: Differential UV-B Response Mediated by UVR8 in Diverse Species. Front. Plant Sci. 2019, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xie, Z.; Xin, J.; Yuan, S.; Liu, S.; Sun, Y.; Zhang, Y.; Jin, C. OsbZIP18 Is a Positive Regulator of Phenylpropanoid and Flavonoid Biosynthesis under UV-B Radiation in Rice. Plants 2024, 13, 498. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Li, Y.; Wang, S.; Zhang, L.; Liu, Y.; Xue, F.; Sun, Y.; Wang, Y.; Sun, J. Molecular Analysis of Proanthocyanidins Related to Pigmentation in Brown Cotton Fibre (Gossypium hirsutum L.). J. Exp. Bot. 2014, 65, 5759–5769. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Shen, L.; Yuan, J.; Zheng, H.; Su, Q.; Yang, W.; Zhang, L.; Nnaemeka, V.E.; Sun, J.; Ke, L.; et al. Functional Analysis of GhCHS, GhANR and GhLAR in Colored Ber Formation of Gossypium hirsutum L. BMC Plant Biol. 2019, 19, 455. [Google Scholar] [CrossRef] [PubMed]
- Pandey, D.K.; Chaudhary, B. Transcriptional Loss of Domestication-Driven Cytoskeletal GhPRF1 Gene Causes Defective Floral and Fiber Development in Cotton (Gossypium). Plant Mol. Biol. 2021, 107, 519–532. [Google Scholar] [CrossRef]
- Abdelraheem, A.; Esmaeili, N.; O’connell, M.; Zhang, J. Progress and Perspective on Drought and Salt Stress Tolerance in Cotton. Ind. Crop. Prod. 2018, 130, 118–129. [Google Scholar] [CrossRef]
- Billah, M.; Li, F.; Yang, Z. Regulatory Network of Cotton Genes in Response to Salt, Drought and Wilt Diseases (Verticillium and Fusarium): Progress and Perspective. Front. Plant Sci. 2021, 12, 759245. [Google Scholar] [CrossRef]
- Kushanov, F.N.; Turaev, O.S.; Ernazarova, D.K.; Gapparov, B.M.; Oripova, B.B.; Kudratova, M.K.; Rafieva, F.U.; Khalikov, K.K.; Erjigitov, D.S.; Khidirov, M.T.; et al. Genetic Diversity, QTL Mapping, and Marker-Assisted Selection Technology in Cotton (Gossypium spp.). Front. Plant Sci. 2021, 12, 779386. [Google Scholar] [CrossRef]
- Mwando, E.; Han, Y.; Angessa, T.T.; Zhou, G.; Hill, C.B.; Zhang, X.-Q.; Li, C. Genome-Wide Association Study of Salinity Tolerance during Germination in Barley (Hordeum vulgare L.). Front. Plant Sci. 2020, 11, 118. [Google Scholar] [CrossRef]
- Han, W.; Zhao, J.; Deng, X.; Gu, A.; Li, D.; Wang, Y.; Lu, X.; Zu, Q.; Chen, Q.; Chen, Q.; et al. Quantitative Trait Locus Mapping and Identification of Candidate Genes for Resistance to Fusarium Wilt Race 7 Using a Resequencing-Based High Density Genetic Bin Map in a Recombinant Inbred Line Population of Gossypium barbadense. Front. Plant Sci. 2022, 13, 815643. [Google Scholar] [CrossRef]
- Shukla, R.P.; Tiwari, G.J.; Joshi, B.; Song-Beng, K.; Tamta, S.; Boopathi, N.M.; Jena, S.N. GBS-SNP and SSR Based Genetic Mapping and QTL Analysis for Drought Tolerance in Upland Cotton. Physiol. Mol. Biol. Plants 2021, 27, 1731–1745. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Yang, Y.; Wang, P.; Ma, J.; Du, X. Quantitative Trait Loci and Candidate Genes for Yield-Related Traits of Upland Cotton Revealed by Genome-Wide Association Analysis under Drought Conditions. BMC Genom. 2023, 24, 531. [Google Scholar] [CrossRef] [PubMed]
- Yasir, M.; Kanwal, H.H.; Hussain, Q.; Riaz, M.W.; Sajjad, M.; Rong, J.; Jiang, Y. Status and Prospects of Genome-Wide Association Studies in Cotton. Front. Plant Sci. 2022, 13, 1019347. [Google Scholar] [CrossRef] [PubMed]
- Maryum, Z.; Luqman, T.; Nadeem, S.; Khan, S.M.U.D.; Wang, B.; Ditta, A.; Khan, M.K.R. An Overview of Salinity Stress, Mechanism of Salinity Tolerance and Strategies for Its Management in Cotton. Front. Plant Sci. 2022, 13, 907937. [Google Scholar] [CrossRef]
- Oluoch, G.; Zheng, J.; Wang, X.; Khan, M.K.R.; Zhou, Z.; Cai, X.; Wang, C.; Wang, Y.; Li, X.; Wang, H.; et al. QTL Mapping for Salt Tolerance at Seedling Stage in the Interspecific Cross of Gossypium tomentosum with Gossypium hirsutum. Euphytica 2016, 209, 223–235. [Google Scholar] [CrossRef]
- Said, J.I.; Lin, Z.; Zhang, X.; Song, M.; Zhang, J. A Comprehensive Meta QTL Analysis for Fiber Quality, Yield, Yield Related and Morphological Traits, Drought Tolerance, and Disease Resistance in Tetraploid Cotton. BMC Genom. 2013, 14, 776. [Google Scholar] [CrossRef]
- Li, L.-B.; Yu, D.-W.; Zhao, F.-L.; Pang, C.-Y.; Song, M.-Z.; Wei, H.-L.; Fan, S.-L.; Yu, S.-X. Genome-Wide Analysis of the Calcium-dependent Protein Kinase Gene Family in Gossypium raimondii. J. Integr. Agric. 2015, 14, 29–41. [Google Scholar] [CrossRef]
- Dai, X.; Shen, L. Advances and Trends in Omics Technology Development. Front. Med. 2022, 9, 911861. [Google Scholar] [CrossRef]
- Roychowdhury, R.; Das, S.P.; Gupta, A.; Parihar, P.; Chandrasekhar, K.; Sarker, U.; Kumar, A.; Ramrao, D.P.; Sudhakar, C. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant’s Abiotic Stress Tolerance Responses. Genes 2023, 14, 1281. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Z.; Dong, Y.; Xie, Z. Overexpression of the Cotton Trihelix Transcription Factor GhGT23 in Arabidopsis Mediates Salt and Drought Stress Tolerance by Binding to GT and MYB Promoter Elements in Stress-Related Genes. Front. Plant Sci. 2023, 14, 1144650. [Google Scholar] [CrossRef]
- Nihad, S.A.I.; Hasan, A.-I.; Anik, T.R.; Rashid, M.; Khan, M.A.I.; Islam, R.; Latif, M.A. Pyramiding of Blast and Bacterial Blight Resistance Genes in Premium Quality Rice Variety, BRRI Dhan63 through Marker-Assisted Breeding Approach. Euphytica 2024, 220, e0301342. [Google Scholar] [CrossRef]
- He, Z.; Chen, M.; Ling, B.; Cao, T.; Wang, C.; Li, W.; Tang, W.; Chen, K.; Zhou, Y.; Chen, J.; et al. Overexpression of the Autophagy-Related Gene SiATG8a from Foxtail Millet (Setaria italica L.) in Transgenic Wheat Confers Tolerance to Phosphorus Starvation. Plant Physiol. Biochem. 2023, 196, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Meng, Z.; Meng, Z.; Malik, W.; Yan, R.; Lwin, K.M.; Lin, F.; Wang, Y.; Sun, G.; Zhou, T.; et al. GhABF2, a bZIP Transcription Factor, Confers Drought and Salinity Tolerance in Cotton (Gossypium hirsutum L.). Sci. Rep. 2016, 6, 35040. [Google Scholar] [CrossRef]
- Liu, G.; Li, X.; Jin, S.; Liu, X.; Zhu, L.; Nie, Y.; Zhang, X. Overexpression of Rice NAC Gene SNAC1 Improves Drought and Salt Tolerance by Enhancing Root Development and Reducing Transpiration Rate in Transgenic Cotton. PLoS ONE 2014, 9, e86895. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, K.; Gao, Q.; Lian, L.; Song, Y.; Zhang, J. Overexpression of an H+-PPase Gene from Thellungiella halophila in Cotton Enhances Salt Tolerance and Improves Growth and Photosynthetic Performance. Plant Cell Physiol. 2008, 49, 1150–1164. [Google Scholar] [CrossRef]
- Tang, W.; Tu, L.; Yang, X.; Tan, J.; Deng, F.; Hao, J.; Guo, K.; Lindsey, K.; Zhang, X. The Calcium Sensor GhCaM7 Promotes Cotton Fiber Elongation by Modulating Reactive Oxygen Species (ROS) Production. New Phytol. 2014, 202, 509–520. [Google Scholar] [CrossRef]
- Yan, M.; Yu, X.; Zhou, G.; Sun, D.; Hu, Y.; Huang, C.; Zheng, Q.; Sun, N.; Wu, J.; Fu, Z.; et al. GhCDPK60 Positively Regulates Drought Stress Tolerance in Both Transgenic Arabidopsis and Cotton by Regulating Proline Content and ROS Level. Front. Plant Sci. 2022, 13, 1072584. [Google Scholar] [CrossRef]
- Lisei-De-Sá, M.E.; Arraes, F.B.M.; Brito, G.G.; Beneventi, M.A.; Lourenço-Tessutti, I.T.; Basso, A.M.M.; Amorim, R.M.S.; Silva, M.C.M.; Faheem, M.; Oliveira, N.G.; et al. AtDREB2A-CA Influences Root Architecture and Increases Drought Tolerance in Transgenic Cotton. Agric. Sci. 2017, 8, 1195–1225. [Google Scholar] [CrossRef]
- Mi, X.; Li, W.; Chen, C.; Xu, H.; Wang, G.; Jin, X.; Guo, W. GhMPK9-GhRAF39_1-GhWRKY40a Regulates the GhERF1b- and GhABF2-Mediated Pathways to Increase Cotton Disease Resistance. Adv. Sci. 2024, 2404400. [Google Scholar] [CrossRef]
- Comas, L.H.; Becker, S.R.; Cruz, V.M.V.; Byrne, P.F.; Dierig, D.A. Root Traits Contributing to Plant Productivity under Drought. Front. Plant Sci. 2013, 4, 442. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, D.; Li, X.; Li, H.; Zhang, D.; Lan, H.; Wood, A.J.; Wang, J. Overexpression of ScALDH21 Gene in Cotton Improves Drought Tolerance and Growth in Greenhouse and Field Conditions. Mol. Breed. 2016, 36, 34. [Google Scholar] [CrossRef]
- Tang, Y.; Bao, X.; Zhi, Y.; Wu, Q.; Guo, Y.; Yin, X.; Zeng, L.; Li, J.; Zhang, J.; He, W.; et al. Overexpression of a MYB Family Gene, OsMYB6, Increases Drought and Salinity Stress Tolerance in Transgenic Rice. Front. Plant Sci. 2019, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.M.; Shangguan, X.X.; Zhao, B.; Zhang, X.F.; Chao, L.M.; Yang, C.Q.; Wang, L.J.; Zhu, H.Y.; Zeng, Y.D.; Guo, W.Z.; et al. Control of cotton fibre elongation by a homeodomain transcription factor GhHOX. Nat. Commun. 2014, 5, 5519. [Google Scholar] [CrossRef]
- Kumar, R.; Das, J.; Puttaswamy, R.K.; Kumar, M.; Balasubramani, G.; Prasad, Y.G. Targeted genome editing for cotton improvement: Prospects and challenges. Nucleus 2024, 67, 181–203. [Google Scholar] [CrossRef]
- Zafar, S.A.; Zaidi, S.S.-E.A.; Gaba, Y.; Singla-Pareek, S.L.; Dhankher, O.P.; Li, X.; Mansoor, S.; Pareek, A. Engineering Abiotic Stress Tolerance via CRISPR/Cas-Mediated Genome Editing. J. Exp. Bot. 2020, 71, 470–479. [Google Scholar] [CrossRef]
- Patil, A.M.; Wagh, S.G.; Janvale, G.B.; Pawar, B.D.; Daspute, A.A. Viral delivery of CRISPR/Cas9 genome editing for rapid crop improvement: A promising approach to enhance crop resilience against biotic and abiotic stresses. Int. J. Adv. Biochem. Res. 2024, 8, 782–796. [Google Scholar] [CrossRef]
- Gao, W.; Long, L.; Tian, X.; Xu, F.; Liu, J.; Singh, P.K.; Botella, J.R.; Song, C. Genome Editing in Cotton with the CRISPR/Cas9 System. Front. Plant Sci. 2017, 8, 1364. [Google Scholar] [CrossRef]
- Fiaz, S.; Khan, S.A.; Younas, A.; Shahzad, K.; Ali, H.; Noor, M.A.; Ashraf, U.; Nadeem, F. Application of CRISPR/Cas System for Genome Editing in Cotton. In CRISPR and RNAi Systems: Nanobiotechnology Approaches to Plant Breeding and Protection: A Volume in Nanobiotechnology for Plant Protection; Elsevier: Amsterdam, The Netherlands, 2021; pp. 277–301. [Google Scholar]
- Shelake, R.M.; Kadam, U.S.; Kumar, R.; Pramanik, D.; Singh, A.K.; Kim, J.Y. Engineering Drought and Salinity Tolerance Traits in Crops through CRISPR-Mediated Genome Editing: Targets, Tools, Challenges, and Perspectives. Plant Commun. 2022, 3, 100417. [Google Scholar] [CrossRef]
- Zhang, F.; Wen, Y.; Guo, X. CRISPR/Cas9 for Genome Editing: Progress, Implications and Challenges. Hum. Mol. Genet. 2014, 23, R40–R46. [Google Scholar] [CrossRef]
- Miladinovic, D.; Antunes, D.; Yildirim, K.; Bakhsh, A.; Cvejić, S.; Kondić-Špika, A.; Jeromela, A.M.; Opsahl-Sorteberg, H.-G.; Zambounis, A.; Hilioti, Z. Targeted Plant Improvement through Genome Editing: From Laboratory to Field. Plant Cell Rep. 2021, 40, 935–951. [Google Scholar] [CrossRef]
- Moreira, D.; Pereira, A.M.; Lopes, A.L.; Coimbra, S. The best CRISPR/Cas9 versus RNA interference approaches for Arabinogalactan proteins’ study. Mol. Biol. Rep. 2020, 47, 2315–2325. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Mandal, S.; Tiwari, A.; Monachesi, C.; Catassi, G.N.; Srivastava, A.; Gatti, S.; Lionetti, E.; Catassi, C. Current Status and Perspectives on the Application of CRISPR/Cas9 Gene-Editing System to Develop a Low-Gluten, Non-Transgenic Wheat Variety. Foods 2021, 10, 2351. [Google Scholar] [CrossRef] [PubMed]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F. ZFN, TALEN, and CRISPR/Cas-Based Methods for Genome Engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Shelake, R.M.; Pramanik, D.; Waghunde, R.R.; Kim, J.Y. Plant Mutagenesis Tools for Precision Breeding: Conventional CRISPR/Cas9 Tools and Beyond. In Mutation Breeding for Sustainable Food Production and Climate Resilience; Penna, S., Jain, S.M., Eds.; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Javaid, D.; Ganie, S.Y.; Hajam, Y.A.; Reshi, M.S. CRISPR/Cas9 System: A Reliable and Facile Genome Editing Tool in Modern Biology. Mol. Biol. Rep. 2022, 49, 12133–12150. [Google Scholar] [CrossRef] [PubMed]
- Misra, A.; Singh, P.K.; Pandey, S.N. Improvement of Cotton Varieties Using Biotechnological Tools: A Review. J. Appl. Biosci. 2024, 50, 24–29. [Google Scholar] [CrossRef]
- Long, L.; Guo, D.-D.; Gao, W.; Yang, W.-W.; Hou, L.-P.; Ma, X.-N.; Miao, Y.-C.; Botella, J.R.; Song, C.-P. Optimization of CRISPR/Cas9 Genome Editing in Cotton by Improved sgRNA Expression. Plant Methods 2018, 14, 85. [Google Scholar] [CrossRef]
- Li, C.; Unver, T.; Zhang, B. A High-Efficiency CRISPR/Cas9 System for Targeted Mutagenesis in Cotton (Gossypium hirsutum L.). Sci. Rep. 2017, 7, 43902. [Google Scholar] [CrossRef]
- Janga, M.R.; Campbell, L.M.; Rathore, K.S. CRISPR/Cas9-Mediated Targeted Mutagenesis in Upland Cotton (Gossypium hirsutum L.). Plant Mol. Biol. 2017, 94, 349–360. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, J.; Sun, L.; Ma, Y.; Xu, J.; Liang, S.; Deng, J.; Tan, J.; Zhang, Q.; Tu, L.; et al. High Efficient Multisites Genome Editing in Allotetraploid Cotton (Gossypium hirsutum) Using CRISPR/Cas9 System. Plant Biotechnol. J. 2018, 16, 137–150. [Google Scholar] [CrossRef]
- Chen, X.; Lu, X.; Shu, N.; Wang, S.; Wang, J.; Wang, D.; Guo, L.; Ye, W. Targeted Mutagenesis in Cotton (Gossypium hirsutum L.) Using the CRISPR/Cas9 System. Sci. Rep. 2017, 7, 44304. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Zhang, G.; Jiao, H.; Sang, Y.; Ma, P. CRISPR/Cas9 Targeted Editing of GhNAC3 in Cotton. Acta Bot. Bore al. Occident. Sin. 2023, 43, 1834. [Google Scholar] [CrossRef]
- Xia, L.; Sun, S.; Han, B.; Yang, X. NAC domain transcription factor gene GhNAC3 confers drought tolerance in plants. Plant Physiol. Biochem. 2023, 195, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Shelake, R.M.; Pramanik, D.; Kim, J.-Y. CRISPR base editor-based targeted random mutagenesis (BE-TRM) toolbox for directed evolution. BMB Rep. 2024, 57, 30–39. [Google Scholar] [CrossRef]
- Qin, L.; Li, J.; Wang, Q.; Xu, Z.; Sun, L.; Alariqi, M.; Manghwar, H.; Wang, G.; Li, B.; Ding, X.; et al. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol. J. 2020, 18, 45–56. [Google Scholar] [CrossRef]
- Wang, G.; Xu, Z.; Wang, F.; Huang, Y.; Xin, Y.; Liang, S.; Li, B.; Si, H.; Sun, L.; Wang, Q.; et al. Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum). BMC Biol. 2022, 20, 1–15. [Google Scholar] [CrossRef]
- Wang, G.; Wang, F.; Xu, Z.; Wang, Y.; Zhang, C.; Zhou, Y.; Hui, F.; Yang, X.; Nie, X.; Zhang, X.; et al. Precise fine-turning of GhTFL1 by base editing tools defines ideal cotton plant architecture. Genome Biol. 2024, 25, 59. [Google Scholar] [CrossRef]
- Li, H.; Li, K.; Guo, Y.; Guo, J.; Miao, K.; Botella, J.R.; Song, C.-P.; Miao, Y. A Transient Transformation System for Gene Characterization in Upland Cotton (Gossypium hirsutum). Plant Methods 2018, 14, 50. [Google Scholar] [CrossRef]
- Wang, X.Q.; Han, L.H.; Zhou, W.; Tao, M.; Hu, Q.Q.; Zhou, Y.N.; Li, X.B.; Li, D.D.; Huang, G.Q. GhEIN3, a Cotton (Gossypium hirsutum) Homologue of AtEIN3, Is Involved in Regulation of plant salinity Tolerance. Plant Physiol. Biochem. 2019, 143, 83–93. [Google Scholar] [CrossRef]
- Tian, M.; Wu, A.; Zhang, M.; Zhang, J.; Wei, H.; Yang, X.; Ma, L.; Lu, J.; Fu, X.; Wang, H.; et al. Genome-Wide Identification of the Early Flowering 4 (ELF4) Gene Family in Cotton and Silent GhELF4-1 and GhEFL3-6 Decreased Cotton Stress Resistance. Front. Genet. 2021, 12, 686852. [Google Scholar] [CrossRef]
- Wang, R.; Liu, L.; Kong, Z.; Li, S.; Lu, L.; Kabir, N.; Chen, G.; Zhang, J.; Qanmber, G.; Liu, Z. Identification of GhLOG Gene Family Revealed That GhLOG3 Is Involved in Regulating Salinity Tolerance in Cotton (Gossypium hirsutum L.). Plant Physiol. Biochem. 2021, 166, 328–340. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Wei, H.; Fu, X.; Ma, L.; Lu, J.; Wang, H.; Yu, S. Genome-Wide Identification of NF-YA Gene Family in Cotton and the Positive Role of GhNF-YA10 and GhNF-YA23 in Salt Tolerance. Int. J. Biol. Macromol. 2020, 165, 2103–2115. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Li, Y.; Dai, P.; Liu, C.; Zhao, Y.; You, Y.; Qu, Y.; Chen, Q.; Liu, X. Efficient Virus-Mediated Genome Editing in Cotton Using the CRISPR/Cas9 System. Front. Plant Sci. 2022, 13, 1032799. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.; Alariqi, M.; Ma, Y.; Li, Y.; Liu, Z.; Zhang, R.; Jin, S.; Min, L.; Zhang, X. Efficient CRISPR/Cas9 Mediated Pooled-sgRNAs Assembly Accelerates Targeting Multiple Genes Related to Male Sterility in Cotton. Plant Methods 2021, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- Medina-de la Cruz, R.O.; Gonzalez-Avila, L.U.; Saldaña-Padilla, A.; Mora-Piña, C.J.; Hernández-Cortez, C.; Castro-Escarpulli, G. CRISPR-Based Techniques and Their Application in Plants. In CRISPRized Horticulture Crops; Academic Press: Cambridge, MA, USA, 2024; pp. 91–104. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; Zhang, W.; Hu, Y.; Chang, L.; Fang, L.; Wang, Q.; Lv, F.; Wu, H.; Si, Z.; et al. Sequence-Based Ultra-Dense Genetic and Physical Maps Reveal Structural Variations of Allopolyploid Cotton Genomes. Genome Biol. 2015, 16, 108. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, B.P.; Malla, S. Improving Horticultural Crops via CRISPR/Cas9: Current Successes and Prospects. Plants 2020, 9, 1360. [Google Scholar] [CrossRef]
- Wagh, S.G.; Pohare, M.B. Current and Future Prospects of Plant Breeding with CRISPR/Cas. Curr. J. Appl. Sci. Technol. 2019, 38, 1–17. [Google Scholar] [CrossRef]
- Makarova, S.S.; Khromov, A.V.; Spechenkova, N.A.; Taliansky, M.E.; Kalinina, N.O. Application of the CRISPR/Cas System for Generation of Pathogen-Resistant Plants. Biochemistry 2018, 83, 1552–1562. [Google Scholar] [CrossRef]
- Wang, Y.; Zafar, N.; Ali, Q.; Manghwar, H.; Wang, G.; Yu, L.; Ding, X.; Ding, F.; Hong, N.; Wang, G.; et al. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives. Cells 2022, 11, 3928. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Z.; Unver, T.; Zhang, B. CRISPR/Cas: A powerful tool for gene function study and crop improvement. J. Adv. Res. 2021, 29, 207–221. [Google Scholar] [CrossRef]
- Singhal, R.; Pal, R.; Dutta, S. Chloroplast Engineering: Fundamental Insights and Its Application in Amelioration of Environmental Stress. Appl. Biochem. Biotechnol. 2023, 195, 2463–2482. [Google Scholar] [CrossRef]
- Pérez-Clemente, R.M.; Vives, V.; Zandalinas, S.I.; López-Climent, M.F.; Muñoz, V.; Gómez-Cadenas, A. Biotechnological Approaches to Study Plant Responses to Stress. BioMed Res. Int. 2013, 2013, 654120. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Khan, S.; Wani, I.A.; Gupta, R.; Verma, S.; Alam, P.; Alaklabi, A. Unravelling the Role of Epigenetic Modifications in Development and Reproduction of Angiosperms: A Critical Appraisal. Front. Genet. 2022, 13, 819941. [Google Scholar] [CrossRef] [PubMed]
- Abdulraheem, M.I.; Xiong, Y.; Moshood, A.Y.; Cadenas-Pliego, G.; Zhang, H.; Hu, J. Mechanisms of Plant Epigenetic Regulation in Response to Plant Stress: Recent Discoveries and Implications. Plants 2024, 13, 163. [Google Scholar] [CrossRef]
- Choudhary, S.; Wani, K.I.; Naeem, M.; Khan, M.M.A.; Aftab, T. Cellular Responses, Osmotic Adjustments, and Role of Osmolytes in Providing Salt Stress Resilience in Higher Plants: Polyamines and Nitric Oxide Crosstalk. J. Plant Growth Regul. 2023, 42, 539–553. [Google Scholar] [CrossRef]
- dos Santos, C.; Franco, O.L. Pathogenesis-Related Proteins (PRs) with Enzyme Activity Activating Plant Defense Responses. Plants 2023, 12, 2226. [Google Scholar] [CrossRef]
- Li, C.; Xu, M.; Cai, X.; Han, Z.; Si, J.; Chen, D. Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-Offs. Int. J. Mol. Sci. 2022, 23, 3945. [Google Scholar] [CrossRef]
- Campos, M.D.; Félix, M.D.R.; Patanita, M.; Materatski, P.; Albuquerque, A.; Ribeiro, J.A.; Varanda, C. Defense Strategies: The Role of Transcription Factors in Tomato–Pathogen Interaction. Biology 2022, 11, 235. [Google Scholar] [CrossRef]
- Nykiel, M.; Gietler, M.; Fidler, J.; Prabucka, B.; Rybarczyk-Płońska, A.; Graska, J.; Boguszewska-Mańkowska, D.; Muszyńska, E.; Morkunas, I.; Labudda, M. Signal Transduction in Cereal Plants Struggling with Environmental Stresses: From Perception to Response. Plants 2022, 11, 1009. [Google Scholar] [CrossRef]
- Pastor, V.; Cervero, R.; Gamir, J. The Simultaneous Perception of Self- and Non-Self-Danger Signals Potentiates Plant Innate Immunity Responses. Planta 2022, 256, 10. [Google Scholar] [CrossRef]
- Jang, G.; Joung, Y.H. CRISPR/Cas-Mediated Genome Editing for Crop Improvement: Current Applications and Future Prospects. Plant Biotechnol. Rep. 2018, 13, 3928. [Google Scholar] [CrossRef]
- Gaj, T.; Sirk, S.J.; Shui, S.-L.; Liu, J. Genome-Editing Technologies: Principles and Applications. Cold Spring Harb. Perspect. Biol. 2016, 8, a023754. [Google Scholar] [CrossRef]
- Ndudzo, A.; Makuvise, A.S.; Moyo, S.; Bobo, E.D. CRISPR-Cas9 Genome Editing in Crop Breeding for Climate Change Resilience: Implications for Smallholder Farmers in Africa. J. Agric. Food Res. 2024, 16, 101132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, A.M.; Pawar, B.D.; Wagh, S.G.; Shinde, H.; Shelake, R.M.; Markad, N.R.; Bhute, N.K.; Červený, J.; Wagh, R.S. Abiotic Stress in Cotton: Insights into Plant Responses and Biotechnological Solutions. Agriculture 2024, 14, 1638. https://doi.org/10.3390/agriculture14091638
Patil AM, Pawar BD, Wagh SG, Shinde H, Shelake RM, Markad NR, Bhute NK, Červený J, Wagh RS. Abiotic Stress in Cotton: Insights into Plant Responses and Biotechnological Solutions. Agriculture. 2024; 14(9):1638. https://doi.org/10.3390/agriculture14091638
Chicago/Turabian StylePatil, Akshay Milind, Bhausaheb D. Pawar, Sopan Ganpatrao Wagh, Harshraj Shinde, Rahul Mahadev Shelake, Nanasaheb R. Markad, Nandu K. Bhute, Jan Červený, and Rajendra. S. Wagh. 2024. "Abiotic Stress in Cotton: Insights into Plant Responses and Biotechnological Solutions" Agriculture 14, no. 9: 1638. https://doi.org/10.3390/agriculture14091638
APA StylePatil, A. M., Pawar, B. D., Wagh, S. G., Shinde, H., Shelake, R. M., Markad, N. R., Bhute, N. K., Červený, J., & Wagh, R. S. (2024). Abiotic Stress in Cotton: Insights into Plant Responses and Biotechnological Solutions. Agriculture, 14(9), 1638. https://doi.org/10.3390/agriculture14091638