Study on the Contact Parameter Calibration of the Maize Kernel Polyhedral Discrete Element Model
Abstract
:1. Introduction
2. Maize Granule Modeling
2.1. Materials
2.2. Measurement of Characteristic Particle Size of Maize Kernels
2.3. Discrete Element Method Control Equations
3. Contact Parameter Calibration
3.1. Calibration of Contact Parameters between Maize and Steel
3.1.1. Determination of the Coefficient of Restitution
3.1.2. Determination of the Static Friction Coefficient
3.1.3. Determination of the Dynamic Friction Coefficient
3.2. Calibration of Contact Parameters between Mazie Kernels
3.2.1. Angle of Repose Experiment
3.2.2. Steepest Climb Test
3.2.3. Center Composite Design Response Surface Experiment
3.2.4. Interaction Analysis of Experiment Factors
4. Experimental Verification
4.1. Optimal Parameter Solution
4.2. Comparison and Verification of Angle of Repose Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, S.; Zhang, D.; Yang, L.; Cui, T.; Zhang, R.; Yin, X. Design and experiment of pneumatic maize precision seed-metering device with combined holes. Trans. Chin. Soc. Agric. Eng. 2014, 30, 10–18. [Google Scholar] [CrossRef]
- Hernández, G.L.; Aguilar, C.H.; Pacheco, A.D.; Sibaja, A.M.; Orea, A.C.; de Jesus Agustin Flores Cuautle, J. Thermal properties of maize seed components. Cogent Food Agric. 2023, 9, 2231681. [Google Scholar] [CrossRef]
- Horabik, J.; Wiącek, J.; Parafiniuk, P.; Bańda, M.; Kobyłka, R.; Stasiak, M.; Molenda, M. Calibration of discrete-element-method model parameters of bulk wheat for storage. Biosys. Eng. 2020, 200, 298–314. [Google Scholar] [CrossRef]
- Boac, J.M.; Ambrose, R.P.K.; Casada, M.E.; Maghirang, R.G.; Maier, D.E. Applications of Discrete Element Method in Modeling of Grain Postharvest Operations. Food Eng. Rev. 2014, 6, 128–149. [Google Scholar] [CrossRef]
- Whittles, D.N.; Kingman, S.; Lowndes, I.S.; Griffiths, R. An investigation into the parameters affecting mass flow rate of ore material through a microwave continuous feed system. Adv. Powder Technol. 2005, 16, 585–609. [Google Scholar] [CrossRef]
- Wang, J.; Tang, H.; Wang, Q.; Zhou, W.; Yang, W.; Shen, H. Numerical simulation and experiment on seeding performance of pickup finger precision seed-metering device based on EDEM. Trans. Chin. Soc. Agric. Eng. 2015, 31, 43–50. [Google Scholar] [CrossRef]
- Liu, J.; Cui, T.; Zhang, D.; Yang, L.; Gao, N.; Wang, B. Effects of maize seed grading on sowing quality by pneumatic precision seed-metering device. Trans. Chin. Soc. Agric. Eng. 2010, 26, 109–113. [Google Scholar] [CrossRef]
- Cui, T.; Jing, M.; Zhang, D.; Yang, L.; He, X.; Wang, Z. Construction of the discrete element model for maize ears and verification of threshing simulation. Trans. Chin. Soc. Agric. Eng. 2023, 39, 33–46. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, H.; Wang, X.; Dong, J.; Zhao, P.; Yang, F.; Chen, X.; Liu, F.; Huang, Y. Discrete element modeling and shear properties of the maize stubble-soil complex. Comput. Electron. Agric. 2023, 204, 107519. [Google Scholar] [CrossRef]
- Adajar, J.B.; Alfaro, M.; Chen, Y.; Zeng, Z. Calibration of discrete element parameters of crop residues and their interfaces with soil. Comput. Electron. Agric. 2021, 188, 106349. [Google Scholar] [CrossRef]
- Masson, S.; Martinez, J. Effect of particle mechanical properties on silo flow and stresses from distinct element simulations. Powder Technol. 2000, 109, 164–178. [Google Scholar] [CrossRef]
- Coetzee, C.J. Review: Calibration of the discrete element method. Powder Technol. 2017, 310, 104–142. [Google Scholar] [CrossRef]
- Johannes, Q.; Evertsson, M. Frame workf or DEM Calibration and Validation. In Proceedings of the 14th European Symposium on Comminution and Classification, Gothenburg, Sweden, 7–11 September 2015; pp. 103–108. [Google Scholar]
- Yan, Z.; Wilkinson, S.K.; Stitt, E.H.; Marigo, M. Discrete element modelling (DEM) input parameters: Understanding their impact on model predictions using statistical analysis. Comput. Part. Mech. 2015, 2, 283–299. [Google Scholar] [CrossRef]
- Rackl, M.; Hanley, K.J. A methodical calibration procedure for discrete element models. Powder Technol. 2017, 307, 73–83. [Google Scholar] [CrossRef]
- Song, X.; Dai, F.; Zhang, F.; Wang, D.; Liu, Y. Calibration of DEM models for fertilizer particles based on numerical simulations and granular experiments. Comput. Electron. Agric. 2023, 204, 107507. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, L.; Hu, C.; Li, Z.; Tang, J.; Mao, K.; Wang, X. Calibration of wet sand and gravel particles based on JKR contact model. Powder Technol. 2022, 397, 117005. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, J.; Xue, D.; Wang, Y.; Zhang, Q.; Ren, L. An approach to and validation of maize-seed-assembly modelling based on the discrete element method. Powder Technol. 2018, 328, 167–183. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, W.; Ding, Z.; Li, X.; Zhang, C. Experimental determination of parameter effects on the coefficient of restitution of differently shaped maize in three-dimensions. Powder Technol. 2015, 284, 187–194. [Google Scholar] [CrossRef]
- Li, X.; Du, Y.; Liu, L.; Zhang, Y.; Guo, D. Parameter calibration of corncob based on DEM. Adv. Powder Technol. 2022, 33, 103699. [Google Scholar] [CrossRef]
- Coetzee, C. Calibration of the discrete element method: Strategies for spherical and non-spherical particles. Powder Technol. 2020, 364, 851–878. [Google Scholar] [CrossRef]
- Roessler, T.; Richter, C.; Katterfeld, A.; Will, F. Development of a standard calibration procedure for the DEM parameters of cohesionless bulk materials—Part I: Solving the problem of ambiguous parameter combinations. Powder Technol. 2019, 343, 803–812. [Google Scholar] [CrossRef]
- González-Montellano, C.; Ramírez, Á.; Gallego, E.; Ayuga, F. Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos. Chem. Eng. Sci. 2011, 66, 5116–5126. [Google Scholar] [CrossRef]
- Tao, H.; Zhong, W.; Jin, B. Comparison of Construction Method for DEM Simulation of Ellipsoidal Particles. Chin. J. Chem. Eng. 2013, 21, 800–807. [Google Scholar] [CrossRef]
- Markauskas, D.; Ramírez-Gómez, Á.; Kačianauskas, R.; Zdancevičius, E. Maize grain shape approaches for DEM modelling. Comput. Electron. Agric. 2015, 118, 247–258. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Tai, W.; Li, B.; Zhang, W.; Han, X. Design and Experiment of Clamping Maize Precision Seed-metering Device. Trans. Chin. Soc. Agric. Mach. 2019, 50, 40–46. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Han, J.; Zhao, L.; Sui, X.; Zhang, J.; Lan, Y. Design and experiments of the flat seed-adsorbing posture adjustment mechanism for the air-suction metering device. Trans. Chin. Soc. Agric. Eng. 2022, 38, 1–11. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, J.; Liu, H.; Shi, S.; Wei, G.; He, T. Determination of interspecific contact parameters of corn and simulation calibration of discrete element. Trans. Chin. Soc. Agric. Mach. 2022, 53, 69–77. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Z.; Guan, W.; Guo, J.; Xu, D. Maize grain modelling for the DEM simulation of sowing process. Trans. Chin. Soc. Agric. Eng. 2024, 40, 14–22. [Google Scholar] [CrossRef]
- Martin, C.L.; Bouvard, D.; Shima, S. Study of particle rearrangement during powder compaction by the Discrete Element Method. J. Mech. Phys. Solids 2003, 51, 667–693. [Google Scholar] [CrossRef]
- Cleary, P.W. Predicting charge motion, powder draw, segregation and wear in ball mills using distcrete element methiods. Miner. Eng. 1998, 11, 1061–1080. [Google Scholar] [CrossRef]
- Shi, L.; Zhao, W.; Sun, B.; Sun, W. Determination of the coefficient of rolling friction of irregularly shaped maize particles by using discrete element method. Int. J. Agric. Biol. Eng. 2020, 13, 15–25. [Google Scholar] [CrossRef]
- Höhner, D.; Wirtz, S.; Scherer, V. A numerical study on the influence of particle shape on hopper discharge within the polyhedral and multi-sphere discrete element method. Powder Technol. 2012, 226, 16–28. [Google Scholar] [CrossRef]
- Höhner, D.; Wirtz, S.; Scherer, V. Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method. Powder Technol. 2013, 235, 614–627. [Google Scholar] [CrossRef]
- Jia, F.; Han, Y.; Liu, Y.; Cao, Y.; Shi, Y.F.; Yao, L.; Wang, H. Simulation prediction method of repose angle for rice particle materials. Trans. Chin. Soc. Agric. Eng. 2014, 30, 254–260. [Google Scholar] [CrossRef]
- Li, H.; Zeng, R.; Niu, Z.; Zhang, J. A Calibration Method for Contact Parameters of Maize Kernels Based on the Discrete Element Method. Agriculture 2022, 12, 664. [Google Scholar] [CrossRef]
- Borchers, A.; Pieler, T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes 2010, 1, 413–426. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Z.; Zhang, D.; Cui, T.; Shi, S.; Li, K.; Yang, L. Calibration method of contact characteristic parameters for corn seeds based on EDEM. Trans. Chin. Soc. Agric. Eng. 2016, 32, 36–42. [Google Scholar] [CrossRef]
- González-Montellano, C.; Fuentes, J.M.; Ayuga-Téllez, E.; Ayuga, F. Determination of the mechanical properties of maize grains and olives required for use in DEM simulations. J. Food Eng. 2012, 111, 553–562. [Google Scholar] [CrossRef]
- Mousaviraad, M.; Tekeste, M.Z.; Rosentrater, K.A. Calibration and Validation of a Discrete Element Model of Corn Using Grain Flow Simulation in a Commercial Screw Grain Auger. Trans. ASABE 2017, 60, 1403–1415. [Google Scholar] [CrossRef]
Type | Feature Size | Irrelevance | Mean Square | R2 | Pearson’s r | F | Prob > F |
---|---|---|---|---|---|---|---|
HTS | (WS2) | WS2 = (1.9158 − 0.0951 WS1) WS1 | 0.79 | 0.37 | −0.6139 | 89.51 | 6.65 × 10−17 (**) |
(Hs) | H = (3.3856 − 0.2230 WS1) WS1 | 4.74 | 0.66 | −0.8164 | 295.9 | 4.03 × 10−37 (**) | |
(TS1) | Ts1 = (1.3687 − 0.1038 WS1) WS1 | 0.94 | 0.57 | −0.7557 | 196.9 | 5.48 × 10−29 (**) | |
(TS2) | Ts2 = (1.5175 − 0.1168 WS1) WS1 | 1.19 | 0.50 | −0.7124 | 152.5 | 1.57 × 10−24 (**) | |
FS | (D) | D = (3.5233 − 0.3388 T) Tf | 4.92 | 0.76 | −0.8699 | 460.2 | 2.85 × 10−47 (**) |
SCS | (Hc) | Hc = (2.5683 − 0.1634 Wc) Wc | 1.35 | 0.60 | −0.7789 | 228.3 | 8.45 × 10−32 (**) |
(Tc) | Tc = (1.6281 − 0.1105 Wc) Wc | 0.61 | 0.41 | −0.6420 | 103.8 | 8.45 × 10−19 (**) |
Kernel Shape | HTS Kernel | FS Kernel | SCS Kernel | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Feature Size | Ws1 | Ws2 | Hs | Ts1 | Ts2 | D | Tf | Wc | Hc | Tc |
Modeling dimensions | 7.22 | 8.82 | 12.16 | 4.41 | 4.80 | 9.05 | 5.00 | 8.05 | 10.03 | 5.91 |
Test | Dynamic Friction Coefficient | Horizontal Displacement (mm) |
---|---|---|
1 | 0.18 | 110.3 |
2 | 0.19 | 107.8 |
3 | 0.20 | 103.2 |
4 | 0.21 | 97.9 |
5 | 0.22 | 93.9 |
6 | 0.23 | 89.7 |
7 | 0.24 | 85.9 |
Test | Experiment Factors | Results | |||
---|---|---|---|---|---|
A | B | C | AoR° | Relative Error/% | |
1 | 0.05 | 0.15 | 0.20 | 22.7 | 17.00 |
2 | 0.10 | 0.20 | 0.25 | 31.2 | 14.08 |
3 | 0.15 | 0.25 | 0.30 | 29.6 | 8.23 |
4 | 0.20 | 0.30 | 0.35 | 27.9 | 2.01 |
5 | 0.25 | 0.35 | 0.40 | 26.1 | 4.57 |
6 | 0.30 | 0.40 | 0.45 | 24.6 | 10.05 |
7 | 0.35 | 0.45 | 0.50 | 22.9 | 16.27 |
Code | Experiment Factors | ||
---|---|---|---|
A | B | C | |
−1.682 | 0.082 | 0.182 | 0.232 |
−1 | 0.15 | 0.25 | 0.30 |
0 | 0.20 | 0.30 | 0.35 |
1 | 0.25 | 0.35 | 0.40 |
1.682 | 0.318 | 0.418 | 0.468 |
Test | Experiment Factors | AoR D/° | Relative Error E/% | ||
---|---|---|---|---|---|
A | B | C | |||
1 | 0 | 0 | 1.682 | 28.58 | 4.50 |
2 | −1 | −1 | −1 | 29.03 | 6.14 |
3 | −1 | −1 | 1 | 28.21 | 3.14 |
4 | 1 | −1 | −1 | 27.57 | 0.80 |
5 | 0 | 0 | 0 | 27.89 | 1.97 |
6 | 0 | 0 | 0 | 28.04 | 2.52 |
7 | 0 | 0 | −1.682 | 28.97 | 5.92 |
8 | 0 | 0 | 0 | 28.11 | 2.78 |
9 | 1 | 1 | −1 | 29.26 | 6.98 |
10 | 0 | −1.682 | 0 | 27.64 | 1.06 |
11 | 0 | 0 | 0 | 27.75 | 1.46 |
12 | 0 | 1.682 | 0 | 29.29 | 7.09 |
13 | 1.682 | 0 | 0 | 27.73 | 1.39 |
14 | 1 | −1 | 1 | 27.65 | 1.10 |
15 | 0 | 0 | 0 | 27.81 | 1.68 |
16 | −1.682 | 0 | 0 | 28.81 | 5.34 |
17 | −1 | 1 | −1 | 29.21 | 6.80 |
18 | 1 | 1 | 1 | 29.3 | 7.13 |
19 | 0 | 0 | 0 | 27.89 | 1.97 |
20 | −1 | 1 | 1 | 29.11 | 6.44 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F | p |
---|---|---|---|---|---|
Model | 7.98 | 9 | 0.8864 | 33.6 | <0.0001 ** |
A | 0.947 | 1 | 0.947 | 35.9 | 0.0001 ** |
B | 3.79 | 1 | 3.79 | 143.67 | <0.0001 ** |
C | 0.1552 | 1 | 0.1552 | 5.88 | 0.0357 * |
AB | 0.6385 | 1 | 0.6385 | 24.2 | 0.0006 ** |
AC | 0.1352 | 1 | 0.1352 | 5.12 | 0.0471 * |
BC | 0.0578 | 1 | 0.0578 | 2.19 | 0.1696 |
A2 | 0.3357 | 1 | 0.3357 | 12.72 | 0.0051 ** |
B2 | 0.7075 | 1 | 0.7075 | 26.81 | 0.0004 ** |
C2 | 1.58 | 1 | 1.58 | 59.91 | <0.0001 ** |
Residual | 0.2638 | 10 | 0.0264 | ||
Lack of Fit | 0.1707 | 5 | 0.0341 | 1.83 | 0.2612 |
Pure Error | 0.0931 | 5 | 0.0186 | ||
Cor Total | 8.24 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Lin, H.; Song, X.; Zhang, F.; Dai, F.; Yang, T.; Li, B. Study on the Contact Parameter Calibration of the Maize Kernel Polyhedral Discrete Element Model. Agriculture 2024, 14, 1644. https://doi.org/10.3390/agriculture14091644
Chen H, Lin H, Song X, Zhang F, Dai F, Yang T, Li B. Study on the Contact Parameter Calibration of the Maize Kernel Polyhedral Discrete Element Model. Agriculture. 2024; 14(9):1644. https://doi.org/10.3390/agriculture14091644
Chicago/Turabian StyleChen, Huhu, Haipeng Lin, Xuefeng Song, Fengwei Zhang, Fei Dai, Ting Yang, and Baicheng Li. 2024. "Study on the Contact Parameter Calibration of the Maize Kernel Polyhedral Discrete Element Model" Agriculture 14, no. 9: 1644. https://doi.org/10.3390/agriculture14091644
APA StyleChen, H., Lin, H., Song, X., Zhang, F., Dai, F., Yang, T., & Li, B. (2024). Study on the Contact Parameter Calibration of the Maize Kernel Polyhedral Discrete Element Model. Agriculture, 14(9), 1644. https://doi.org/10.3390/agriculture14091644