Design and Experimentation of Targeted Deep Fertilization Device for Corn Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Structure of Targeted Deep Fertilization Device for Corn
2.2. Working Principle
2.3. Structure Design and Analysis of Fertilizer Discharge Device
2.3.1. Structure and Working Principle
2.3.2. Structural Parameter Analysis
2.3.3. Structure Design and Working Principle of Strong Discharge Fertilizer
2.3.4. Mechanical Analysis of the Fertilizer Filling Process
2.3.5. Mechanical Analysis of the Fertilizer Discharge Process
2.4. Targeted Fertilization Control System for Corn
2.4.1. System Hardware
2.4.2. System Program
3. Simulation Analysis of Fertilizer Discharge Device Performance
3.1. Construction of a Discrete Element Simulation Platform
3.2. Fertilization Performance Evaluation Method
3.3. Design of Single-Factor Tests
3.4. Multi-Factor Experiment
4. Bench Test Platform
4.1. Test Conditions
4.2. Testing Indicators and Measurement Methods
4.3. Test Results and Analysis
5. Field Experiment
5.1. Testing Method
5.2. Test Conditions
6. Conclusions
- (1)
- A targeted deep fertilization device for corn has been designed, which uses a photoelectric sensor to detect the position of corn plants. A microcontroller combines the plant position information and the forward speed of the device to dynamically control the intermittent rotation of a stepping motor, thereby achieving targeted deep fertilization operations for corn.
- (2)
- Based on cycloidal parameters, a fertilizer discharge device with a forced discharge plate mechanism was designed. Through mechanical analysis of the fertilization and discharge processes, the main factors affecting the discharge performance were identified. Coupled simulation analysis using Adams and EDEM was conducted to perform both single-factor and multi-factor experiments, examining the effects of the right wall inclination angle of the discharge, discharge depth, and discharge working length on the coefficient of variation of the hole discharge amount and the average hole length. The optimal parameter combination was determined to be a discharge wall inclination angle of 35.16°, a discharge depth of 10.7 mm, and a discharge working length of 30 mm.
- (3)
- Bench tests and field tests were conducted. The bench tests indicated that at a forward speed of 0.4 to 1.2 m/s, under the optimal parameter combination, the coefficient of variation of the fertilizer application rate per hole of the discharge device ranged from 2.02% to 4.46%, the error in fertilizer application rate per hole ranged from 7.12% to 12.18%, the average length of fertilizer application holes ranged from 72.5 mm to 130.2 mm, and the coefficient of variation for hole length stability ranged from 1.94% to 3.54%. The field tests showed that when the machine’s forward speed was between 0.4 m/s and 1.2 m/s, the coefficient of variation of the fertilizer application rate per hole, the error in fertilizer application rate per hole, the average length of fertilizer application holes, the coefficient of variation of hole length stability, and the qualification rate of fertilization position were 3.63%, 10.46%, 108.8 mm, 2.96%, and 87.16%, respectively. Overall, the device exhibited stable performance and met the requirements for targeted deep fertilization in corn cultivation.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.G. Research status and analysis on fertilization technology of corn topdressing machinery. J. Agric. Mech. Res. 2021, 43, 1–9. [Google Scholar]
- Tang, H.; Wang, J.; Xu, C.; Zhou, W.; Wang, J.; Wang, X. Research progress analysis on key technology of chemical fertilizer reduction and efficiency increase. Trans. Chin. Soc. Agric. Mach. 2019, 50, 4. [Google Scholar]
- Zong, Z.; Liu, G. Design and Experiment of Maize Fertilization Control System Based on Machine Vision. Trans. Chin. Soc. Agric. Mach. 2021, 52, S1. [Google Scholar]
- Hu, H.; Li, H.; Wang, Q.; He, J.; Zhang, Y.; Chen, W.; Wang, X. Design and experiment of targeted hole-pricking and deep-application fertilizer applicator between corn rows. Trans. Chin. Soc. Agric. Eng. 2016, 32, 26–35. [Google Scholar]
- Li, M.T.; Wen, X.Y.; Zhou, F.J. Working parameters optimization and experiment of precision hole fertilization control mechanism for intertilled crop. Trans. Chin. Soc. Agric. Mach. 2016, 47, 37–43. [Google Scholar]
- Wan, L.; Xie, D.; Li, Y.; Chen, L. Design and experiment of roller hole fertilizer application between corn rows. Trans. Chin. Soc. Agric. Mach. 2020, 51, 64–73. [Google Scholar]
- Wang, Z.; Liang, C.; Wang, H. Design and experiment of corn variable hole fertilization test bed. Mech. Res. 2020, 42, 166–169. [Google Scholar]
- Zhao, S.; Zong, Z.; Liu, G. Design and Test on Position Fertilization Control System Based on Motor Drive. Trans. Chin. Soc. Agric. Mach. 2019, 50, 91–95. [Google Scholar]
- Zhang, S.F. Fertilization Guidelines for Major Crops in China; China Agriculture Press: Beijing, China, 2009; pp. 1–10. [Google Scholar]
- Du, X.; Liu, C.; Jiang, M.; Yuan, H.; Dai, L.; Li, F. Design and experiment of inclined trapezoidal hole fertilizer point-applied discharging device. Trans. Chin. Soc. Agric. Mach. 2021, 52, 43–53. [Google Scholar]
- Wang, J.; Zhou, W.; Wang, J.; Zhang, C.; Jiang, D. Experiment and Optimization of Working Parameters for Pricking Hole Mechanism of Oblique Type Non-circular Gears Planetary System. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2017, 48, 66–70. [Google Scholar]
- Zhu, Q.; Wu, G.; Chen, L.; Zhao, C.; Meng, Z. Influences of structure parameters of straight flute wheel on fertilizing performance of fertilizer apparatus. Trans. CSAE 2018, 34, 12–20. [Google Scholar]
- Liao, Q.; Chen, Y.; Zhang, Q.; Wang, L.; Lin, J.; Du, W. Design and Experiment of Side Deep Hole Fertilization Device for Rapeseed. Trans. Chin. Soc. Agric. Mach. 2023, 54, 41–52. [Google Scholar]
- Dun, G.; Yu, C.; Guo, Y.; Ji, W.; Islam, K.R.; Du, J. Design and experiment of double-gear type fertilizer apparatus. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2020, 51, 87–96. [Google Scholar]
- Liu, C.; Wei, D.; Du, X.; Jiang, M.; Song, M.; Zhang, F. Design and test of wide seedling strip wheat precision hook-hole type seed-metering device. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2019, 50, 53–62. [Google Scholar]
- Liu, J.; Zhu, D.; Tai, Q.; Yu, C.; Wang, T.; Xue, K.; Zhang, S.; Liao, J. Design and experiment of adjustable socket-wheel precision fertilizer apparatus for dry direct-seeding rice. INMATEH-Agric. Eng. 2021, 63, 121–130. [Google Scholar]
- Wang, J.; Fu, Z.; Weng, W.; Wang, Z.; Wang, J.; Yang, D. Design and Experiment of Conical-disc Push Plate Double-row Fertilizer Apparatus for Side-deep Fertilization in Paddy Field. Trans. Chin. Soc. Agric. Mach. 2023, 54, 53–62. [Google Scholar]
- Zhang, J.; Liu, H.; Gao, J.; Lin, Z.; Chen, Y. Simulation and test of corn layer alignment position hole fertilization seeder based on SPH. Trans. Chin. Soc. Agric. Mach. 2018, 49, 66–72. [Google Scholar]
- Yuan, W.; Li, K.; Jin, C.; Hu, M.; Zhang, W. Design and experiment of hill placement fertilizer applicator. J. Agric. Mech. Res. 2018, 40, 145–149+165. [Google Scholar]
- Liu, Z.; Wang, Q.; Liu, C.; Li, H.; He, J.; Liu, J. Design and experiment of precision hole-fertilizing apparatus with notched plate. Trans. Chin. Soc. Agric. Mach. 2018, 49, 137–144. [Google Scholar]
- Wu, N.; Lin, J.; Li, B. Design and Test on No-tillage Planter Precise Hole Fertilization System. Trans. Chin. Soc. Agric. Mach. 2018, 49, 64–72. [Google Scholar]
- Zhu, H.; Wu, X.; Bai, L.; Qian, C.; Zhao, H.; Li, H. Development of the biaxial stubble breaking no-tillage device for rice stubble field based on EDEM-ADAMS simulation. Trans. Chin. Soc. Agric. Eng. 2022, 38, 10–22. [Google Scholar]
- Guo, Y.; Liu, J.; Yin, H.-L.; Zhang, Q.; Li, L.-T.; Wang, Y.-L. Effects of quantitative fertilization by a single plant on the yield, nutrient absorption, and utilization of summer maize. J. Agric. Resour. Environ. 2020, 37, 924–930. [Google Scholar]
- Pan, R.; Meng, Z.; Dong, J.; Shang, Y.; Mei, H.; Yan, B.; Gu, W.; Gao, N.; Xue, Z.; Zhang, Z. Design and testing of an intermittent fertilisation method for seeding of maize (Zea mays). Crop Pasture Sci. 2022, 73, 203–213. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, L.; Qian, F.; Cai, H. Design and simulation of cave-fertilizer apparatus for maize. J. Anhui Agric. Univ. 2017, 44, 941–946. [Google Scholar]
- Yuan, Q.; Xu, L.; Xing, J.; Duan, Z.; Ma, S.; Yu, C.; Chen, C. Parameter calibration of discrete element model of organic fertilizer particles for mechanical fertilization. Trans. CSAE 2018, 34, 21–27. [Google Scholar]
- Zhou, W.; An, T.; Wang, J.; Fu, Q.; Wen, N.; Sun, X.; Wang, Q.; Liu, Z. Design and experiment of a targeted variable fertilization control system for deep application of liquid fertilizer. Agronomy 2023, 13, 1687. [Google Scholar] [CrossRef]
- Liang, Y.; Tang, Z.; Ji, C.; Zheng, X.; Liu, J.; Li, Q.; Zhang, L. Optimization and Experiment of Structural Parameters of Outer Groove Wheel Fertilizer Drainer. J. Agric. Mech. Res. 2023, 45, 7–14. [Google Scholar]
- Song, C.; Zhou, Z.; Wang, G.; Wang, X.; Zang, Y. Optimization of the groove wheel structural parameters of UAV-based fertilizer apparatus. Transact. Chin. Soc. Agric. Eng. 2021, 37, 1–10. [Google Scholar]
- Ding, S.; Bai, L.; Yao, Y.; Yue, B.; Fu, Z.; Zheng, Z.; Huang, Y. Discrete element modelling (DEM) of fertilizer dual-banding with adjustable rates, Comput. Electron. Agric. 2018, 152, 32–39. [Google Scholar] [CrossRef]
- Du, X.; Liu, C.; Jiang, M.; Yuan, H.; Dai, L.; Li, F. Calibration of bonding model parameters for coated fertilizers based on discrete element method. Trans. Chin. Soc. Agri. Mach. 2022, 53, 141–149. [Google Scholar]
- Yang, X.; Wang, J.; Yang, J.; Zhao, L.; Li, Q. Design and test of stacking type fertilizer discharge adjusting device for ditching fertilizer applicator. J. Chin. Agric. Mech. 2023, 44, 26–34. [Google Scholar]
- Du, J.; Yang, Q.; Xia, J.; Li, G. Discrete element modeling and verification of an outer groove wheel fertilizer applicator with helical teeth. Trans. ASABE 2020, 63, 659–665. [Google Scholar] [CrossRef]
- Lei, X.; Yang, W.; Liu, L.; Liu, H.; Ren, W.; Chen, Y. Design and experiment of seed hill feeding device in pneumatic centralized metering device for hybrid rice. Trans. CSAM 2018, 49, 58–67. [Google Scholar]
Stats | Parameter | Value |
---|---|---|
Fertilizer Granules | Density/(g·cm3) | 1.575 |
Shear Modulus/(GPa) | 0.125 | |
Poisson’s Ratio | 0.250 | |
PLA | Density/(g·cm3) | 1.240 |
Shear Modulus/(GPa) | 0.130 | |
Poisson’s Ratio | 0.430 | |
Soil | Density/(g·cm3) | 1.357 |
Shear Modulus/(GPa) | 0.727 | |
Poisson’s Ratio | 0.35 | |
Fertilizer Granules—Fertilizer Granules | Coefficient of Restitution | 0.31 |
Coefficient of Static Friction | 0.37 | |
Coefficient of Rolling Friction | 0.12 | |
Fertilizer Granules—PLA | Coefficient of Restitution | 0.41 |
Coefficient of Static Friction | 0.32 | |
Coefficient of Rolling Friction | 0.18 | |
Fertilizer Granules—Soil | Coefficient of Restitution | 0.02 |
Coefficient of Static Friction | 1.25 | |
Coefficient of Rolling Friction | 1.24 |
Levels | X1 The Right Wall of the Fertilizer Discharge Trench (°) | X2 The Depth of the Fertilizer Discharge Trench (mm) | X3 The Working Length of the Fertilizer Discharge Trench (mm) |
---|---|---|---|
−1 | 35 | 9 | 30 |
0 | 38 | 11 | 37 |
1 | 41 | 13 | 44 |
Serial Number | The Right Wall of the Fertilizer Discharge Trench/° | The Depth of the Fertilizer Discharge Trench/mm | The Working Length of the Fertilizer Discharge Trench/mm | Coefficient of Variation of Fertilizer Application Amount per Hole/% | Average Length of Fertilizer Application Holes/mm |
---|---|---|---|---|---|
X1 | X2 | X3 | Y1 | Y2 | |
1 | 38 | 11 | 37 | 2.47 | 90.2 |
2 | 35 | 11 | 44 | 4.12 | 96.6 |
3 | 35 | 9 | 37 | 3.28 | 82.8 |
4 | 38 | 9 | 44 | 4.18 | 95.8 |
5 | 41 | 9 | 37 | 3.72 | 91 |
6 | 41 | 13 | 37 | 4.12 | 98.6 |
7 | 38 | 9 | 30 | 3.22 | 86.8 |
8 | 41 | 11 | 44 | 4.47 | 105.6 |
9 | 35 | 11 | 30 | 3.28 | 77.6 |
10 | 38 | 11 | 37 | 2.52 | 91 |
11 | 38 | 11 | 37 | 2.4 | 92.3 |
12 | 35 | 13 | 37 | 3.6 | 90.6 |
13 | 38 | 11 | 37 | 2.32 | 89.5 |
14 | 38 | 13 | 30 | 3.85 | 84 |
15 | 38 | 11 | 37 | 2.37 | 90.6 |
16 | 41 | 11 | 30 | 3.62 | 85.2 |
17 | 38 | 13 | 44 | 4.7 | 114.4 |
Experimental Indicators | Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|---|
Y1 | Model | 9.73 | 9 | 1.08 | 127.53 | <0.0001 | ** |
X1 | 0.3403 | 1 | 0.3403 | 40.14 | 0.0004 | ** | |
X2 | 0.4371 | 1 | 0.4371 | 51.56 | 0.0002 | ** | |
X3 | 1.53 | 1 | 1.53 | 180.62 | <0.0001 | ** | |
X1X2 | 0.0016 | 1 | 0.0016 | 0.1887 | 0.6771 | ||
X1X3 | 0.0000 | 1 | 0.0000 | 0.0029 | 0.9582 | ||
X2X3 | 0.0030 | 1 | 0.0030 | 0.3568 | 0.5691 | ||
1.39 | 1 | 1.39 | 163.92 | <0.0001 | ** | ||
2.00 | 1 | 2.00 | 236.11 | <0.0001 | ** | ||
3.28 | 1 | 3.28 | 386.36 | <0.0001 | ** | ||
Residual | 0.0593 | 7 | 0.0085 | ||||
Lack of Fit | 0.0340 | 3 | 0.0113 | 1.79 | 0.2880 | ||
Pure Error | 0.0253 | 4 | 0.0063 | ||||
Cor Total | 9.79 | 16 | |||||
Y2 | Model | 1206.16 | 9 | 134.02 | 213.79 | <0.0001 | ** |
X1 | 134.48 | 1 | 134.48 | 214.53 | <0.0001 | ** | |
X2 | 121.68 | 1 | 121.68 | 194.11 | <0.0001 | ** | |
X3 | 776.18 | 1 | 776.18 | 1238.21 | <0.0001 | ** | |
X1X2 | 0.0100 | 1 | 0.0100 | 0.0160 | 0.9030 | ||
X1X3 | 0.4900 | 1 | 0.4900 | 0.7817 | 0.4060 | ||
X2X3 | 114.49 | 1 | 114.49 | 182.64 | <0.0001 | ** | |
16.59 | 1 | 16.59 | 26.47 | 0.0013 | ** | ||
17.10 | 1 | 17.10 | 27.27 | 0.0012 | ** | ||
26.63 | 1 | 26.63 | 42.49 | 0.0003 | ** | ||
Residual | 4.39 | 7 | 0.6269 | ||||
Lack of Fit | 0.0400 | 3 | 0.0133 | 0.0123 | 0.9978 | ||
Pure Error | 4.35 | 4 | 1.09 | ||||
Cor Total | 1210.54 | 16 |
Forward Speed (m/s) | Coefficient of Variation of Fertilizer Application Rate per Hole (%) | Error in Fertilizer Application Rate per Hole(%) | Average Length of Fertilizer Application Holes (mm) | Coefficient of Variation of Hole Length Stability (%) |
---|---|---|---|---|
0.4 | 2.02 | 7.12 | 72.5 | 1.94 |
0.6 | 2.54 | 8.54 | 85.4 | 2.37 |
0.8 | 3.32 | 9.80 | 97.3 | 2.79 |
1.0 | 3.85 | 10.81 | 114.4 | 3.15 |
1.2 | 4.46 | 12.18 | 130.2 | 3.54 |
Forward Speed (m/s) | Coefficient of Variation of Fertilizer Application Rate per Hole (%) | Error in Fertilizer Application Rate per Hole(%) | Average Length of Fertilizer Application Holes (mm) | Coefficient of Variation of Hole Length Stability (%) | Qualified Rate of Fertilization Positions (%) |
---|---|---|---|---|---|
0.4 | 2.78 | 7.94 | 81.4 | 2.07 | 84.97 |
0.6 | 3.21 | 9.20 | 91.6 | 2.53 | 89.07 |
0.8 | 3.65 | 10.65 | 106.5 | 2.91 | 94.16 |
1.0 | 3.97 | 11.64 | 123.5 | 3.42 | 91.25 |
1.2 | 4.53 | 12.88 | 141.2 | 3.85 | 86.33 |
Average | 3.63 | 10.46 | 108.8 | 2.96 | 87.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Z.; Liu, C.; Wang, Y.; Zhang, Z.; Sun, X. Design and Experimentation of Targeted Deep Fertilization Device for Corn Cultivation. Agriculture 2024, 14, 1645. https://doi.org/10.3390/agriculture14091645
Qi Z, Liu C, Wang Y, Zhang Z, Sun X. Design and Experimentation of Targeted Deep Fertilization Device for Corn Cultivation. Agriculture. 2024; 14(9):1645. https://doi.org/10.3390/agriculture14091645
Chicago/Turabian StyleQi, Zhongying, Cunliang Liu, Yao Wang, Zhiwei Zhang, and Xiaobo Sun. 2024. "Design and Experimentation of Targeted Deep Fertilization Device for Corn Cultivation" Agriculture 14, no. 9: 1645. https://doi.org/10.3390/agriculture14091645
APA StyleQi, Z., Liu, C., Wang, Y., Zhang, Z., & Sun, X. (2024). Design and Experimentation of Targeted Deep Fertilization Device for Corn Cultivation. Agriculture, 14(9), 1645. https://doi.org/10.3390/agriculture14091645