Stability Control of the Agricultural Tractor-Trailer System in Saline Alkali Land: A Collaborative Trajectory Planning Approach
Abstract
:1. Introduction
- Aiming to address the underactuated characteristics of the agricultural tractor-trailer system operating on saline alkali land, a kinematic/dynamic model was developed using the state-space representation of nonlinear autonomous systems with non-holonomic constraints. This model serves as a foundation for the discrete mathematical representation and computational analysis of the system’s states;
- By integrating the development of a dynamic model with first-order discretization of the system in the time domain, we propose a dual-trajectory collaborative planning method for TTS. This approach clarifies the characteristics and behaviors of internal wheel difference (IWD) in underactuated TTS. Additionally, we present a solver designed to address the randomization of IWD errors and the unpredictability of trailer trajectories commonly encountered in traditional methods. Our dynamic analysis and state constraints, based on the collaborative trajectory algorithm, ensure predictable and quantifiable planning of trailer trajectories;
- A lateral error stabilization controller for a tractor-trailer system based on dual-trajectory collaborative planning is proposed. Unlike previous efforts, this control scheme fully considers the motion pattern and lateral state of the trailer in TTS. As a result, it effectively balances system stability with trajectory consistency.
2. State Space of the Tractor-Trailer System
2.1. Observable and Controllable Model of the Tractor
2.2. The Tractor-Trailer System Kinematic Model
2.3. The Tractor-Trailer System Dynamics Model
3. Lateral Stabilizer Based on Dual-Trajectory Prediction
3.1. Dual-Trajectory Collaborative Planning
Algorithm 1 The Dual-collaborative trajectory planning algorithm core |
Inputs: Parameter customization of the TTWR platform (a1, b1, a2, b2, IZ1, IZ2), the initial position of TTWR (xi, yi), (xj, yj), the traction arm length l, the maximum yaw angle of the tractor δmax, and the discretized initial path. Outputs: The Dual-collaborative trajectory path V and the state variable 1:System Initialization: the base path PathI = {Pset [0], Pset [1], ⋯, Pset[end]}, the trailer trajectory PathJ = {NULL}, the Dual-collaborativetrajectory Path = {PathI, PathJ}, the initial heading angle δ1, δ2 2:If Pset [0] ≠ Pset[end] or Distance > 0.03 3: While Distance > 0.03 m do 4: Calculate the current position of the tractor and trailer O and P 5: Update the step length Δsi, Δsj → uT and the curvature of the tractor ρi, ρj 6: Update the coordinates of tractor (xi, yi), the new heading angle of tractor δ1, the new yaw angle of tractor δ2 7: Calculate the speed (i = 1,2) of the tractor or the trailer rotates around the center of mass Oi (i = 1,2), the sideslip (i = 1,2) angle and update 8: Update the trailer coordinates (xj, yj), the trailer new heading angle δ1, δ2 9: Calculate the deviation e1, e2 10: If the distance between the trailer and the road boundary ≤ 0 11: Update the PathI 12: Break 13: Save the current position PathJ = {Pset [0], Pset [1], ⋯, Pset[k − 1], Pset[k]} 14:else 15: Reach the end point 16: Generate the collaborative trajectory path V = {PathI, PathJ} Where Distance is the distance between the current position of the tractor and the end point, e1 and e2 are the deviation between the tractor track and the trailer track. |
3.2. Design of Lateral Stability Controller
4. Experimental Results and Discussion
4.1. Construction of the Tractor-Trailer System Experimental System
4.2. Collaborative Trajectory Planning of the Tractor-Trailer System
4.3. Analysis of Lateral Offset Law of Trailer
4.4. Lateral Stability Control Results
4.5. Tracking Control Effectiveness Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Lee, E.; Kim, T.; Mun, H.S.; Oh, J.H.; Han, S.K. Assessing the extent and severity of the impact on forest soils of two different fully mechanized timber harvesting operations. Forests 2024, 15, 985. [Google Scholar] [CrossRef]
- Zou, L.; Liu, X.; Yuan, J.; Dong, X. Research progress in mechanized harvesting technology and equipment of leafy vegetables. J. Chin. Agric. Mech. 2022, 43, 15–23. [Google Scholar]
- Visser, R.M.; Spinelli, R. Benefits and limitations of winch-assist technology for skidding operations. Forests 2023, 14, 296. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, P.; Yuan, J.; Liu, X. Visual positioning and harvesting path optimization of white asparagus harvesting robot. Smart Agric. 2020, 2, 65–78. [Google Scholar]
- Chang, H.; Han, H.S.; Anderson, N.; Kim, Y.S.; Han, S.K. The cost of forest thinning operations in the western united states: A systematic literature review and new thinning cost model. J. For. 2023, 121, 193–206. [Google Scholar] [CrossRef]
- Li, T.; Huang, S.; Niu, Z.; Hou, J.; Wu, Y.; Li, Y. Optimization and experiment of planting perpendicularity of planetary wheel garlic planter. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2020, 36, 37–45. [Google Scholar]
- Li, J.; Liu, X.; Zou, L.; Yuan, J.; Du, S. Analysis of the interaction between end-effectors, soil and asparagus during a harvesting process based on discrete element method. Biosyst. Eng. 2020, 196, 127–144. [Google Scholar] [CrossRef]
- Kumar, N. Backstepping based intelligent control of tractor-trailer mobile manipulators with wheel slip consideration. ISA Trans. 2024, 153, 78–95. [Google Scholar]
- Shi, M.; Feng, X.; Pan, S.; Song, X.; Jiang, L. A collaborative path planning method for intelligent agricultural machinery based on unmanned aerial vehicles. Electronics 2023, 12, 3232. [Google Scholar] [CrossRef]
- Tang, Y.; Cai, Y.; Liu, Z.; Sun, X.; Chen, L.; Wang, H.; Dong, Z. Research on active trailer steering control strategy of tractor semitrailer under medium-/high-speed conditions. Actuators 2024, 13, 360. [Google Scholar] [CrossRef]
- Ren, H.; Wu, J.; Lin, T.; Yao, Y.; Liu, C. Correction: Ren et al. Research on an Intelligent Agricultural Machinery Unmanned Driving System. Agriculture 2023, 13, 1907. Agriculture 2024, 14, 13. [Google Scholar]
- Wang, P.; Yue, M.; Yang, L.; Luo, X.; He, J.; Man, Z.; Feng, D.; Liu, S.; Liang, C.; Deng, Y.; et al. Design and test of intelligent farm machinery operation control platform for unmanned farms. Agronomy 2024, 14, 804. [Google Scholar] [CrossRef]
- Murillo, M.; Sánchez, G.; Deniz, N.; Genzelis, L.; Giovanini, L. Improving path-tracking performance of an articulated tractor-trailer system using a non-linear kinematic model. Comput. Electron. Agric. 2022, 196, 106826. [Google Scholar] [CrossRef]
- Wen, H.; Ma, X.; Qin, C.; Chen, H.; Kang, H. Research on path tracking of unmanned spray based on dual control strategy. Agriculture 2024, 14, 562. [Google Scholar] [CrossRef]
- Ahn, Y.; Han, S.; Kim, G.; Huh, K. Slope and mass estimation for semi-trailer tractor considering pitch angle variations. IEEE Trans. Intell. Veh. 2024, 1, 1–13. [Google Scholar] [CrossRef]
- Zhou, Y.; Chung, K.W. Path tracking control of a tractor-trailer wheeled system kinematics with a passive steering angle. Appl. Math. Model. 2022, 109, 341–357. [Google Scholar] [CrossRef]
- Jin, Z.; Wang, C.; Liang, D.; Wang, S.; Ding, Z. Fixed-time consensus for multiple tractor-trailer vehicles with dynamics control: A distributed internal model approach. IEEE Trans. Intell. Veh. 2024, 9, 656–669. [Google Scholar] [CrossRef]
- Wang, D.; Moon, I.; Zhang, R. Multi-trip multi-trailer drop-and-pull container drayage problem. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19088–19104. [Google Scholar] [CrossRef]
- Jin, X.; Liang, J.; Dai, S.L.; Guo, D. Adaptive line-of-sight tracking control for a tractor-trailer vehicle system with multiple constraints. IEEE Trans. Intell. Transp. Syst. 2022, 23, 11349–11360. [Google Scholar] [CrossRef]
- Han, S.; Yoon, K.; Park, G.; Huh, K. Hybrid state observer design for estimating the hitch angles of tractor-multi unit trailer. IEEE Trans. Intell. Veh. 2023, 8, 1449–1458. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, Y.; Du, Y.; Liao, F.; Chan, C.Y. A novel direct trajectory planning approach based on generative adversarial networks and rapidly-exploring random tree. IEEE Trans. Intell. Transp. Syst. 2022, 23, 17910–17921. [Google Scholar] [CrossRef]
- Han, S.; Yoon, K.; Park, G.; Huh, K. Robust lane keeping control for tractor with multi-unit trailer under parametric uncertainty. IEEE Trans. Intell. Veh. 2024, 9, 2333–2347. [Google Scholar] [CrossRef]
- Chen, K.; Deng, J.; Zhang, W.Z. Kinematic analysis of tractor-trailer mobile robot on a sphere. In Proceedings of the 2023 International Conference on Intelligent Communication and Computer Engineering (ICICCE), Changsha, China, 27–29 December 2023; pp. 121–128. [Google Scholar]
- Shojaei, K.; Taghavifar, H. Input-output feedback linearization control of a tractor with n-trailers mechanism considering the path curvature. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 9700–9715. [Google Scholar] [CrossRef]
- Yun, S.H.; Yang, J.G.; Huh, K.S. Development of a narrow passage driving system for semi-trailer tractor by using MPC. Int. J. Automot. Technol. 2022, 23, 785–791. [Google Scholar] [CrossRef]
- DeSantis, R.M. Path-tracking for a tractor-trailer-like robot. Int. J. Robot. Res. 1994, 13, 533–544. [Google Scholar] [CrossRef]
- Bulgakov, V.; Aboltins, A.; Ivanovs, S.; Beloev, H.; Nadykto, V.; Ihnatiev, Y.; Olt, J. Theory of movement of machine-tractor unit with trailer haulm harvester machine. Appl. Sci. 2022, 12, 3901. [Google Scholar] [CrossRef]
- Hellander, A.; Bergman, K.; Axehill, D. On Integrated optimal task and motion planning for a tractor-trailer rearrangement problem. In Proceedings of the 2023 62nd IEEE Conference on Decision and Control (CDC), Singapore, 13–15 December 2023; pp. 6116–6123. [Google Scholar]
- Zhao, H.; Chen, W.; Zhou, S.; Zheng, F.; Liu, Y.H. Localization and motion planning of industrial tractor–trailers vehicles. IEEE Trans. Control Syst. Technol. 2023, 31, 2928–2936. [Google Scholar] [CrossRef]
- Lu, E.; Zhao, X.; Ma, Z.; Xu, L.; Liu, Y. Robust leader-follower control for cooperative harvesting operation of a tractor-trailer and a combine harvester considering confined space. IEEE Trans. Intell. Transp. Syst. 2024, 25, 17689–17701. [Google Scholar] [CrossRef]
- Liu, J.; Han, W.; Peng, H.; Wang, X. Trajectory planning and tracking control for towed carrier aircraft system. Aerosp. Sci. Technol. 2019, 84, 830–838. [Google Scholar] [CrossRef]
- Ruan, X.; Huang, Y.; Wang, Y.; Fu, Z.; Xiong, L.; Yu, Z. An efficient trajectory-planning method with a reconfigurable model for any tractor trailer vehicle. IEEE Trans. Transp. Electrif. 2023, 9, 3360–3374. [Google Scholar] [CrossRef]
- Jin, X.; Dai, S.L.; Liang, J. Adaptive constrained formation-tracking control for a tractor-trailer mobile robot team with multiple constraints. IEEE Trans. Autom. Control 2023, 68, 1700–1707. [Google Scholar] [CrossRef]
- Manav, A.C.; Lazoglu, I.; Aydemir, E. Adaptive path following control for autonomous semi-trailer docking. IEEE Trans. Veh. Technol. 2022, 71, 69–85. [Google Scholar] [CrossRef]
- Widyotriatmo, A.; Nazaruddin, Y.Y.; Putrantob, M.R.F.; Ardhi, R. Forward and backward motions path following controls of a tractor-trailer with references on the head-tractor and on the trailer. ISA Trans. 2020, 105, 349–366. [Google Scholar] [CrossRef]
- Ljungqvist, O.; Evestedt, N.; Axehill, D.; Cirillo, M.; Pettersson, H. A path planning and path following control framework for a general 2-trailer with a car-like tractor. J. Field Robot. 2019, 36, 1345–1377. [Google Scholar] [CrossRef]
- Peng, H.; Shi, B.; Song, J.; Wang, X. A symplectic method for trajectory planning of general tractor-trailer systems. Appl. Math. Model. 2023, 114, 205–229. [Google Scholar] [CrossRef]
- Ito, N.; Okuda, H.; Suzuki, T. Configuration-aware model predictive motion planning for Tractor–Trailer Mobile Robot. Adv. Robot. 2023, 37, 329–343. [Google Scholar] [CrossRef]
- Lei, G.; Zheng, Y. Research on collaborative trajectory planning algorithm based on Tractor-Trailer Wheeled System. IEEE Access 2022, 10, 64209–64221. [Google Scholar] [CrossRef]
- Zhuang, J. Automotive Tire Science, 1st ed.; Beijing Institute of Technology Press: Beijing, China, 1995; pp. 186–229. [Google Scholar]
Number | Algorithm | PID | LQR | Kalman | TTS-KM | TTS-DM |
---|---|---|---|---|---|---|
Road 1 | Max eoff (m) | 0.586 | 0.214 | 0.183 | 0.125 | 0.112 |
Mean eoff (m) | 0.319 | 0.151 | 0.134 | 0.071 | 0.083 | |
Standard deviation eoff | 0.032 | 0.106 | 0.100 | 0.016 | 0.009 | |
Max eθ (rad) | 0.490 | 0.292 | 0.287 | 0.279 | 0.275 | |
Mean eθ (rad) | 0.227 | 0.097 | 0.105 | 0.061 | 0.046 | |
Standard deviation eθ (rad) | 0.029 | 0.046 | 0.043 | 0.010 | 0.006 | |
Road 2 | Max eoff (m) | 0.663 | 0.386 | 0.209 | 0.145 | 0.134 |
Mean eoff (m) | 0.405 | 0.167 | 0.152 | 0.092 | 0.098 | |
Standard deviation eoff | 0.045 | 0.168 | 0.124 | 0.031 | 0.014 | |
Max eθ (rad) | 0.501 | 0.254 | 0.249 | 0.232 | 0.229 | |
Mean eθ (rad) | 0.254 | 0.153 | 0.125 | 0.058 | 0.054 | |
Standard deviation eθ (rad) | 0.035 | 0.043 | 0.042 | 0.019 | 0.009 | |
Road 3 | Max eoff (m) | 0.527 | 0.389 | 0.248 | 0.119 | 0.149 |
Mean eoff (m) | 0.346 | 0.171 | 0.167 | 0.105 | 0.093 | |
Standard deviation eoff | 0.051 | 0.105 | 0.103 | 0.045 | 0.035 | |
Max eθ (rad) | 0.357 | 0.261 | 0.253 | 0.238 | 0.210 | |
Mean eθ (rad) | 0.227 | 0.134 | 0.105 | 0.073 | 0.046 | |
Standard deviation eθ (rad) | 0.031 | 0.035 | 0.037 | 0.021 | 0.012 | |
Road 4 | Max eoff (m) | 0.601 | 0.341 | 0.261 | 0.149 | 0.127 |
Mean eoff (m) | 0.378 | 0.164 | 0.158 | 0.112 | 0.083 | |
Standard deviation eoff | 0.053 | 0.106 | 0.098 | 0.024 | 0.012 | |
Max eθ (rad) | 0.385 | 0.292 | 0.287 | 0.275 | 0.278 | |
Mean eθ (rad) | 0.198 | 0.162 | 0.112 | 0.068 | 0.049 | |
Standard deviation eθ (rad) | 0.036 | 0.046 | 0.041 | 0.023 | 0.011 | |
Road 5 | Max eoff (m) | 0.532 | 0.354 | 0.240 | 0.183 | 0.142 |
Mean eoff (m) | 0.331 | 0.184 | 0.163 | 0.094 | 0.074 | |
Standard deviation eoff | 0.048 | 0.126 | 0.115 | 0.051 | 0.034 | |
Max eθ (rad) | 0.512 | 0.238 | 0.199 | 0.198 | 0.185 | |
Mean eθ (rad) | 0.263 | 0.201 | 0.130 | 0.071 | 0.039 | |
Standard deviation eθ (rad) | 0.040 | 0.051 | 0.047 | 0.018 | 0.015 | |
Road 6 | Max eoff (m) | 0.485 | 0.287 | 0.191 | 0.143 | 0.116 |
Mean eoff (m) | 0.278 | 0.201 | 0.140 | 0.083 | 0.078 | |
Standard deviation eoff | 0.172 | 0.131 | 0.121 | 0.035 | 0.030 | |
Max eθ (rad) | 0.040 | 0.204 | 0.187 | 0.175 | 0.172 | |
Mean eθ (rad) | 0.186 | 0.124 | 0.100 | 0.058 | 0.043 | |
Standard deviation eθ (rad) | 0.035 | 0.054 | 0.031 | 0.012 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, G.; Zhou, S.; Zhang, P.; Xie, F.; Gao, Z.; Shuang, L.; Xue, Y.; Fan, E.; Xin, Z. Stability Control of the Agricultural Tractor-Trailer System in Saline Alkali Land: A Collaborative Trajectory Planning Approach. Agriculture 2025, 15, 100. https://doi.org/10.3390/agriculture15010100
Lei G, Zhou S, Zhang P, Xie F, Gao Z, Shuang L, Xue Y, Fan E, Xin Z. Stability Control of the Agricultural Tractor-Trailer System in Saline Alkali Land: A Collaborative Trajectory Planning Approach. Agriculture. 2025; 15(1):100. https://doi.org/10.3390/agriculture15010100
Chicago/Turabian StyleLei, Guannan, Shilong Zhou, Penghui Zhang, Fei Xie, Zihang Gao, Li Shuang, Yanyun Xue, Enjie Fan, and Zhenbo Xin. 2025. "Stability Control of the Agricultural Tractor-Trailer System in Saline Alkali Land: A Collaborative Trajectory Planning Approach" Agriculture 15, no. 1: 100. https://doi.org/10.3390/agriculture15010100
APA StyleLei, G., Zhou, S., Zhang, P., Xie, F., Gao, Z., Shuang, L., Xue, Y., Fan, E., & Xin, Z. (2025). Stability Control of the Agricultural Tractor-Trailer System in Saline Alkali Land: A Collaborative Trajectory Planning Approach. Agriculture, 15(1), 100. https://doi.org/10.3390/agriculture15010100