Effects of Temperature Fluctuations on the Growth Cycle of Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Literature Selection
2.2. Data Extraction
2.3. Meta-Analysis
2.4. Subgroup Analysis and Mixed-Effects Model
2.5. Response Curve Fitting and Analysis
2.6. Sensitivity Analysis and Statistical Testing
3. Results
3.1. Selection Results
3.2. Effects of Temperature Fluctuations on Rice Development Stages
3.3. The Impact of Temperature Increase on the Developmental Stages of Rice
3.4. Best Developmental Temperature for Each Growth Stage of Rice
3.5. Impact of Temperature Fluctuations on the Total Growth Period
3.6. Sensitivity Analysis
4. Discussion
4.1. The General Acceleration Effect of Temperature on Rice Growth
4.2. Temperature Response Differences Across Growth Stages
4.3. Temperature Response Differences Between Rice Varieties
4.4. Potential Impacts of Climate Change on Rice Growth
4.5. Limitations of the Study and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liliane, T.N.; Charles, M.S. Factors affecting yield of crops. In Agronomy—Climate Change & Food Security; IntechOpen: London, UK, 2020; p. 9. [Google Scholar] [CrossRef]
- Tang, L.; Zhu, Y.; Hannaway, D.; Meng, Y.; Liu, L.; Chen, L.; Cao, W. RiceGrow: A rice growth and productivity model. NJAS-Wagen J. Life Sci. 2009, 57, 83–92. [Google Scholar] [CrossRef]
- Krishnan, P.; Ramakrishnan, B.; Reddy, K.R.; Reddy, V.R. High-temperature effects on rice growth, yield, and grain quality. Adv. Agron. 2011, 111, 87–206. [Google Scholar]
- Fahad, S.; Hussain, S.; Saud, S.; Hassan, S.; Ihsan, Z.; Shah, A.N.; Wu, C.; Yousaf, M.; Nasim, W.; Alharby, H.; et al. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature. Front. Plant Sci. 2016, 7, 1250. [Google Scholar] [CrossRef]
- Cho, J.; Oki, T. Application of temperature, water stress, CO2 in rice growth models. Rice 2012, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Fahad, S.; Adnan, M.; Hassan, S.; Saud, S.; Hussain, S.; Wu, C.; Wang, D.; Hakeem, K.R.; Alharby, H.F.; Turan, V.; et al. Rice responses and tolerance to high temperature. In Advances in Rice Research for Abiotic Stress Tolerance; Elsevier: Amsterdam, The Netherlands, 2019; pp. 201–224. [Google Scholar]
- Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 2004, 101, 9971–9975. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, B.C.; Pearson, C.J. Growth, development and yield of rice in response to cold temperature. J. Agron. Crop Sci. 1999, 182, 79–88. [Google Scholar] [CrossRef]
- Shrivastava, P.; Saxena, R.R.; Xalxo, M.S.; Verulkar, S.B.; Breeding, P.; Gandhi, I.; Vishwavidyalaya, K. Effect of high temperature at different growth stages on rice yield and grain quality traits. J. Rice Res. 2012, 5, 29–42. [Google Scholar]
- Trikalinos, T.A.; Salanti, G.; Zintzaras, E.; Ioannidis, J.P. Meta-analysis methods. Adv. Genet. 2008, 60, 311–334. [Google Scholar]
- Knapp, S.; van der Heijden, M.G. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 2018, 9, 3632. [Google Scholar] [CrossRef]
- Rusinamhodzi, L.; Corbeels, M.; Van Wijk, M.T.; Rufino, M.C.; Nyamangara, J.; Giller, K.E. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron. Sustain. Dev. 2011, 31, 657–673. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Clark, T.S.; Linzer, D.A. Should I use fixed or random effects? Political Sci. Res. Methods 2015, 3, 399–408. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Thorlund, K.; Imberger, G.; Johnston, B.C.; Walsh, M.; Awad, T.; Thabane, L.; Gluud, C.; Devereaux, P.J.; Wetterslev, J. Evolution of heterogeneity (I2) estimates and their 95% confidence intervals in large meta-analyses. PLoS ONE 2012, 7, e39471. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, J.P. Interpretation of tests of heterogeneity and bias in meta-analysis. J. Eval. Clin. Pract. 2008, 14, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I² index? Psychol. Methods 2006, 11, 193. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, J.C.; Bates, D.M. Linear mixed-effects models: Basic concepts and examples. In Mixed-Effects Models in S and S-PLUS; Springer: New York, NY, USA, 2000; pp. 3–56. [Google Scholar] [CrossRef]
- Stegmann, G.; Jacobucci, R.; Harring, J.R.; Grimm, K.J. Nonlinear mixed-effects modeling programs in R. Struct. Equ. Model. Multidiscip. J. 2018, 25, 160–165. [Google Scholar] [CrossRef]
- Noyez, L. Control charts, Cusum techniques and funnel plots. A review of methods for monitoring performance in healthcare. Interact. Cardiovasc. Thorac. Surg. 2009, 9, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef]
- Prasad, P.; Staggenborg, S.A.; Ristic, Z. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes 2008, 1, 301–355. [Google Scholar]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Berry, J.; Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 1980, 31, 491–543. [Google Scholar] [CrossRef]
- Kozlowski, T.T.; Pallardy, S.G. Acclimation and adaptive responses of woody plants to environmental stresses. Bot. Rev. 2002, 68, 270–334. [Google Scholar] [CrossRef]
- Yu, J.; Du, T.; Zhang, P.; Ma, Z.; Chen, X.; Cao, J.; Li, H.; Li, T.; Zhu, Y.; Xu, F.; et al. Impacts of High Temperatures on the Growth and Development of Rice and Measures for Heat Tolerance Regulation: A Review. Agronomy 2024, 14, 2811. [Google Scholar] [CrossRef]
- Lawas, L.M.F.; Shi, W.; Yoshimoto, M.; Hasegawa, T.; Hincha, D.K.; Zuther, E.; Jagadish, S.K. Combined drought and heat stress impact during flowering and grain filling in contrasting rice cultivars grown under field conditions. Field Crops Res. 2018, 229, 66–77. [Google Scholar] [CrossRef]
- Ren, H.; Bao, J.; Gao, Z.; Sun, D.; Zheng, S.; Bai, J. How rice adapts to high temperatures. Front. Plant Sci. 2023, 14, 1137923. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.; Huang, J.; Cui, K.; Nie, L.; Shah, T.; Chen, C.; Wang, K. Impact of high-temperature stress on rice plant and its traits related to tolerance. J. Agric. Sci. 2011, 149, 545–556. [Google Scholar] [CrossRef]
- Shi, P.; Zhu, Y.; Tang, L.; Chen, J.; Sun, T.; Cao, W.; Tian, Y. Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. Env. Exp. Bot. 2016, 132, 28–41. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.; Hu, M.; Wang, Z.; Hua, H.; Yin, C.; Zeng, H. Different effects of night versus day high temperature on rice quality and accumulation profiling of rice grain proteins during grain filling. Plant Cell Rep. 2011, 30, 1641–1659. [Google Scholar] [CrossRef] [PubMed]
- Suriyasak, C.; Oyama, Y.; Ishida, T.; Mashiguchi, K.; Yamaguchi, S.; Hamaoka, N.; Iwaya-Inoue, M.; Ishibashi, Y. Mechanism of delayed seed germination caused by high temperature during grain filling in rice (Oryza sativa L.). Sci. Rep. 2020, 10, 17378. [Google Scholar] [CrossRef] [PubMed]
- Yun-Ying, C.; Hua, D.; Li-Nian, Y.; Zhi-Qing, W.; Li-Jun, L.; Jian-Chang, Y. Effect of high temperature during heading and early filling on grain yield and physiological characteristics in indica rice. Acta Agron. Sin. 2009, 35, 512–521. [Google Scholar]
- Ikehashi, H. Why are there indica type and japonica type in rice?—History of the studies and a view for origin of two types. Rice Sci. 2009, 16, 1–13. [Google Scholar] [CrossRef]
- Wei, H.H.; Meng, T.Y.; Li, C.; Xu, K.; Huo, Z.Y.; Wei, H.Y.; Guo, B.W.; Zhang, H.C.; Dai, Q.G. Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Res. 2017, 204, 101–109. [Google Scholar] [CrossRef]
- Matthews, R.B.; Kropff, M.J.; Horie, T.; Bachelet, D. Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agric. Syst. 1997, 54, 399–425. [Google Scholar] [CrossRef]
- Wassmann, R.; Jagadish, S.V.K.; Sumfleth, K.; Pathak, H.; Howell, G.; Ismail, A.; Serraj, R.; Redona, E.; Singh, R.; Heuer, S. Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv. Agron. 2009, 102, 91–133. [Google Scholar]
TR | CT | N | Each Developmental Cycle |
---|---|---|---|
18–35 °C | 18 °C | 148 | Germination Stage |
18–35 °C | 18 °C | 150 | Tillering Stage |
18–35 °C | 18 °C | 152 | Heading Stage |
18–35 °C | 18 °C | 136 | Jointing Stage |
18–35 °C | 18 °C | 152 | Grain Filling Stage |
18–35 °C | 18 °C | 142 | Maturation Stage |
18–35 °C | 18 °C | 142 | Total growth period |
18–35 °C | 18 °C | 1022 | Overall development stage |
Variable | Estimate | SE | Z | p | Ci.LB | CI.UB | LOGLIK | AIC | BIC |
---|---|---|---|---|---|---|---|---|---|
Overall development stage | −1.1444 | 0.0209 | −67.4327 | <0.0001 | −1.4524 | −1.3704 | −1105.4811 | 2214.9622 | 2224.8999 |
Germination stage | −1.1364 | 0.0479 | −23.7438 | <0.0001 | −1.2302 | −1.0426 | −132.8781 | 269.7563 | 275.7908 |
Tillering stage | −1.2664 | 0.044 | −28.771 | <0.0001 | −1.3527 | −1.1801 | −119.1809 | 242.3617 | 248.3963 |
Heading stage | −1.7671 | 0.0564 | −31.359 | <0.0001 | −1.8775 | −1.6566 | −160.8919 | 325.7838 | 331.8184 |
Jointing stage | −1.3204 | 0.0462 | −28.5829 | <0.0001 | −1.411 | −1.2299 | −133.8815 | 271.763 | 277.7976 |
Grain filling stage | −1.2246 | 0.0463 | −26.4291 | <0.0001 | −1.3154 | −1.1338 | −129.0545 | 262.1089 | 268.1435 |
Maturation stage | −1.8471 | 0.0649 | −28.4593 | <0.0001 | −1.9743 | −1.7199 | −181.8966 | 367.7931 | 373.8277 |
Total growth period | −1.1623 | 0.0466 | −24.9658 | <0.0001 | −1.2535 | −1.071 | −131.0792 | 266.1584 | 272.193 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Xu, D.; Wang, R.; Guo, X.; Song, Y.; Wang, M.; Cai, Y. Effects of Temperature Fluctuations on the Growth Cycle of Rice. Agriculture 2025, 15, 99. https://doi.org/10.3390/agriculture15010099
Liu Z, Xu D, Wang R, Guo X, Song Y, Wang M, Cai Y. Effects of Temperature Fluctuations on the Growth Cycle of Rice. Agriculture. 2025; 15(1):99. https://doi.org/10.3390/agriculture15010099
Chicago/Turabian StyleLiu, Zhiqian, Danping Xu, Rulin Wang, Xiang Guo, Yanling Song, Mingtian Wang, and Yuangang Cai. 2025. "Effects of Temperature Fluctuations on the Growth Cycle of Rice" Agriculture 15, no. 1: 99. https://doi.org/10.3390/agriculture15010099
APA StyleLiu, Z., Xu, D., Wang, R., Guo, X., Song, Y., Wang, M., & Cai, Y. (2025). Effects of Temperature Fluctuations on the Growth Cycle of Rice. Agriculture, 15(1), 99. https://doi.org/10.3390/agriculture15010099