Effects of Ecological Sea Buckthorn Powder Supplementation on Egg Production and Quality in Free-Range Moravia Black Hens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Description of the Experimental Unit
2.3. The Technological Flow Applied in the Experimental Unit
2.4. The Structure of the Fodder Recipe
2.5. Methods
- ○
- Weight growth dynamics: In each group, 20 individual birds were selected and weighed at the start of each control week.
- ○
- Flock losses: Mortality cases were calculated relative to the flock size at the beginning of the respective week.
- ○
- Laying intensity: Calculated as the ratio between the weekly egg production and the average flock size of the respective group.
- ○
- Egg production structure: Each control week, the eggs obtained were categorized into four size classes: XL (over 73 g), L (63–72.9 g), M (53–62.9 g), and S (under 53 g). The distribution was then reported relative to the weekly egg production.
- ○
- Feed consumption: Recorded as total weekly feed consumption per group (kg feed/week) and average daily consumption (g feed/bird/day).
- ○
- Egg weight: Determined as the average weekly weight of the eggs.
- ○
- Shape index: Calculated as the percentage ratio of the large diameter to the small diameter of the eggs.
- ○
- Egg volume: Computed using the formula V(cm3) = 0.519 × D × d2, where D is the large diameter (cm) and d is the small diameter (cm).
- ○
- Egg structure: The three egg components (albumen, yolk, and shell) were weighed and expressed as percentages of the total egg weight.
- ○
- Shell thickness: Measured as the average of three readings (sharp end, rounded end, and equatorial zone) using a gauge with a comparator dial.
- ○
- Shell strength: Calculated using the formula R(gf/cm2) = shell thickness × 230.
- ○
- Yolk color: Assessed by comparison with the La Roche color scale.
- ○
- Carotenoid content: Expressed as double the La Roche score plus one.
Data Processing
3. Results
3.1. Productive Performances of the Herds Studied
3.1.1. Body Weight of Birds
3.1.2. The Situation of Exits from the Workforce
3.1.3. Numerical Egg Production and Laying Intensity
3.1.4. The Structure of Egg Production
3.1.5. Consumption of Combined Feeds
3.2. Quality Indicators of Laid Eggs
3.2.1. Egg Weight
3.2.2. Egg Format Index
3.2.3. Specific Gravity of Eggs
3.2.4. Egg Volume
3.2.5. Weight of Egg Components
3.2.6. The Thickness of the Mineral Shell of Eggs
3.2.7. Crack Resistance of the Mineral Shell
3.2.8. The Color of the Yolk
3.2.9. The Carotenoid Content of the Yolk
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ozenturk, U.; Yildiz, A. Assessment of Egg Quality in Native and Foreign Laying Hybrids Reared in Different Cage Densities. Braz. J. Poult. Sci. 2021, 22, eRBCA-2020. [Google Scholar] [CrossRef]
- Sparks, N.H.C. The hen’s egg—Is its role in human nutrition changing. World’s Poult. Sci. J. 2005, 62, 308–315. [Google Scholar] [CrossRef]
- Lima, H.J.D.; Souza, L.A.Z. Vitamin A in the diet of laying hens: Enrichment of table eggs to prevent nutritional deficiencies in humans. World’s Poult. Sci. J. 2018, 74, 619–626. [Google Scholar] [CrossRef]
- da Silva, W.C.; Araújo, L.N.; da Silva, É.B.R.; de Sousa, E.D.V.; da Gato, A.P.C.; da Silva, J.A.R. Systematic review and scientometrics of commercial eggs production in Brazil. Res. Soc. Dev. 2020, 9, e1399108459. [Google Scholar] [CrossRef]
- Ren, Y.; Wu, J.; Renema, R. Nutritional and Health Attributes of Eggs. In Handbook of Poultry Science and Technology; Wiley Online Library: New York, NY, USA, 2010; Volume 1, pp. 533–578. [Google Scholar] [CrossRef]
- Usturoi, A.l.; Usturoi, M.G.; Avarvarei, B.V.; Pânzaru, C.; Simeanu, C.; Usturoi, M.I.; Spătaru, M.; Radu-Rusu, R.M.; Doliş, M.G.; Simeanu, D. Research Regarding Correlation between the Assured Health State for Laying Hens and Their Productivity. Agriculture 2022, 3, 86. [Google Scholar] [CrossRef]
- Sosnowka-Czajka, E.; Herbut, E.; Skomorucha, I.; Muchacka, R. Welfare levels in heritage breed vs. Commercial laying hens in the litter system. Ann. Anim. Sci. 2011, 11, 585–595. [Google Scholar] [CrossRef]
- Craig, J.V.; Swanson, J.C. Welfare perspectives on hens kept for egg-production. Poult. Sci. 1994, 73, 921–938. [Google Scholar] [CrossRef]
- Savory, C.J.; Jack, M.C.; Sandilands, V. Behavioural responses to different floor space allowances in small groups of laying hens. Br. Poult. Sci. 2006, 47, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Aurrekoetxea, A.; Estevez, I. Use of space and its impact on the welfare of laying hens in a commercial free-range system. Poult Sci. 2016, 95, 2503–2513. [Google Scholar] [CrossRef]
- De Haas, E.N.; Kemp, B.; Bolhuis, J.E.; Groothuis, T.; Rodenburg, T.B. Fear, stress, and feather pecking in commercial white and brown laying hen parent-stock flocks and their relationships with production parameters. Poult. Sci. 2013, 92, 2259–2269. [Google Scholar] [CrossRef] [PubMed]
- Dedousi, A.; Kritsa, M.Z.; Stojcic, M.D.; Sfetsas, T.; Sentas, A.; Sossidou, E. Production Performance, Egg Quality Characteristics, Fatty Acid Profile and Health Lipid Indices of Produced Eggs, Blood Biochemical Parameters and Welfare Indicators of Laying Hens Fed Dried Olive Pulp. Sustainability 2022, 14, 3157. [Google Scholar] [CrossRef]
- Corona, J.; Trompiz, J.; Jerez, N.; Gomez, A.; Rincon, H. Effect of warehouse type on productive variables and egg quality in laying hens Isa Brown. Rev. De La Fac. De Agron. De La Univ. Del Zulia 2016, 32, 345–360. [Google Scholar]
- De Oliveira Pereira, D.C.; Da Silva Miranda, K.O.; Dematte Filho, L.C.; Pereira, G.V.; De Stefano Piedade, S.M.; Berno, P.R. Presence of roosters in an alternative egg production system aiming at animal welfare. Rev. Bras. De Zootec. -Braz. J. Anim. Sci. 2017, 46, 175–184. [Google Scholar] [CrossRef]
- Guinebretiere, M.; Mika, A.; Michel, V.; Balaine, L.; Thomas, R.; Keita, A.; Pol, F. Effects of Management Strategies on Non-Beak-Trimmed Laying Hens in Furnished Cages that Were Reared in a Non-Cage System. Animals 2020, 10, 399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Y.; Kang, X.T.; Zhang, T.Y.; Huang, J. Positive Effects of Resveratrol on Egg-Laying Ability, Egg Quality, and Antioxidant Activity in Hens. J. Appl. Poult. Res. 2019, 28, 1099–1105. [Google Scholar] [CrossRef]
- Roberts, J. Welfare standards for laying hens Achieving sustainable production of eggs Volume 2. Anim. Welf. Sustain. 2017, 17, 85–97. [Google Scholar]
- Kjaer, J.B.; Sorensen, P. Feather pecking and cannibalism in free-range laying hens as affected by genotype, dietary level of methionine plus cystine, light intensity during rearing and age at first access to the range area. Appl. Anim. Behav. Sci. 2002, 76, 21–39. [Google Scholar] [CrossRef]
- Wan, Y.I.; Ma, R.; Li, Y.; Liu, W.; Li, J.Y.; Zhan, K. Effect of a Large-sized Cage with a Low Metabolizable Energy and Low Crude Protein Diet on Growth Performance, Feed Cost, and Blood Parameters of Growing Layers. J. Poult. Sci. 2021, 58, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Torki, M.; Nasiroleslami, M.; Ghasemi, H.A. The effects of different protein levels in laying hens under hot summer conditions. Anim. Prod. Sci. 2017, 57, 927–934. [Google Scholar] [CrossRef]
- Viana, E.F.; De Carvalho Mello, H.H.; Carvalho, F.B.; Cafe, M.B.; Mogyca Leandro, N.S.; Arnhold, E.; Stringhini, J.H. Blood biochemical parameters and organ development of brown layers fed reduced dietary protein levels in two rearing systems. Anim. Biosci. 2022, 35, 444–452. [Google Scholar] [CrossRef]
- Mens, A.J.W.; van Krimpen, M.M.; Kwakkel, R.P. Nutritional approaches to reduce or prevent feather pecking in laying hens: Any potential to intervene during rearing. World’s Poult. Sci. J. 2020, 76, 591–610. [Google Scholar] [CrossRef]
- Rozempolska-Rucinska, I.; Czech, A.; Kasperek, K.; Zieba, G.; Ziemianska, A. Behaviour and stress in three breeds of laying hens kept in the same environment. S. Afr. J. Anim. Sci. 2020, 50, 272–280. [Google Scholar] [CrossRef]
- Marcq, C.; Marlier, D.; Beckers, Y. Improving adjuvant systems for polyclonal egg yolk antibody (IgY) production in laying hens in terms of productivity and animal welfare. Vet. Immunol. Immunopathol. 2015, 165, 54–63. [Google Scholar] [CrossRef]
- Ma, J.S.; Chang, W.H.; Liu, G.H.; Zhang, S.; Zheng, A.J.; Li, Y.; Xie, Q.; Liu, Z.Y.; Cai, H.Y. Effects of flavones of sea buckthorn fruits on growth performance, carcass quality, fat deposition and lipometabolism for broilers. Poult. Sci. 2015, 94, 2641–2649. [Google Scholar] [CrossRef]
- Usturoi, M.G.; Radu-Rusu, R.M.; Usturoi, A.l.; Simeanu, C.; Dolis, M.G.; Rațu, R.N.; Simeanu, D. Impact of Different Levels of Crude Protein on Production Performance and Meat Quality in Broiler Selected for Slow Growth. Agriculture 2023, 13, 427. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, Y.F.; Wang, K.; Wang, Y.S. Bioactive Compounds in Sea Buckthorn and their Efficacy in Preventing and Treating Metabolic Syndrome. Foods 2023, 12, 1985. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wareth, A.A.A.; Lohakare, J. Moringa oleifera Leaves as Eco-Friendly Feed Additive in Diets of Hy-Line Brown Hens during the Late Laying Period. Animals 2021, 11, 1116. [Google Scholar] [CrossRef]
- Song, Q.L.; Zou, Z.H.; Chen, X.L.; Ai, G.X.; Xiong, P.W.; Song, W.J.; Liu, G.H.; Zheng, A.J.; Chen, J. Effect of Moringa oleifera Leaf Powder Supplementation on Growth Performance, Digestive Enzyme Activity, Meat Quality, and Cecum Microbiota of Ningdu Yellow Chickens. Agric. Basel 2024, 14, 1523. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Untea, A.E.; Oancea, A.G. Sustainable Poultry Feeding Strategies for Achieving Zero Hunger and Enhancing Food Quality. Agriculture 2024, 14, 1811. [Google Scholar] [CrossRef]
- Ma, Y.; Yao, J.X.; Zhou, L.; Zhao, M.J.; Wang, W.; Liu, J.K.; Marchioni, E. Comprehensive untargeted lipidomic analysis of sea buckthorn using UHPLC-HR-AM/MS/MS combined with principal component analysis. Food Chem. 2023, 430, 136964. [Google Scholar] [CrossRef]
- Raţu, R.N.; Usturoi, M.G.; Simeanu, D.; Simeanu, C.; Usturoi, A.l.; Doliş, M.G. Research regarding dynamics of chemical content from pasteurized egg melange stored in polyethylene type packing. Rev. Mater. Plast. 2017, 54, 368–374. [Google Scholar] [CrossRef]
- Usturoi, A.l.; Simeanu, C.; Usturoi, M.G.; Doliş, M.G.; Raţu, R.N.; Simeanu, D. Influence of packaging type on the dynamics of powdered eggs chemical composition. Rev. Mater. Plast. 2017, 54, 380–385. [Google Scholar] [CrossRef]
- Davidescu, M.A.; Panzaru, C.; Usturoi, A.l.; Radu-Rusu, R.M.; Creanga, S.t. An Appropriate Genetic Approach to Endangered Podolian Grey Cattle in the Context of Preserving Biodiversity and Sustainable Conservation of Genetic Resources. Agriculture 2023, 13, 2255. [Google Scholar] [CrossRef]
- Montalbán, A.; Madrid, J.; Hernández, F.; Schiavone, A.; Ruiz, E.; Sánchez, C.J.; Ayala, L.; Fiorilla, E.; Martínez-Miró, S. The Influence of Alternative Diets and Whole Dry Black Soldier Fly Larvae (Hermetia illucens) on the Production Performance, Blood Status, and Egg Quality of Laying Hens. Animals 2024, 14, 2550. [Google Scholar] [CrossRef]
- Anene, D.O.; Akter, Y.; Thomson, P.C.; Groves, P.; O’Shea, C.J. Variation and Association of Hen Performance and Egg Quality Traits in Individual Early-Laying ISA Brown Hens. Animals 2020, 10, 1601. [Google Scholar] [CrossRef]
- Salahuddin, M.; Abdel-Wareth, A.A.A.; Stamps, K.G.; Gray, C.D.; Aviña, A.M.W.; Fulzele, S.; Lohakare, J. Enhancing Laying Hens’ Performance, Egg Quality, Shelf Life during Storage, and Blood Biochemistry with Spirulina platensis Supplementation. Vet. Sci. 2024, 11, 383. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Lara-Bueno, A. Essential Oils as a Dietary Additive for Laying Hens: Performance, Egg Quality, Antioxidant Status, and Intestinal Morphology: A Meta-Analysis. Agriculture 2023, 13, 1294. [Google Scholar] [CrossRef]
- Panaite, T.D.; Vlaicu, P.A.; Saracila, M.; Cismileanu, A.; Varzaru, I.; Voicu, S.N.; Hermenean, A. Impact of Watermelon Rind and Sea Buckthorn Meal on Performance, Blood Parameters, and Gut Microbiota and Morphology in Laying Hens. Agriculture 2022, 12, 177. [Google Scholar] [CrossRef]
- Shaker, M.M.; Al-Beitawi, N.A.; Bláha, J.; Mahmoud, Z. The effect of sea buckthorn (Hippophae rhamnoides L.) fruit residues on performance and egg quality of laying hens. J. Appl. Anim. Res. 2018, 46, 422–426. [Google Scholar] [CrossRef]
- Chand, N.; Naz, S.; Irfan, M.; Khan, R.U.; Rehman, Z.U. Effect of Sea Buckthorn (Hippophae rhamnoides L.) Seed Supplementation on Egg Quality and Cholesterol of Rhode Island RedxFayoumi Laying Hens. Korean J. Food Sci. Anim. Resour. 2018, 38, 468–475. [Google Scholar] [PubMed]
- Untea, A.E.; Panaite, T.D.; Varzaru, I.; Turcu, R.P.; Gavris, T.; Lupu, A. Study on the influence of dietary sea buckthorn meal on nutritional properties of laying hen eggs. Czech J. Anim. Sci. 2021, 66, 225–234. [Google Scholar] [CrossRef]
- Nour, V.; Panaite, T.D.; Corbu, A.R.; Ropota, M.; Turcu, R.P. Nutritional and bioactive compounds in dried sea-buckthorn pomace. Erwerbs-Obstbau 2021, 63, 91–98. [Google Scholar] [CrossRef]
- Yao, B.N.; Liao, F.Y.; Yang, J.Y.; Liu, A.; Wang, J.; Zhu, B.G.; Yang, S.L. Effect of sea buckthorn extract on production performance, serum biochemical indexes, egg quality, and cholesterol deposition of laying ducks. Front. Vet. Sci. 2023, 10, 112–117. [Google Scholar] [CrossRef]
- Saracila, M.; Panaite, T.D.; Untea, A.; Varzaru, I.; Dragotoiu, D.; Criste, R.D. Use of the dietary sea buckthorn meal as phytoaditive in heat-stressed broiler. Sci. Pap. Ser. D Anim. Sci. 2020, 63, 83–91. [Google Scholar]
- Kang, H.K.; Kim, J.H.; Kim, C.H. Effect of dietary supplementation of Lactobacillus-fermented and non-fermented sea buckthorn on the laying performance and meat lipid peroxidation of Hy-line Brown laying hens. Eur. Poul. Sci. 2015, 79, 1–10. [Google Scholar]
- BenMahmoud, Z.T.; Sherif, B.M.; Elfituri, A.M. Effect of partial replacing of wheat by sea buckthorn (Hippophae rhamnoides L.) fruit residues in broiler diets on performance and skin pigmentation. Open Vet. J. 2022, 11, 780–788. [Google Scholar]
- He, Q.; Yang, K.L.; Wu, X.Y.; Zhang, C.H.; He, C.N.; Xiao, P.G. Phenolic compounds, antioxidant activity and sensory evaluation of sea buckthorn (Hippophae rhamnoides L.) leaf tea. Food Sci. Nutr. 2023, 11, 1212–1222. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Bhart, V.K.; Acharya, S.; Pawar, D.D.; Singh, S.B. Sea buckthorn: New feed opportunity for poultry in cold arid Ladakh region of India. World’s Poult Sci J. 2010, 66, 707–714. [Google Scholar] [CrossRef]
- Lokaewmanee, K.; Yamauchi, K.; Okuda, N. Effects of dietary red pepper on egg yolk colour and histological intestinal morphology in laying hens. J. Anim. Physiol. Anim. Nutr. 2013, 97, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, P.; Suchy, P.; Straková, E.; Dolezalová, J. The effect of a diet supplemented with sea-buckthorn pomace on the colour and viscosity of the egg yolk. Acta Vet. BRNO 2017, 86, 303–308. [Google Scholar] [CrossRef]
- Vilas-Franquesa, A.; Saldo, J.; Juan, B. Potential of sea buckthorn-based ingredients for the food and feed industry—A review. Food Prod. Process. Nutr. 2020, 2, 17. [Google Scholar] [CrossRef]
- Beardsworth, P.M.; Hernandez, J.M. Yolk colour—An important egg quality attribute. Int. Poult. Prod. 2004, 12, 17–18. [Google Scholar]
Specification | Experimental Batches | ||
---|---|---|---|
M-m | M-1 (1%) | M-2 (2%) | |
Corn kernels | 23.5 | 23.5 | 23.5 |
Soybean meal (46% protein) | 5 | 5 | 5 |
Granulated alfalfa | 3 | 3 | 3 |
Peas | 3 | 3 | 3 |
Wheat bran | 1 | 1 | 1 |
Shell grit | 1 | 1 | 1 |
Calcium | 2.2 | 2.2 | 2.2 |
Premix | 0.8 | 0.8 | 0.8 |
Unfiltered sunflower oil | 0.5 | 0.5 | 0.5 |
Organic sea buckthorn powder | - | 0.4 | 0.8 |
Characteristics | |||
Protein (%) | 12.10 | 12.54 | 13.16 |
Fat (%) | 3.71 | 3.77 | 3.84 |
Fiber (%) | 4.26 | 4.38 | 4.58 |
Ash (%) | 11.51 | 12.13 | 13.89 |
Starch (%) | 39.45 | 37.88 | 36.02 |
Age (Weeks) | Standard Weight (g) | Realized Weight (g) | ||
---|---|---|---|---|
M-m | M-1 | M-2 | ||
30 | 2346–2478 | 2412.4 | 2412.0 | 2412.2 |
31 | 2360–2483 | 2439.2 | 2438.1 | 2437.4 |
32 | 2372–2492 | 2470.7 | 2469.5 | 2467.0 |
33 | 2402–2510 | 2494.3 | 2492.1 | 2490.4 |
34 | 2450–2518 | 2509.8 | 2507.3 | 2503.8 |
35 | 2471–2531 | 2526.8 | 2523.4 | 2520.5 |
36 | 2478–2539 | 2540.5 | 2535.8 | 2532.2 |
37 | 2482–2544 | 2565.4 | 2560.9 | 2557.1 |
38 | 2486–2565 | 2588.4 | 2583.7 | 2579.5 |
39 | 2491–2573 | 2611.9 | 2606.6 | 2602.1 |
40 | 2496–2584 | 2640.4 | 2635.8 | 2631.3 |
The evolution of body weight during the 30–40-week period | ||||
M-m | M-1 | M-2 | ||
2527.25 ± 71.32 | 2524.11 ± 69.69 | 2521.23 ± 68.24 | ||
V% | 2.50 | 2.45 | 2.41 | |
L1 vs. L2 = n.s. [F(1, 20) = 0.010, p = 0.842]. L1 vs. L3 = n.s. [F(1, 20) = 0.041, p = 0.842]. L2 vs. L3 = n.s. [F(1, 20) = 0.009, p = 0.842]. |
Age (Weeks) | M-m | M-1 | M-2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Effective Weekly | Death Rate (%) | Effective Weekly | Death Rate (%) | Effective Weekly | Death Rate (%) | ||||
Beginning (Heads) | End (Heads) | Beginning (Heads) | End (Heads) | Beginning (Heads) | End (Heads) | ||||
30 | 200 | 200 | - | 200 | 200 | - | 200 | 200 | |
31 | 200 | 200 | - | 200 | 199 | 0.50 | 200 | 200 | - |
32 | 200 | 199 | 0.50 | 199 | 199 | - | 200 | 200 | - |
33 | 199 | 199 | - | 199 | 199 | - | 200 | 200 | - |
34 | 199 | 199 | - | 199 | 199 | - | 200 | 200 | - |
35 | 199 | 199 | - | 199 | 199 | - | 200 | 200 | - |
36 | 199 | 198 | 0.50 | 199 | 199 | 200 | 200 | - | |
37 | 198 | 198 | - | 199 | 199 | - | 200 | 199 | 0.5 |
38 | 198 | 198 | - | 199 | 199 | - | 199 | 199 | - |
39 | 198 | 198 | - | 199 | 199 | - | 199 | 199 | - |
40 | 198 | 198 | - | 199 | 199 | - | 199 | 199 | - |
30–40 | - | - | 1.0 | - | - | 0.50 | - | - | 0.50 |
Experimental Batch | M-m | M-1 | M-2 | |||
---|---|---|---|---|---|---|
Total numerical egg production (11 weeks) | 13,719 | 13,793 | 13,907 | |||
Statistical indicator/studied parameter | V% | V% | V% | |||
Effective average—reported over the 11 weeks of research (head) | 198.82 ± 0.78 | 0.36 | 199.68 ± 0.46 | 0.28 | 199.68 ± 0.46 | 0.28 |
Average egg production per week—reported over the 11 weeks of research (eggs/week) | 1247.18 ± 42.36 | 3.11 | 1253.91 ± 37.26 | 3.12 | 1264.27 ± 37.79 | 3.14 |
Average laying intensity—reported over the 11 weeks of research (%) | 89.61 ± 2.87 | 3.39 | 89.95 ± 2.67 | 3.10 | 90.44 ± 2.52 | 2.93 |
Numerical egg production | ||||||
M-m vs. M-1 = n.s. (F(1, 20) = 0.1564, p = 0.6967) M-m vs. M-2 = n.s. (F(1, 20) = 0.9971, p = 0.3300) M-1 vs. M-2 = n.s. (F(1, 20) = 0.4194, p = 0.5246) | ||||||
Laying intensity | ||||||
M-m vs. M-1 = n.s. (F(1, 20) = 0.0839, p = 0.7750) M-m vs. M-2 = n.s. (F(1, 20) = 0.5244, p = 0.4774) M-1 vs. M-2 = n.s. (F(1, 20) = 0.1972, p = 0.6617) |
Eggs Category | M-n | M-1 | M-2 | |||
---|---|---|---|---|---|---|
V% | V% | V% | ||||
XL | 2.24 ± 0.41 | 16.39 | 2.32 ± 0.42 | 15.20 | 2.38 ± 0.43 | 14.86 |
L | 51.77 ± 5.15 | 6.10 | 51.96 ± 5.34 | 6.53 | 52.29 ± 5.53 | 6.83 |
M | 45.32 ± 4.36 | 7.33 | 45.06 ± 4.59 | 7.97 | 44.70 ± 4.81 | 8.49 |
S | 0.67 ± 1.39 | 207.18 | 0.66 ± 1.38 | 203.28 | 0.63 ± 1.37 | 214.44 |
Category XL | ||||||
M-m vs. M-1 = n.s. (F(1, 20) = 0.2115, p = 0.6506) M-m vs. M-2 = n.s. (F(1, 20) = 0.6461, p = 0.4310) M-1 vs. M-2 = n.s. (F(1, 20) = 0.1226, p = 0.7299) | ||||||
Category L | ||||||
M-m vs. M-1 = n.s. (F(1, 20) = 0.0073, p = 0.9329) M-m vs. M-2 = n.s. (F(1, 20) = 0.0517, p = 0.8225) M-1 vs. M-2 = n.s. (F(1, 20) = 0.0199, p = 0.8892) | ||||||
Category M | ||||||
M-m vs. M-1 = n.s. (F(1, 20) = 0.0190, p = 0.8917) M-m vs. M-2 = n.s. (F(1, 20) = 0.0312, p = 0.8616) M-1 vs. M-2 = n.s. (F(1, 20) = 0.0996, p = 0.7556) | ||||||
Category S | ||||||
M-m vs. M-1 = n.s. (F(1, 20) = 0.0002, p = 0.9879) M-m vs. M-2 = n.s. (F(1, 20) = 0.0059, p = 0.393) M-1 vs. M-2 = n.s. (F(1, 20) = 0.0038, p = 0.9513) |
Experimental Batch | M-m | M-1 | M-2 | |||
---|---|---|---|---|---|---|
Studied Parameter/Statistical Indicator | V% | V% | V% | |||
Total (kg/batch) | 195.05 ± 0.26 | 0.13 | 195.02 ± 0.397034 | 0.21354 | 195.10 ± 0.28 | 0.12 |
Daily average (g/head) | 140.16 ± 0.43 | 0.27 | 139.90 ± 0.40 | 0.249883 | 139.58 ± 0.32 | 0.19 |
Total combined feed consumption (kg/batch) | ||||||
M-m vs. M-1 = n.s. (F(1, 20) = 0.0648, p = 0.8016) M-m vs. M-2 = n.s. (F(1, 20) = 0.1508, p = 0.7019) M-1 vs. M-2 = n.s. (F(1, 20) = 0.3047, p = 0.5870) | ||||||
Daily average combined feed consumption (g/head) | ||||||
M-m vs. M-1 = n.s. (F(1, 20) = 2.1935, p = 0.1542) M-m vs. M-2 = * p = 0.0548 (F(1, 20) = 4.1610) M-1 vs. M-2 = ** p < 0.05 (F(1, 20) = 12.9211, p = 0.0018) |
Age (Weeks) | M-m (N = 30) | M-1 (N = 30) | M-2 (N = 30) | |||
---|---|---|---|---|---|---|
(g) | V% | (g) | V% | (g) | V% | |
30 | 62.89 ± 0.55 | 4.82 | 62.90 ± 0.47 | 4.11 | 62.89 ± 0.45 | 3.92 |
31 | 63.00 ± 0.93 | 8.05 | 63.10 ± 0.51 | 4.44 | 63.15 ± 0.46 | 4.01 |
32 | 63.11 ± 0.92 | 7.98 | 63.20 ± 0.54 | 4.72 | 63.32 ± 0.50 | 4.29 |
33 | 63.24 ± 0.89 | 7.68 | 63.31 ± 0.57 | 4.98 | 63.50 ± 0.53 | 4.58 |
34 | 63.37 ± 0.86 | 7.48 | 63.40 ± 0.58 | 5.03 | 63.68 ± 0.53 | 4.58 |
35 | 63.46 ± 0.91 | 7.86 | 63.58 ± 0.61 | 5.29 | 63.84 ± 0.55 | 4.69 |
36 | 63.57 ± 0.94 | 8.13 | 63.62 ± 0.67 | 5.80 | 63.91 ± 0.58 | 5.01 |
37 | 63.66 ± 0.99 | 8.55 | 63.74 ± 0.68 | 5.87 | 64.08 ± 0.61 | 5.23 |
38 | 63.78 ± 1.01 | 8.69 | 63.85 ± 0.70 | 6.02 | 64.11 ± 0.63 | 5.55 |
39 | 63.89 ± 1.04 | 8.95 | 63.94 ± 0.71 | 6.10 | 64.54 ± 0.66 | 5.63 |
40 | 64.04 ± 1.06 | 9.07 | 64.20 ± 0.72 | 6.13 | 64.77 ± 0.67 | 5.68 |
The average egg weight during the 30–40-week period | ||||||
30–40 | 63.46 ± 0.37 | 8.53 | 63.53 ± 0.39 | 5.55 | 63.80 ± 0.57 | 4.80 |
M-m vs. M-1 = n.s. (F(1, 20) = 0.2144, p = 0.6483) M-m vs. M-2 = n.s. (F(1, 20) = 2.7915, p = 0.1103) M-1 vs. M-2 = n.s. (F(1, 20) = 1.6509, p = 0.2135) |
Age (Weeks) | M-m (N = 30) | M-1 (N = 30) | M-2 (N = 30) | |||
---|---|---|---|---|---|---|
(%) | V% | (%) | V% | (%) | V% | |
30 | 71.85 ± 1.00 | 7.59 | 71.85 ± 0.86 | 6.55 | 71.86 ± 0.85 | 6.48 |
31 | 72.15 ± 1.40 | 10.62 | 72.19 ± 0.99 | 7.52 | 72.23 ± 0.87 | 6.58 |
32 | 72.44 ± 1.43 | 10.78 | 72.48 ± 1.02 | 7.68 | 72.52 ± 0.92 | 6.96 |
33 | 72.46 ± 1.43 | 11.11 | 72.50 ± 1.02 | 7.70 | 72.58 ± 0.93 | 6.99 |
34 | 72.50 ± 1.53 | 11.57 | 72.56 ± 1.06 | 7.98 | 72.62 ± 0.93 | 7.04 |
35 | 73.04 ± 1.59 | 11.95 | 73.10 ± 1.07 | 8.02 | 73.18 ± 0.96 | 7.16 |
36 | 73.56 ± 1.64 | 12.23 | 73.61 ± 1.09 | 8.13 | 73.70 ± 0.98 | 7.28 |
37 | 73.97 ± 1.69 | 12.56 | 74.02 ± 1.28 | 9.45 | 74.11 ± 1.07 | 7.91 |
38 | 74.11 ± 1.74 | 12.87 | 74.20 ± 1.29 | 9.56 | 74.31 ± 1.08 | 7.97 |
39 | 74.69 ± 1.78 | 13.04 | 74.73 ± 1.31 | 9.60 | 74.84 ± 1.11 | 8.11 |
40 | 75.03 ± 1.99 | 14.56 | 75.11 ± 1.37 | 9.98 | 75.25 ± 1.12 | 8.13 |
The size index analyzed for the 30–40-week period. | ||||||
30–40 | 73.25 ± 1.07 | 1.39 | 73.30 ± 1.09 | 1.41 | 73.38 ± 1.13 | 1.44 |
M-m vs. M-1 = n.s. (F(1, 20) = 0.0116, p = 0.9152) M-m vs. M-2 = n.s. (F(1, 20) = 0.073, p = 0.7898) M-1 vs. M-2 = n.s. (F(1, 20) = 0.027, p = 0.8722) |
Age (Weeks) | M-m (N = 30) | M-1 (N = 30) | M-2 (N = 30) | |||
---|---|---|---|---|---|---|
(g/cm3) | V% | (g/cm3) | V% | (g/cm3) | V% | |
30 | 1.061 ± 0.014 | 7.16 | 1.062 ± 0.014 | 7.03 | 1.062 ± 0.009 | 6.22 |
31 | 1.068 ± 0.017 | 8.64 | 1.070 ± 0.011 | 5.86 | 1.073 ± 0.010 | 4.99 |
32 | 1.074 ± 0.017 | 8.88 | 1.078 ± 0.012 | 5.93 | 1.082 ± 0.010 | 5.03 |
33 | 1.079 ± 0.018 | 8.92 | 1.083 ± 0.012 | 6.12 | 1.088 ± 0.010 | 5.28 |
34 | 1.082 ± 0.018 | 8.97 | 1.089 ± 0.012 | 6.18 | 1.094 ± 0.011 | 5.47 |
35 | 1.088 ± 0.019 | 9.14 | 1.096 ± 0.014 | 6.87 | 1.100 ± 0.012 | 5.66 |
36 | 1.091 ± 0.019 | 9.58 | 1.099 ± 0.014 | 6.93 | 1.107 ± 0.012 | 5.81 |
37 | 1.095 ± 0.019 | 9.26 | 1.104 ± 0.013 | 6.45 | 1.115 ± 0.013 | 6.11 |
38 | 1.098 ± 0.020 | 9.94 | 1.109 ± 0.014 | 7.04 | 1.120 ± 0.014 (10-R1) | 6.23 |
39 | 1.104 ± 0.020 | 10.11 | 1.115 ± 0.014 | 7.18 | 1.126 ± 0.014 | 6.78 |
40 | 1.118 ± 0.021 | 11.20 | 1.122 ± 0.015 | 7.97 | 1.130 ± 0.014 | 6.80 |
The average specific weight during the 30–40-week period | ||||||
30–40 | 1.087 ± 0.016 | 8.36 | 1.093 ± 0.018 | 6.51 | 1.100 ± 0.022 | 5.75 |
M-m vs. M-1 = n.s. (F(1, 20) = 0.684, p = 0.418) M-m vs. M-2 = n.s. (F(1, 20) = 2.289, p = 0.146) M-1 vs. M-2 = n.s. (F(1, 20) = 0.524, p = 0.478) |
Age (Weeks) | M-m (N = 30) | M-1 (N = 30) | M-2 (N = 30) | |||
---|---|---|---|---|---|---|
(cm3) | V% | (cm3) | V% | (cm3) | V% | |
30 | 54.74 ± 0.99 | 5.71 | 54.78 ± 0.57 | 3.28 | 54.76 ± 0.62 | 3.58 |
31 | 54.89 ± 1.07 | 6.15 | 55.07 ± 0.64 | 3.69 | 55.12 ± 0.46 | 2.64 |
32 | 55.08 ± 1.04 | 5.98 | 55.21 ± 0.68 | 3.89 | 55.44 ± 0.53 | 3.02 |
33 | 55.29 ± 1.10 | 6.27 | 55.65 ± 0.78 | 4.45 | 55.82 ± 0.61 | 3.45 |
34 | 55.71 ± 1.11 | 6.97 | 55.92 ± 0.86 | 4.86 | 56.03 ± 0.59 | 3.33 |
35 | 56.12 ± 1.27 | 7.14 | 56.38 ± 0.81 | 4.52 | 56.61 ± 0.64 | 3.58 |
36 | 56.47 ± 1.36 | 7.59 | 56.74 ± 0.74 | 4.13 | 56.92 ± 0.74 | 4.11 |
37 | 56.69 ± 1.47 | 8.17 | 56.93 ± 0.89 | 4.97 | 57.04 ± 0.77 | 4.25 |
38 | 56.90 ± 1.62 | 8.99 | 57.09 ± 0.92 | 5.11 | 57.21 ± 0.85 | 4.69 |
39 | 57.11 ± 1.71 | 9.45 | 57.28 ± 0.95 | 5.23 | 57.54 ± 0.86 | 4.73 |
40 | 57.27 ± 1.80 | 9.93 | 57.65 ± 1.04 | 5.69 | 57.99 ± 0.89 | 4.88 |
The volume of eggs determined for the 30–40-week period | ||||||
30–40 | 56.02 ± 0.92 | 7.54 | 56.25 ± 0.97 | 4.58 | 56.41 ± 1.04 | 3.66 |
M-m vs. M-1 = n.s. (F(1, 20) = 0.296, p = 0.593) M-m vs. M-2 = n.s. (F(1, 20) = 0.824, p = 0.375) M-1 vs. M-2 = n.s. (F(1, 20) = 0.141, p = 0.712) |
Experimental Batch | M-m (N = 30) | M-1 (N = 30) | M-2 (N = 30) | |||
---|---|---|---|---|---|---|
Indicator | V% | V% | V% | |||
Yolk (%) | 32.18 ± 0.13 | 0.39 | 32.11 ± 0.10 | 0.31 | 32.12 ± 0.17 | 0.53 |
Egg white (%) | 59.38 ± 0.03 | 0.05 | 59.37 ± 0.03 | 0.04 | 59.24 ± 0.09 | 0.15 |
Shell (%) | 8.44 ± 0.15 | 1.68 | 8.52 ± 0.13 | 1.49 | 8.64 ± 0.08 | 0.95 |
Yolk (%) | ||||||
effectM-m vs. M-1 = n.s. (F(1, 20) = 1.60, p = 0.221) M-m vs. M-2 = n.s. (F(1, 20) = 0.0051, p = 0.944) M-1 vs. M-2 = n.s. (F(1, 20) = 0.0051, p = 0.944) | ||||||
Egg white (%) | ||||||
M-m vs. M-1 = n.s. (F(1, 20) = 0.4697, p = 0.5010) M-m vs. M-2 = ** p < 0.05 (F(1, 20) = 15.6774, p = 0.0008) M-1 vs. M-2 = ** p < 0.05 (F(1, 20) = 13.1192, p = 0.0017) | ||||||
Shell (%) | ||||||
M-m vs. M-1 = n.s. (F(1, 20) = 1.2145, p = 0.2835) M-m vs. M-2 = ** p < 0.05 (F(1, 20) = 10.3560, p = 0.0043) M-1 vs. M-2 = * p < 0.05 (F(1, 20) = 4.6823, p = 0.0428) |
Age (Weeks) | M-m (N = 30) | M-1 (N = 30) | M-2 (N = 30) | |||
---|---|---|---|---|---|---|
(mm) | V% | (mm) | V% | (mm) | V% | |
30 | 0.792 ± 0.021 | 14.25 | 0.793 ± 0.015 | 10.41 | 0.792 ± 0.014 | 10.02 |
31 | 0.790 ± 0.021 | 14.87 | 0.793 ± 0.015 | 10.59 | 0.794 ± 0.014 | 10.23 |
32 | 0.787 ± 0.021 | 14.28 | 0.791 ± 0.016 | 10.97 | 0.795 ± 0.014 | 10.45 |
33 | 0.783 ± 0.021 | 15.01 | 0.788 ± 0.016 | 11.11 | 0.795 ± 0.015 | 10.56 |
34 | 0.780 ± 0.022 | 15.69 | 0.786 ± 0.016 | 11.25 | 0.793 ± 0.015 | 10.69 |
35 | 0.775 ± 0.023 | 15.97 | 0.780 ± 0.016 | 11.69 | 0.790 ± 0.016 | 10.71 |
36 | 0.774 ± 0.023 | 16.28 | 0.778 ± 0.017 | 12.13 | 0.787 ± 0.016 | 11.38 |
37 | 0.768 ± 0.024 | 16.83 | 0.773 ± 0.017 | 12.58 | 0.784 ± 0.017 | 11.69 |
38 | 0.763 ± 0.024 | 17.11 | 0.770 ± 0.018 | 12.61 | 0.781 ± 0.017 | 11.87 |
39 | 0.744 ± 0.023 | 17.09 | 0.766 ± 0.018 | 12.87 | 0.777 ± 0.017 | 12.12 |
40 | 0.702 ± 0.023 | 17.86 | 0.751 ± 0.018 | 13.45 | 0.774 ± 0.017 | 12.38 |
The mineral shell thickness determined for the 30–40-week period | ||||||
Average | 0.769 ± 0.026 | 15.43 | 0.779 ± 0.013 | 11.67 | 0.787 ± 0.007 | 10.98 |
M-m vs. M-1 = n.s. (F(1, 20) = 1.3084, p = 0.2662) M-m vs. M-2 = * p < 0.05 (F(1, 20) = 5.1252, p = 0.0349) M-1 vs. M-2 = n.s. (F(1, 20) = 3.4234, p = 0.0791) |
Age (Weeks) | M-m (n = 30) | M-1 (n = 30) | M-2 (n = 30) | |||
---|---|---|---|---|---|---|
(g f/cm2) | V% | (g f/cm2) | V% | (g f/cm2) | V% | |
30 | 182.16 ± 5.50 | 16.55 | 182.39 ± 4.39 | 13.18 | 182.16 ± 3.87 | 11.63 |
31 | 181.70 ± 5.58 | 16.83 | 182.39 ± 4.66 | 14.01 | 182.62 ± 4.00 | 12.01 |
32 | 181.61 ± 5.57 | 16.80 | 181.93 ± 4.46 | 13.44 | 182.85 ± 4.14 | 12.42 |
33 | 180.09 ± 5.52 | 16.79 | 181.24 ± 4.72 | 14.28 | 182.85 ± 4.20 | 12.59 |
34 | 179.40 ± 5.56 | 16.98 | 180.78 ± 4.82 | 14.61 | 182.39 ± 4.32 | 12.98 |
35 | 178.25 ± 5.71 | 17.56 | 179.40 ± 4.87 | 14.89 | 181.70 ± 4.20 | 12.67 |
36 | 178.02 ± 5.73 | 17.63 | 178.94 ± 4.87 | 14.91 | 181.01 ± 4.33 | 13.12 |
37 | 176.64 ± 5.96 | 18.49 | 177.79 ± 4.89 | 15.07 | 180.32 ± 4.28 | 13.01 |
38 | 175.49 ± 6.14 | 19.19 | 177.10 ± 4.88 | 15.11 | 179.63 ± 4.23 | 12.89 |
39 | 171.12 ± 6.30 | 20.16 | 176.18 ± 4.87 | 15.15 | 178.71 ± 4.30 | 13.20 |
40 | 161.46 ± 5.97 | 20.27 | 172.73 ± 4.79 | 15.20 | 178.02 ± 4.34 | 13.35 |
The breakage resistance of the mineral shell for the 30–40-week period | ||||||
30–40 | 176.90 ± 6.05 | 16.46 | 179.17 ± 3.03 | 14.67 | 181.11 ± 1.71 | 12.98 |
M-m vs. M-1 = n.s. (F(1, 20) = 1.2331, p = 0.2800) M-m vs. M-2 = * p < 0.05 (F(1, 20) = 4.9279, p = 0.0381) M-1 vs. M-2 = n.s. (F(1, 20) = 3.4234, p = 0.0791) |
Age (Weeks) | M-m (N = 30) | M-1 (N = 30) | M-2 (N = 30) | |||
---|---|---|---|---|---|---|
(Points) | V% | (Points) | V% | (Points) | V% | |
30 | 8.37 ± 0.08 | 5.62 | 8.38 ± 0.06 | 4.21 | 8.37 ± 0.06 | 3.78 |
31 | 8.35 ± 0.09 | 5.89 | 9.72 ± 0.08 | 4.57 | 11.15 ± 0.07 | 3.56 |
32 | 8.35 ± 0.08 | 5.44 | 10.25 ± 0.09 | 4.63 | 12.04 ± 0.07 | 3.12 |
33 | 8.34 ± 0.09 | 6.19 | 10.44 ± 0.09 | 4.89 | 12.59 ± 0.07 | 3.09 |
34 | 8.34 ± 0.09 | 5.97 | 10.44 ± 0.07 | 3.75 | 12.62 ± 0.09 | 4.11 |
35 | 8.33 ± 0.09 | 6.28 | 10.48 ± 0.08 | 3.98 | 12.65 ± 0.09 | 4.07 |
36 | 8.32 ± 0.09 | 6.01 | 10.50 ± 0.08 | 4.10 | 12.70 ± 0.10 | 4.27 |
37 | 8.31 ± 0.08 | 5.55 | 10.50 ± 0.09 | 4.63 | 12.78 ± 0.09 | 3.92 |
38 | 8.31 ± 0.08 | 5.67 | 10.52 ± 0.09 | 4.57 | 12.78 ± 0.09 | 3.85 |
39 | 8.30 ± 0.10 | 6.45 | 10.55 ± 0.08 | 4.22 | 12.81 ± 0.10 | 4.37 |
40 | 8.29 ± 0.11 | 7.03 | 10.61 ± 0.10 | 4.99 | 12.86 ± 0.10 | 4.14 |
The yolk color determined during the 30–40-week period | ||||||
30–40 | 8.33 ± 0.02 | 5.25 | 10.22 ± 0.66 | 4.12 | 12.12 ± 1.34 | 4.22 |
M-m vs. M-1 = *** p < 0.001 (F(1, 20) = 90.983, p < 0.0001) M-m vs. M-2 = *** p < 0.001 (F(1, 20) = 87.997, p < 0.0001) M-1 vs. M-2 = ** p < 0.001 (F(1, 20) = 17.908, p = 0.0004) |
Age (Weeks) | M-m (N = 30) | M-1 (N = 30) | M-2 (N = 30) | |||
---|---|---|---|---|---|---|
(mg/g) | V% | (mg/g) | V% | (mg/g) | V% | |
30 | 17.74 ± 0.072 | 2.22 | 17.76 ± 0.038 | 1.17 | 17.74 ± 0.033 | 1.02 |
31 | 17.70 ± 0.092 | 2.86 | 20.44 ± 0.048 | 1.28 | 23.30 ± 0.042 | 0.98 |
32 | 17.70 ± 0.083 | 2.57 | 21.50 ± 0.053 | 1.36 | 25.08 ± 0.034 | 0.75 |
33 | 17.68 ± 0.087 | 2.69 | 21.88 ± 0.050 | 1.25 | 26.18 ± 0.053 | 1.11 |
34 | 17.68 ± 0.097 | 3.01 | 21.88 ± 0.043 | 1.08 | 26.24 ± 0.049 | 1.03 |
35 | 17.66 ± 0.088 | 2.74 | 21.96 ± 0.060 | 1.49 | 26.30 ± 0.047 | 0.97 |
36 | 17.64 ± 0.100 | 3.11 | 22.00 ± 0.063 | 1.58 | 26.40 ± 0.062 | 1.29 |
37 | 17.62 ± 0.095 | 2.96 | 22.00 ± 0.052 | 1.29 | 26.56 ± 0.095 | 1.97 |
38 | 17.62 ± 0.097 | 3.02 | 22.04 ± 0.065 | 1.61 | 26.56 ± 0.077 | 1.58 |
39 | 17.60 ± 0.100 | 3.11 | 22.10 ± 0.069 | 1.70 | 26.62 ± 0.055 | 1.13 |
40 | 17.58 ± 0.115 | 3.57 | 22.22 ± 0.052 | 1.29 | 26.72 ± 0.048 | 0.98 |
The carotenoid content determined for the 30–40-week period | ||||||
30–40 | 17.66 ± 0.04 | 2.40 | 21.43 ± 1.31 | 1.35 | 25.24 ± 2.68 | 1.05 |
M-m vs. M-1 = *** p < 0.001 (F(1, 20) = 90.983, p < 0.0001) M-m vs. M-2 = *** p < 0.001 (F(1, 20) = 17.908, p = 0.0004) M-1 vs. M-2 = *** p < 0.001 (F(1, 20) = 87.997, p = 9.17 × 10−9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usturoi, A.; Doliș, M.-G.; Rațu, R.-N.; Simeanu, C.; Baltag, F.; Nistor, C.-E.; Pânzaru, C.; Radu-Rusu, R.-M.; Davidescu, M.A.; Usturoi, M.-G. Effects of Ecological Sea Buckthorn Powder Supplementation on Egg Production and Quality in Free-Range Moravia Black Hens. Agriculture 2025, 15, 104. https://doi.org/10.3390/agriculture15010104
Usturoi A, Doliș M-G, Rațu R-N, Simeanu C, Baltag F, Nistor C-E, Pânzaru C, Radu-Rusu R-M, Davidescu MA, Usturoi M-G. Effects of Ecological Sea Buckthorn Powder Supplementation on Egg Production and Quality in Free-Range Moravia Black Hens. Agriculture. 2025; 15(1):104. https://doi.org/10.3390/agriculture15010104
Chicago/Turabian StyleUsturoi, Alexandru, Marius-Gheorghe Doliș, Roxana-Nicoleta Rațu, Cristina Simeanu, Florin Baltag, Cătălin-Emilian Nistor, Claudia Pânzaru, Răzvan-Mihail Radu-Rusu, Mădălina Alexandra Davidescu, and Marius-Giorgi Usturoi. 2025. "Effects of Ecological Sea Buckthorn Powder Supplementation on Egg Production and Quality in Free-Range Moravia Black Hens" Agriculture 15, no. 1: 104. https://doi.org/10.3390/agriculture15010104
APA StyleUsturoi, A., Doliș, M.-G., Rațu, R.-N., Simeanu, C., Baltag, F., Nistor, C.-E., Pânzaru, C., Radu-Rusu, R.-M., Davidescu, M. A., & Usturoi, M.-G. (2025). Effects of Ecological Sea Buckthorn Powder Supplementation on Egg Production and Quality in Free-Range Moravia Black Hens. Agriculture, 15(1), 104. https://doi.org/10.3390/agriculture15010104