Impact of On-Farm Demonstrations on Technology Adoption, Yield, and Profitability Among Small Farmers of Wheat in Pakistan—An Experimental Study
Abstract
:1. Introduction
1.1. Background
1.2. Conceptual Framework
- Hypothesis 1: the on-farm demonstration will increase the technology adoption (certified seeds, fertilizers, pesticides and herbicides, and mechanized farming), yield, and profit during the treatment year;
- Hypothesis 2: there will be a long-lasting treatment effect, observed through technological adoption of inputs and increased yield and profitability.
2. Materials and Methods
2.1. Experiment Design—Wheat Productivity Enhancement Program (WPEP)
2.2. Study Site
2.3. Randomization of Farms
2.4. Data
2.5. Balance Check of Baseline Data
2.6. Estimation Model
2.7. Robustness Check
3. Results
3.1. Main Results
3.2. Robustness Check Results
4. Discussion
4.1. Technology Adoption
4.2. Yield Enhancement
4.3. Profitability and Cost of Production
- Hypothesis 1: the on-farm demonstration has encouraged technology adoption (certified seeds, fertilizers, pesticides/herbicides and mechanized farming) and increased the yield and profit in the first post-treatment year;
- Hypothesis 2: a long-lasting treatment effect in technology adoption was observed for certified seeds, fertilizers, and pesticides/herbicides but not in machinery usage. The wheat yield and profit also showed a long-lasting treatment effect.
4.4. Theoretical Implications
4.5. Managerial, Practical, and Policy Implications
4.6. Study Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PBS | Pakistan Bureau of Statistics |
WPEP | Wheat Productivity Enhancement Project |
References
- Altieri, M.A. Small Farms as a Planetary Ecological Asset: Five Key Reasons Why We Should Support the Revitalisation of Small Farms in the Global South; Third World Network: Penang, Malaysia, 2008. [Google Scholar]
- Heltberg, R. Rural Market Imperfections and the Farm Size-Productivity Relationship: Evidence from Pakistan. World Dev. 1998, 26, 1807–1826. [Google Scholar] [CrossRef]
- Wiggins, S.; Kirsten, J.; Llambí, L. The Future of Small Farms. World Dev. 2010, 38, 1341–1348. [Google Scholar] [CrossRef]
- Dorward, A. Rethinking Agricultural Input Subsidy Programmes. In A Changing World Paper prepared for the Trade and Markets Division; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Timmer, C.P. Food Security and Economic Growth: An Asian Perspective. 2004. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1112795 (accessed on 15 June 2024).
- The World Bank. World Development Report 2008 (Overview): Agriculture for Development; The World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Anderson, K.; Rausser, G.; Swinnen, J. Political Economy of Public Policies: Insights from Distortions to Agricultural and Food Markets. Source J. Econ. Lit. 2013, 51, 423–477. [Google Scholar] [CrossRef]
- Manioudis, M.; Meramveliotakis, G. Broad strokes towards a grand theory in the analysis of sustainable development: A return to the classical political economy. New Political Econ. 2022, 27, 866–878. [Google Scholar] [CrossRef]
- Morris, M.; Kelly, V.A.; Kopicki, R.J.; Byerlee, D. Fertilizer Use in African Agriculture Lessons Learned and Good Practice Guidelines; The World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Hemming, D.J.; Chirwa, E.W.; Dorward, A.; Ruffhead, H.J.; Hill, R.; Osborn, J.; Langer, L.; Harman, L.; Asaoka, H.; Coffey, C.; et al. Agricultural input subsidies for improving productivity, farm income, consumer welfare and wider growth in low- and lower-middle-income countries: A systematic review. Campbell Syst. Rev. 2018, 14, 1–153. [Google Scholar] [CrossRef]
- Duflo, E.; Kremer, M.; Robinson, J. Nudging farmers to use fertilizer: Theory and experimental evidence from Kenya. Am. Econ. Rev. 2011, 101, 2350–2390. [Google Scholar] [CrossRef]
- Klarin, T. The Concept of Sustainable Development: From its Beginning to the Contemporary Issues. Zagreb Int. Rev. Econ. Bus. 2018, 21, 67–94. [Google Scholar] [CrossRef]
- Hazell, P.B.R. Is there a future for small farms? Agric. Econ. 2005, 32, 93–101. [Google Scholar] [CrossRef]
- Davis, K.E.; Babu, S.C.; Ragasa, C. Agricultural Extension: Global Status and Performance in Selected Countries: Synopsis; International Food Policy Research Institute: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Feder, G.; Willett, A.; Zijp, W. Agricultural Extension-Generic Challenges and Some Ingredients for Solutions; Springer: New York, NY, USA, 2001. [Google Scholar]
- Irz, X.; Lin, L.; Thirtle, C.; Wiggins, S. Agricultural productivity growth and poverty alleviation. Dev. Policy Rev. 2001, 19, 449–466. [Google Scholar] [CrossRef]
- Pan, D.; Zhang, N. The Role of Agricultural Training on Fertilizer Use Knowledge: A Randomized Controlled Experiment. Ecol. Econ. 2018, 148, 77–91. [Google Scholar] [CrossRef]
- Wonde, K.M.; Tsehay, A.S.; Lemma, S.E. Training at farmers training centers and its impact on crop productivity and households’ income in Ethiopia: A propensity score matching (PSM) analysis. Heliyon 2022, 8, e09837. [Google Scholar] [CrossRef] [PubMed]
- Gelu, D.G.; Gebre, G.G. Impact of adopting wheat row planting on yield among smallholder farmers in Dawuro Zone, Southwestern Ethiopia. Environ. Dev. Sustain. 2023, 25, 13149–13169. [Google Scholar] [CrossRef]
- Baul, T.; Karlan, D.; Toyama, K.; Vasilaky, K. Improving smallholder agriculture via video-based group extension. J. Dev. Econ. 2024, 169, 103267. [Google Scholar] [CrossRef] [PubMed]
- Duflo, E.; Kremer, M.; Robinson, J. How high are rates of return to fertilizer? Evidence from field experiments in Kenya. Am. Econ. Rev. 2008, 98, 482–488. [Google Scholar] [CrossRef]
- Maredia, M.K.; Shankar, B.; Kelley, T.G.; Stevenson, J.R. Impact assessment of agricultural research, institutional innovation, and technology adoption: Introduction to the special section. Food Policy 2014, 44, 214–217. [Google Scholar] [CrossRef]
- Nakano, Y.; Tsusaka, T.W.; Aida, T.; Pede, V.O. Is farmer-to-farmer extension effective? The impact of training on technology adoption and rice farming productivity in Tanzania. World Dev. 2018, 105, 336–351. [Google Scholar] [CrossRef]
- Otsuka, K.; Fan, S. (Eds.) Agricultural Development New Perspectives in a Changing World; International Food Policy Research Institute: Washington, DC, USA, 2021. [Google Scholar]
- Babu, S.C.; Joshi, P.K. Chapter 1—Extension reforms in South Asia—An overview. In Agricultural Extension Reforms in South Asia; Academic Press: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Eric, O.-O.; Prince, A.A.; Naa, A.; Elfreda, A. Effects of Education on the Agricultural Productivity of Farmers in the Offinso Municipality. 2014. Available online: http://www.journalijdr.com (accessed on 20 July 2024).
- Wesley, A.S.; Faminow, M. Background Paper: Research and Development and Extension Services in Agriculture and Food Security; Asian Development Bank: Mandaluyong, Philippines, 2014; Volume 425. [Google Scholar]
- Vandercasteelen, J.; Dereje, M.; Minten, B.; Taffesse, A.S. From Agricultural Experiment Station to Farm: The Impact of the Promotion of a New Technology on Farmers’ Yields in Ethiopia. Econ. Dev. Cult. Change 2020, 68, 965–1007. [Google Scholar] [CrossRef]
- Yitayew, A.; Abdulai, A.; Yigezu, Y.A.; Deneke, T.T.; Kassie, G.T. Impact of agricultural extension services on the adoption of improved wheat variety in Ethiopia: A cluster randomized controlled trial. World Dev. 2021, 146, 105605. [Google Scholar] [CrossRef]
- Mgendi, B.G.; Mao, S.; Qiao, F. Does agricultural training and demonstration matter in technology adoption? The empirical evidence from small rice farmers in Tanzania. Technol. Soc. 2022, 70, 102024. [Google Scholar] [CrossRef]
- Stewart, R.; Langer, L.; Rebelo, N.; Silva, D.; Muchiri, E. Systematic Review Summary 6 Effects of training, innovation and new technology on African smallholder farmers’ economic outcomes and food security. Syst. Rev. Summ. 2016, 6, 10–15. [Google Scholar]
- Schultz, T.W. Changing Relevance of Agricultural Economics. J. Farm Econ. 1964, 46, 1004. [Google Scholar] [CrossRef]
- Mishra, D.K.; Paliwal, D.K.; Tailor, R.S.; Deshwal, A.K.; Kendra, K.V.; Road, K. Impact of Frontline Demonstrations on Yield Enhancement of Potato. Indian Res. J. Ext. Educ. 2009, 9, 26–28. [Google Scholar]
- Sharma, V.; Kumar, V.; Sharma, S.C.; Singh, S. Productivity Enhancement and Popularization of Improved Production Technologies in Wheat Through Frontline Demonstrations. 2016. Available online: www.ansfoundation.org (accessed on 9 January 2025).
- Lacy, J. Cropcheck: Farmer benchmarking participatory model to improve productivity. Agric. Syst. 2011, 104, 562–571. [Google Scholar] [CrossRef]
- Jakku, E.; Thorburn, P.J. A conceptual framework for guiding the participatory development of agricultural decision support systems. Agric. Syst. 2010, 103, 675–682. [Google Scholar] [CrossRef]
- Li, W.; Clark, B.; Taylor, J.A.; Kendall, H.; Jones, G.; Li, Z.; Jin, S.; Zhao, C.; Yang, G.; Shuai, C.; et al. A hybrid modelling approach to understanding adoption of precision agriculture technologies in Chinese cropping systems. Comput. Electron. Agric. 2020, 172, 105305. [Google Scholar] [CrossRef]
- Abbas, M.; Lodhi, T.E.; Aujla, K.M.; Saadullah, S. Agricultural Extension Programs in Punjab, Pakistan. Pak. J. Life Soc. Sci. 2009, 7, 1–10. [Google Scholar]
- Government of Pakistan. “Agricultural Census 2010”, Pakistan Bureau of Statistics. 2010. Table 1.1. Available online: https://www.pbs.gov.pk/sites/default/files/agriculture/publications/agricultural_census2010/Tables%20%28Pakistan%20-%20In%20Hectares%29.pdf (accessed on 9 January 2025).
- Desiere, S.; Jolliffe, D. Land productivity and plot size: Is measurement error driving the inverse relationship? J. Dev. Econ. 2018, 130, 84–98. [Google Scholar] [CrossRef]
- Hussain, A.; Akhtar, W.; Jabbar, A. Risk management for small farmers in Pakistan: A review. Pak. J. Agric. Sci. 2022, 59, 247–259. [Google Scholar] [CrossRef]
- Brohi, S. Issues & Challenges of Small Farmers in Accessing Agriculture Credit in Pakistan; Participatory Development Initiatives; Oxfam: Karachi, Pakistan, 2010. [Google Scholar]
- Abdullah, M.; Cuixia, L.I.; Ghazanfar, S.; Rehman, A.; Ghazanfar, B.; Saud, S. Problems Faced by Rice Growing Farmers and Their Behavior to the Government Policies: A Case from Pakistan. Available online: www.iiste.org (accessed on 10 January 2025).
- Government of the Punjab, Extension and Adaptive Research Department. Available online: https://ext.agripunjab.gov.pk/wheat_project (accessed on 19 March 2024).
- Duflo, E.; Glennerster, R.; Kremer, M. Using Randomization in Development Economics Research: A Toolkit. Handb. Dev. Econ. 2007, 4, 3895–3962. [Google Scholar]
- Erenstein, O.; Farooq, U.; Malik, R.K.; Sharif, M. On-farm impacts of zero tillage wheat in South Asia’s rice-wheat systems. Field Crop. Res. 2008, 105, 240–252. [Google Scholar] [CrossRef]
- Muller, D.; Zeller, M. Land use dynamics in the central highlands of Vietnam: A spatial model combining village survey data with satellite imagery interpretation. Agric. Econ. 2002, 27, 333–354. [Google Scholar] [CrossRef]
- Lunn, P.D. The sports and exercise life-course: A survival analysis of recall data from Ireland. Soc. Sci. Med. 2010, 70, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Powers, E.A.; Goudy, W.J.; Keith, P.M. Congruence Between Panel and Recall Data in Longitudinal Research. 1978. Available online: https://academic.oup.com/poq/article/42/3/380/1846546 (accessed on 5 April 2024).
- Dillon, A.; Mensah, E. Respondent biases in agricultural household surveys. J. Dev. Econ. 2023, 166, 103198. [Google Scholar] [CrossRef]
- Arshad, S.; Muhammad Randhawa, M.A.; Ashraf, I.; Chuadhry, K.M. Rural Women’s Involvement in Decision-Making Regarding Livestock Management. Pak. J. Agric. Sci. 2020, 47, 1–4. [Google Scholar]
- Mohiuddin, I.; Kamran, M.A.; Jalilov, S.M.; Ahmad, M.U.D.; Adil, S.A.; Ullah, R.; Khaliq, T. Scale and drivers of female agricultural labor: Evidence from Pakistan. Sustainability 2020, 12, 6633. [Google Scholar] [CrossRef]
- Kavesh, M.A.; Lahiri-Dutt, K.; Adhikari, R. Women and plant entanglements: Pulses commercialization and care relations in Punjab, Pakistan. Oxf. Dev. Stud. 2023, 51, 84–96. [Google Scholar] [CrossRef]
- Angrist, J.D.; Pischke, J.-S. Mostly Harmless Econometrics: An Empiricist’s Companion; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Ferraro, P.J.; Miranda, J.J. Panel data designs and estimators as substitutes for randomized controlled trials in the evaluation of public programs. J. Assoc. Environ. Resour. Econ. 2017, 4, 281–317. [Google Scholar] [CrossRef]
- McKenzie, D. Beyond baseline and follow-up: The case for more T in experiments. J. Dev. Econ. 2012, 99, 210–221. [Google Scholar] [CrossRef]
- Valdivia, M. Business training plus for female entrepreneurship? Short and medium-term experimental evidence from Peru. J. Dev. Econ. 2015, 113, 33–51. [Google Scholar] [CrossRef]
- Mistry, E.A.; Yeatts, S.D.; Khatri, P.; Mistry, A.M.; Detry, M.; Viele, K.; Harrell, F.E., Jr.; Lewis, R.J. National Institutes of Health Stroke Scale as an Outcome in Stroke Research: Value of ANCOVA Over Analyzing Change from Baseline. Stroke 2022, 53, e150–e155. [Google Scholar] [CrossRef]
- Lüdtke, O.; Robitzsch, A. ANCOVA versus Change Score for the Analysis of Two-Wave Data. J. Exp. Educ. 2023, 7, 1–33. [Google Scholar] [CrossRef]
- Berrington, A.; Smith, P.; Sturgis, P. An Overview of Methods for the Analysis of Panel Data ESRC National Centre for Research Methods NCRM Methods Review Papers NCRM/007. 2006. Available online: https://api.semanticscholar.org/CorpusID:31155025 (accessed on 11 January 2025).
- Yaffee, R.A. A Primer for Panel Data Analysis. Connect Inf. Technol. NYU 2003, 8, 1–11. [Google Scholar]
- Bonan, J.; Battiston, P.; Bleck, J.; LeMay-Boucher, P.; Pareglio, S.; Sarr, B.; Tavoni, M. Social interaction and technology adoption: Experimental evidence from improved cookstoves in Mali. World Dev. 2021, 144, 105467. [Google Scholar] [CrossRef]
- Abdulai, A.; Huffman, W.E.; Curtiss, C.F. The diffusion of new agricultural technologies: The case of crossbred-cow technology in Tanzania. Am. J. Agric. Econ. 2005, 87, 645–659. [Google Scholar] [CrossRef]
- Ragasa, C.; Mazunda, J. The impact of agricultural extension services in the context of a heavily subsidized input system: The case of Malawi. World Dev. 2018, 105, 25–47. [Google Scholar] [CrossRef]
- Rehman, A.; Chandio, A.A.; Hussain, I.; Jingdong, L. Fertilizer consumption, water availability and credit distribution: Major factors affecting agricultural productivity in Pakistan. J. Saudi Soc. Agric. Sci. 2019, 18, 269–274. [Google Scholar] [CrossRef]
- Chien, S.H.; Prochnow, L.I.; Cantarella, H. Chapter 8 Recent Developments of Fertilizer Production and Use to Improve Nutrient Efficiency and Minimize Environmental Impacts; Academic Press Inc.: Cambridge, MA, USA, 2009. [Google Scholar] [CrossRef]
- Yahya, M.; Saeed, N.A.; Nadeem, S.; Hamed, M.; Shokat, S. Role of wheat varieties and insecticide applications against aphids for better wheat crop harvest. Pak. J. Zool. 2017, 49, 2217–2225. [Google Scholar] [CrossRef]
- Fahad, S.; Nie, L.; Rahman, A.; Chen, C.; Wu, C.; Saud, S.; Huang, J. Comparative Efficacy of Different Herbicides for Weed Management and Yield Attributes in Wheat. Am. J. Plant Sci. 2013, 4, 1241–1245. [Google Scholar] [CrossRef]
- Rehman, T.U.; Khan, M.U.; Tayyab, M.; Akram, M.W.; Faheem, M. Current Status and Overview of Farm Mechanization in Pakistan-A Review. 2016. Available online: http://www.cigrjournal.org (accessed on 18 June 2024).
- Latif, M.T.; Asghar, M.; Research, A.; Sher, F.; Hussain, M. Azarian Journal of Agriculture Economics of Different Harvesting Techniques of Wheat in Rice-Wheat Cropping Pattern of Punjab, Pakistan. 2018. Available online: www.azarianjournals.ir (accessed on 18 June 2024).
- Choudhary, M.A. Design Improvement of Indigenous Beater Wheat Thresher in Pakistan. Pak. J. Agric. Sci. 2013, 50, 711. Available online: https://api.pakjas.com.pk/downloadPaper/2229.pdf (accessed on 18 June 2024).
- Ali, A.; Pakistan, E.; Hussain, M. Role of Agricultural Services Providers (ASPs) in enhancing the productivity of crops in District Faisalabad. Int. J. Adv. Multidiscip. Res. 2017, 4, 13–18. [Google Scholar] [CrossRef]
- Chandio, A.A.; Yuansheng, J. Determinants of Adoption of Improved Rice Varieties in Northern Sindh, Pakistan. Rice Sci. 2018, 25, 103–110. [Google Scholar] [CrossRef]
- Augsburg, B.; Bancalari, A.; Durrani, Z.; Vaidyanathan, M.; White, Z. When nature calls back: Sustaining behavioral change in rural Pakistan. J. Dev. Econ. 2022, 158, 102933. [Google Scholar] [CrossRef]
- Adnan, M.; Politecnico, S.; Torino, D.; Safdar, M.; Maqbool, S. Wheat Production in Faisalabad During RABI-2023; A Remote Sensing Based Investigation of the Factors Contributing to Higher Yields. 2024. Available online: https://zenodo.org/records/12697301 (accessed on 29 July 2024).
- Karmakar, P.; Teng, S.W.; Murshed, M.; Pang, S.; Li, Y.; Lin, H. Crop monitoring by multimodal remote sensing: A review. Remote Sens. Appl. Soc. Environ. 2024, 33, 101093. [Google Scholar] [CrossRef]
- USDA. Foreign Agricultural Service, U.S Department of Agriculture, International Production Assessment Division. Country Summary. Available online: https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=PK&crop=Wheat (accessed on 25 March 2024).
- Luqman, M.; Shahbaz, B.; Ali, T. Impact of agricultural services provided by non-state actors on rural livelihoods: A case of district Mansehra, Khyber Pukhtunkhwa, Pakistan. Pak. J. Agric. Sci. 2016, 53, 743–750. [Google Scholar] [CrossRef]
- Warriach, H.M.; Wynn, P.C.; Ishaq, M.; Arif, S.; Bhatti, A.; Latif, S.; Kumbher, A.; Batool, Z.; Majeed, S.; Bush, R.D.; et al. Impacts of improved extension services on awareness, knowledge, adoption rates and perceived benefits of smallholder dairy farmers in Pakistan. Anim. Prod. Sci. 2019, 59, 2175–2183. [Google Scholar] [CrossRef]
- Khan, N.A.; Qijie, G.; Ali, S.; Shahbaz, B.; Shah, A.A. Farmers’ use of mobile phone for accessing agricultural information in Pakistan: A case of Punjab province. Cienc. Rural. 2019, 49, e20181016. [Google Scholar] [CrossRef]
- Javed, S.A.; Haider, A.; Nawaz, M. How agricultural practices managing market risk get attributed to climate change? Quasi-experiment evidence. J. Rural. Stud. 2020, 73, 46–55. [Google Scholar] [CrossRef]
- Foster, A.D.; Rosenzweig, M.R. Microeconomics of technology adoption. Annu. Rev. Econom. 2010, 2, 395–424. [Google Scholar] [CrossRef]
- Asrat, S.; Yesuf, M.; Carlsson, F.; Wale, E. Farmers’ preferences for crop variety traits: Lessons for on-farm conservation and technology adoption. Ecol. Econ. 2010, 69, 2394–2401. [Google Scholar] [CrossRef]
S.No. | Type of Input | Demonstrations and Instructions |
---|---|---|
1. | Application of certified seeds | Supervised purchase/selection of certified seeds from a designated supplier nominated by the government Demonstrated seed sowing on a pre-decided date depending upon the seed brand and nature of soil 100–125 kg/ha Sowing from 15th October to 30th November Row planting, with average row spacing of 25–30 cm |
2. | Application of fertilizers | Supervised application of fertilizer to each farm according to the need of land. The quantities according to land type are as follows: Fertile: DAP 155 kg/ha, urea 185 kg/ha, and potash 61 kg/ha Medium fertile: DAP 185 kg/ha, urea 216 kg/ha, and potash 61 kg/ha Less fertile: DAP 247 kg/ha, urea 247 kg/ha, and potash 61 kg/ha The recommended time for application of fertilizers: DAP and potash at sowing time Urea and nitrogen at the 1st and 2nd irrigation time points |
3. | Application of pesticides and herbicides | Crop is checked by the extension agent (EA), if required; quantity is recommended by the EA 1 L/ha on average |
4. | Use of machinery | Supervised seed drills, such as guidance on zero tillage drill, dry sowing drill, use of wheat bed planter, slasher, and mechanical sowing Guided use of thresher and harvester |
Variables | Mean | Difference | t-Stats. | |
---|---|---|---|---|
Treated (N = 123) | Controlled (N = 130) | T-C | ||
Household Characteristics | ||||
Age (No. of Years) | 47.334 | 47.485 | −0.151 (1.064) | −0.15 |
Family size (No.) | 5.675 | 5.508 | 0.167 (0.226) | 0.75 |
Farmers’ education (years of schooling) | 7.87 | 7.692 | 0.177 (0.387) | 0.45 |
Family education (years of schooling) | 12.268 | 12.207 | 0.06 (0.231) | 0.25 |
Land size (Hectare) | 4.41 | 4.35 | 0.05 (0.094) | 0.60 |
Distance of farm from road (km) | 1.877 | 1.808 | 0.071 (0.097) | 0.75 |
Type of irrigation (canal = 1, tubewell and canal = 2) | 1.805 | 1.777 | 0.028 (0.052) | 0.55 |
Own a tractor (if yes = 1) | 0.553 | 0.577 | −0.024 (0.062) | −0.4 |
Labor (No. per hectare) | 1.065 | 1.062 | 0.003 (0.03) | 0.1 |
Use of website/FB (If yes = 1) | 0.708 | 0.684 | 0.022 (0.058) | 0.4 |
Quantity of Yield and Farm inputs | ||||
Yield (t/ha) | 4.61 | 4.59 | 0.02 (0.07) | 0.35 |
Use of certified seeds (if yes = 1) | 0.39 | 0.45 | −0.05 (0.062) | −0.9 |
Fertilizers (Kg/ha) | 240.87 | 239.97 | 0.90 (5.04) | 0.2 |
Pesticides/herbicides (L/ha) | 2.27 | 2.318 | −0.04 (0.059) | −0.7 |
Seed quantity (Kg/ha) | 120.38 | 119.22 | 1.16 (2.002) | 0.6 |
Cost of inputs | ||||
Seeds cost (Rs./ha) | 6655.9 | 7072.7 | −416.80 (388.8) | −1.05 |
Pesticide/herbicide cost (Rs./ha) | 2047.28 | 2076.70 | −29.412 (53.12) | −0.55 |
Machinery cost (Rs./ha) | 27,300.5 | 26,552.5 | 748.02 (696.2) | 1.05 |
Fertilizers cost (Rs./ha) | 14,108.118 | 13,953.600 | 154.51 (314.32) | 0.5 |
Cost of Prod. (Rs./ha) | 57,021.8 | 56,914.5 | 107.3 (602.9) | 0.2 |
Revenue (Rs./ha) | 149,925 | 149,188.0 | 736.98 (2251) | 0.35 |
Profit (Rs./ha) | 92,903.12 | 92,273.50 | 629.62 (1880.6) | 0.35 |
No. of observations | 123 | 130 | - | - |
Certified Seeds (%) | Fertilizers (kg/ha) | Pesticides/Herb (L/ha) | Machinery (Rs./ha) | |||||
---|---|---|---|---|---|---|---|---|
2020 (1) | 2020–2023 (2) | 2020 (1) | 2020–2023 (2) | 2020 (1) | 2020–2023 (2) | 2020 (1) | 2020–2023 (2) | |
D-training | 0.61 *** | 0.34 *** | 14.7 *** | 15.2 *** | 0.22 *** | 0.22 *** | 1913.7 ** | 762.5 |
(0.088) | (0.069) | (2.39) | (2.32) | (0.051) | (0.048) | (1107.6) | (795.2) | |
Constant | 0.42 *** | 0.51 *** | 241.4 *** | 245.4 *** | 2.31 *** | 2.35 *** | 30,497.7 *** | 45,503.9 *** |
(0.021) | (0.027) | (0.58) | (0.90) | (0.012) | (0.019) | (269.2) | (309.3) | |
Individual FE | YES | YES | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES | YES |
N | 506 | 1265 | 506 | 1265 | 506 | 1265 | 506 | 1265 |
R-Sqd. | 0.49 | 0.28 | 0.94 | 0.86 | 0.79 | 0.70 | 0.73 | 0.90 |
Yield (t/ha) | CoP (Rs./ha) | Profit (Rs./ha) | ||||
---|---|---|---|---|---|---|
2020 (1) | 2020–2023 (2) | 2020 (1) | 2020–2023 (2) | 2020 (1) | 2020–2023 (2) | |
D-training | 0.37 *** | 0.41 *** | 8698.7 *** | 6193.9 *** | 4325.4 *** | 18,743.4 *** |
(0.017) | (0.019) | (805.0) | (771.8) | (820.7) | (1750.7) | |
Constant | 4.62 *** | 4.68 *** | 62,642.9 *** | 98,700.3 *** | 93,319.7 *** | 149,940.5 *** |
(0.0042) | (0.0075) | (195.7) | (300.2) | (199.5) | (680.9) | |
Individual FE | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
N | 506 | 1265 | 506 | 1265 | 506 | 1265 |
R-Squared | 0.99 | 0.98 | 0.90 | 0.98 | 0.96 | 0.97 |
Certified Seeds (%) | Fertilizers (kg/ha) | Pesticides/Herb (L/ha) | Machinery (Rs./ha) | |||||
---|---|---|---|---|---|---|---|---|
2020 (1) | 2020–2023 (2) | 2020 (1) | 2020–2023 (2) | 2020 (1) | 2020–2023 (2) | 2020 (1) | 2020–2023 (2) | |
D-training | 0.54 *** | 0.33 *** | 14.9 *** | 5.54 *** | 0.20 *** | 0.11 *** | 2299.3 ** | 216.3 |
(0.042) | (0.028) | (2.14) | (0.98) | (0.04) | (0.017) | (1062.7) | (363.5) | |
Constant | 0.57 *** | 0.66 *** | 50.9 *** | 57.2 *** | 1.25 *** | 1.03 *** | 20,847.3 *** | 6435.6 *** |
(0.021) | (0.024) | (8.83) | (5.30) | (0.018) | (0.12) | (3295.7) | (930.0) | |
N | 253 | 1012 | 253 | 1012 | 253 | 1012 | 253 | 1012 |
R-Sqd. | 0.46 | 0.14 | 0.79 | 0.71 | 0.37 | 0.47 | 0.11 | 0.43 |
Yield (t/ha) | CoP (Rs./ha) | Profit (Rs./ha) | ||
---|---|---|---|---|
2020 (1) | 2020–2023 (2) | 2020 (1) | 2020 (1) | |
D-training | 0.37 *** | 0.13 *** | 8745.4 *** | 4296.4 ** |
(0.017) | (0.0082) | (763.5) | (812.9) | |
Constant | −0.052 *** | 0.34 *** | 36,111.9 *** | −2772.4 |
(0.097) | (0.024) | (4652.2) | (3173.6) | |
N | 253 | 1012 | 253 | 253 |
R-Sqd. | 0.95 | 0.92 | 0.42 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, N.; Maharjan, K.L. Impact of On-Farm Demonstrations on Technology Adoption, Yield, and Profitability Among Small Farmers of Wheat in Pakistan—An Experimental Study. Agriculture 2025, 15, 214. https://doi.org/10.3390/agriculture15020214
Hussain N, Maharjan KL. Impact of On-Farm Demonstrations on Technology Adoption, Yield, and Profitability Among Small Farmers of Wheat in Pakistan—An Experimental Study. Agriculture. 2025; 15(2):214. https://doi.org/10.3390/agriculture15020214
Chicago/Turabian StyleHussain, Nadia, and Keshav Lall Maharjan. 2025. "Impact of On-Farm Demonstrations on Technology Adoption, Yield, and Profitability Among Small Farmers of Wheat in Pakistan—An Experimental Study" Agriculture 15, no. 2: 214. https://doi.org/10.3390/agriculture15020214
APA StyleHussain, N., & Maharjan, K. L. (2025). Impact of On-Farm Demonstrations on Technology Adoption, Yield, and Profitability Among Small Farmers of Wheat in Pakistan—An Experimental Study. Agriculture, 15(2), 214. https://doi.org/10.3390/agriculture15020214