Exploring the Impact of Citric Acid on Mitigating Sweet Potato Soft Rot and Enhancing Postharvest Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Treatments
2.2. In Vitro Antifungal Activity of CAC Against Rhizopus stolonifer
2.2.1. Preparation of Spore Suspensions and Culture Media
2.2.2. Measurement Indicators
2.3. Antifungal Activity on Rhizopus stolonifer In Vivo
2.3.1. Identifying Soft Rot Resistance in Different Sweet Potato Tuber Sections
2.3.2. Effect of 0.5% w/v CAC on Textural Characteristics
2.3.3. Effect of 0.5% w/v CAC on Defense-Related Enzyme Activities
2.3.4. Effect of 0.5% CAC on Cell Wall-Degrading Enzyme Activity
2.3.5. Effect of 0.5% w/v CAC on Phenylpropane Metabolism
2.3.6. Effect of 0.5% w/v CAC on Nutritional Quality Indexes
2.4. Comprehensive Assessment of CAC Effects on Sweet Potato Quality
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of 0.5% w/v CAC on the Activity of Rhizopus stolonier
3.2. Physiological Response of Sweet Potato to Soft Rot After 0.5% w/v CAC Treatment
3.2.1. Effect of 0.5% w/v CAC Pretreatment on the Infection Process of Rhizopus stolonifer
3.2.2. Effect of 0.5% w/v CAC Pretreatment on Texture Characteristics Under Soft Rot Stress
3.2.3. Effect of 0.5% w/v CAC Pretreatment on the Activity of Defense-Related Enzymes Under Soft Rot Stress
3.2.4. Effect of 0.5% w/v CAC Pretreatment on the Cell Wall-Degrading Enzymes Under Soft Rot Stress
3.2.5. Effect of 0.5% w/v CAC Pretreatment on the Phenylpropane Metabolic Pathway Under Soft Rot Stress
3.2.6. Effect of 0.5% w/v CAC Pretreatment on the Nutritional Quality Under Soft Rot Stress
3.3. Principal Component Analysis and Comprehensive Evaluation of Storage Quality of Sweet Potato Treated with 0.5% w/v CAC
3.4. Correlation Analysis of Storage Quality of Sweet Potato Treated with 0.5% CAC
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Q. Sweet potato omics and biotechnology in china. Plant Omics J. Plant Mol. Biol. Omics 2011, 4, 295–301. [Google Scholar]
- Xie, Y.; Guo, X.; Jia, Z.; Ma, P.; Bian, X.; Yu, Y. Progresses and prospects on edible Sweet potato breeding in China. Jiangsu J. Agric. Sci. 2018, 34, 1419–1424. [Google Scholar]
- Yang, J.; Yu, G.; Nam, S.S.; Lee, S.Y.; Paul, N.C. First report of fusarium rot caused by fusarium circinatum on sweet potato (Ipomoea batatas). J. Plant Pathol. 2019, 101, 407. [Google Scholar] [CrossRef]
- Qiu, B.; Xu, F.; Sun, J.; Han, Z.; Wang, Z. Review on research progress of sweet potato soft rot and its control methods. Agric. Technol. 2022, 42, 91–94. [Google Scholar]
- Qi, Y.; Wang, F. Food Additives; Ocean Press: Beijing, China, 2014. [Google Scholar]
- Cao, J. Effects of SA, ASM, INA and Citric Acid on Postharvest Disease Resistance and Quality of Ypear Fruit. Ph.D. Thesis, China Agricultural University, Beijing, China, 2005. [Google Scholar]
- Dai, X.; Sun, Z.; Han, L.; Ju, G. Callus Induction and Inhibition Effect of Citric Acid on Browning of Perennial Ryegrass Callus. J. Nucl. Agric. Sci. 2015, 29, 1893–1900. [Google Scholar]
- Tapia-Rodriguez, M.R.; Bernal-Mercado, A.T.; Palomares-Navarro, J.J.; Sugich-Miranda, R.; Enciso-Martinez, Y.; Cruz-Valenzuela, M.R.; Ayala-Zavala, J.F. Citric acid and CaCl2 extended the shelf life, maintained antioxidant capacity, and improved sensory attributes of fresh-cut kiwifruit. J. Hortic. Postharvest Res. 2021, 4, 67–80. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Cheng, S.; He, X.; Zhang, M. Effect of ginger extract on sweet potatoes with soft rot disease in room temperature logistics and its mechanism. Food Ferment. Ind. 2020, 46, 57–65. [Google Scholar]
- Arrebola, E.; Sivakumar, D.; Bacigalupo, R.; Korsten, L. Combined application of antagonist bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases. Crop Prot. 2010, 29, 369–377. [Google Scholar] [CrossRef]
- Li, H.; Ma, Q.; Lin, X.; Zeng, P.; Chen, J. Comprehensively Analyzing the effect of harvest maturity on storage quality of jinsha pomelo based on PCA. Sci. Technol. Food Ind. 2019, 40, 255–262. [Google Scholar]
- Chai, H.; Jia, J.; Bai, X.; Meng, L.; Zhang, W.; Jin, R.; Wu, H.; Su, Q. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province. Sci. Agric. Sin. 2023, 56, 64–78. [Google Scholar]
- Yang, D.; Xu, Z.; Zhao, Y.; Zhang, C.; Sun, H.; Xie, Y. Research on the identification method of sweet potato soft rot resistance and its resistance evaluation to sweet potato germplasm resources. Acta Agric. Boreali-Sin. 2014, 29, 54–56. [Google Scholar]
- Aiessandrini, L.; Balestra, F.; Romani, S.; Rocculi, P.; Rosa, M.D. Physicochemical and sensoryproperties of fresh potato-based pasta (Gnocchi). J. Food Sci. 2020, 75, S542–S547. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Ni, W.; Xu, X.; George, M.S.; Lu, G. Effect of Heat Treatment on the Quality and Soft Rot Resistance of Sweet Potato during Long-Term Storage. Foods 2023, 12, 4352. [Google Scholar] [CrossRef] [PubMed]
- Apiamu, A.; Asagba, S.O. Zinc-cadmium interactions instigated antagonistic alterations in lipid peroxidation, ascorbate peroxidase activity and chlorophyll synthesis in Phaseolus vulgaris leaves. Sci. Afr. 2021, 11, e00688. [Google Scholar] [CrossRef]
- Dong, H. Effects of chitosan coating on quality and shelf life of peeled litchi fruit. J. Food Eng. 2004, 64, 355–358. [Google Scholar] [CrossRef]
- Zong, Y.; Liu, J.; Li, B.; Qin, G.; Tian, S. Effects of yeast antagonists in combination with hot water treatment on postharvest diseases of tomato fruit. Biol. Control 2010, 54, 316–321. [Google Scholar] [CrossRef]
- Zdunek, A.; Kozioł, A.; Pieczywek, P.M.; Cybulska, J. Evaluation of the nanostructure of pectin, hemicellulose and cellulose in the cell walls of pears of different texture and firmness. Food Bioprocess. Technol. 2014, 7, 3525–3535. [Google Scholar] [CrossRef]
- Abu-Goukh, A.B.; Elhassan, S.Y. Changes in pectic substances and cell wall degrading enzymes during muskmelon fruit ripening. Univ. Khartoum J. Agric. Sci. 2019, 25, 73–93. [Google Scholar] [CrossRef]
- Lister, C.E.; Lancaster, J.E.; Walker, J.R. Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. J. Sci. Food Agric. 1996, 71, 313–320. [Google Scholar] [CrossRef]
- Zhou, Y.; Deng, L.; Zeng, K. Enhancement of biocontrol efficacy of Pichia membranaefaciens by hot water treatment in postharvest diseases of citrus fruit. Crop Prot. 2014, 63, 89–96. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, Z.; Li, Y.; Xu, Z.; Xia, W.; Zhong, F. Differentiation of flue-cured tobacco leaves in different positions based on neutral volatiles with principal component analysis (PCA). Eur. Food Res. Technol. 2012, 235, 745–752. [Google Scholar] [CrossRef]
- Wang, X.; Huang, M.; Wang, Y.; Yang, W.; Shi, J. Effect of 1-octen-3-ol on soft rot of postharvest peach fruit. Acta Microbiol. Sin. 2022, 62, 4878–4893. [Google Scholar]
- Nickerson, K.W.; Leastman, E. Cerulenin inhibition of spore germination in Rhizopus stolonifer. Exp. Mycol. 1978, 2, 26–31. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, Y.; Zhang, Y.; Zhou, H.; Li, X. The effect of controlled atmosphere on the storage quality of strawberry. J. Shanxi Agric. Univ. 2019, 39, 41–45. [Google Scholar]
- Zhao, M.; Pang, L.; Cheng, J.; Lu, G.; Lu, X.; Wang, S. Effects of Ceratocystis Fimbriata Infection on Cell Wall of Different Resistant Sweet Potato. Packag. Eng. 2022, 43, 10–16. [Google Scholar]
- Passardi, F.; Cosio, C.; Penel, C.; Dunand, C. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep. 2005, 24, 255–265. [Google Scholar] [CrossRef]
- Wang, R.; Li, J.; Dang, H.; Zhang, X.; Zhang, S.; Zhang, J.; Li, X. Effects of amino-oligosaccharides on induced disease resistance and biochemical indices of Wolfberry. Acta Agric. Univ. Jiangxiensis 2024, 46, 672–681. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, C.Y.; Song, W.K.; Park, D.S.; Kwon, S.Y.; Lee, H.S.; Bang, J.W.; Kwak, S.S. Overexpression of Sweet potato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 2008, 227, 867–881. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Lee, C.B. Chilling stress-induced changes of antioxi-dant enzymes in the leaves of cucumber: In gel enzyme activity as-says. Plant Sci. 2000, 159, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Para-Lobato, M.C. Fernandez-Garcia N, Olmos E, Methyl jasmonate-induced antioxidant defence in root apoplast from sunflower seedlings. Environ. Exper Bot. 2009, 66, 9–17. [Google Scholar] [CrossRef]
- Zhu, Z.; Tian, S. Resistant responses of tomato fruit treated with exogenous methyl jasmonate toBotrytis cinerea infec-tion. Sci. Horticul 2012, 142, 38–43. [Google Scholar] [CrossRef]
- Wang, H.; Cao, C.; Kang, J.; Zeng, F. Systemic Resistance of Rice to Bacterial Blight Induced by Salicylic Acid and Changes in Activities of Some Enzymes in Untreated Leaves. Chin. J. Rice Sci. 2002, 16, 252–256. [Google Scholar]
- Mayer, A.M. Polyphenol oxidases in plants-recent progress. Phytochemistry 1987, 26, 11–20. [Google Scholar] [CrossRef]
- Feng, L.; Yin, Y.; Yang, X.; Wu, C.; Sun, L. Effects of Citric Acid Treatment on Vitro Browning of Pomegranate Pericarp. Sci. Silvae Sin. 2015, 51, 42–50. [Google Scholar]
- Lin, Y.; Chen, L.; Chen, J.; Jiang, X.; Zheng, J.; Chen, H. Effect of ε-poly-L-lysine on Postharvest Diseases and Disease—Resistant Substance Metabohsm in Passion Fruits. Food Sci. 2024, 45, 142–149. [Google Scholar]
- Ji, C.; Kuć, J. Antifungal activity of cucumber β-1,3-glucanase and chitinase. Physiol. Mol. Plant P 1996, 49, 257–265. [Google Scholar] [CrossRef]
- Tian, S.; Yao, H.; Deng, X.; Xu, X.; Qin, G.; Chan, Z. Characterization and expression of β-1,3-glucanase genes in jujube fruit induced by the microbial biocontrol agent cryptococcus laurentii. Phytopathology 2007, 97, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Loon, L.C.; Rep, M.; Pieterse, C.M. Significance of inducible defense related proteins in infected plants. Annu. Rev. Phytopathol. 2006, 44, 135–162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, R.; Han, Y.; Chen, H.; Wu, W.; Fang, X.; Gao, H. Effects of Cuticular Wax on Disease Resistance of Postharvest Blueberry. J. Chin. Inst. Food Sci. Technol. 2021, 21, 205–213. [Google Scholar]
- Ye, X.; Wu, Q.; Xie, G. Effect of Preharvest Spraying Extract from Camellia oleifera Cake on the Disease Resistance of Postharvest Pitaya Fruit. Chin. J. Trop. Crops 2023, 44, 2093–2101. [Google Scholar]
- Zhou, J.; Wang, Y.; Liu, D.; Xi, K.; Yang, P.; Cai, X.; Li, G.; Ma, J.; Jia, Q.; Le, Y. Identification and evaluation of resistance to fusarium wilt of ginger varieties and screening of resistance indexes. J. South. Agric. 2022, 53, 2557–2567. [Google Scholar]
- Dopico, B.; Nicolos, G.; Labrador, E. Cell wall localization of the natural substrate of a β-galactosidase, the main enzyme responsible for the autolytic process of cicer arietinum epicotyl cell walls. Physiol. Plant. 1990, 80, 636–641. [Google Scholar] [CrossRef]
- Mandels, M.; Reese, E.T. Inhibition of cellulases. Annu. Rev. Phytopathol. 1965, 3, 85–102. [Google Scholar] [CrossRef]
- Cao, R.; Xu, S.; Li, L. Changes of cell wall components and degradation enzyme activity in sweet potato storage roots during storage. J. China Agric. Univ. 2020, 25, 65–75. [Google Scholar]
- Stadnik, M.J.; Buchenauer, H. Inhibition of phenylalanine ammonia-lyase suppresses the resistance induced by benzothiadiazole in wheat to Blumeria graminis f. sp. tritici. Physiol. Mol. Plant 2000, 57, 25–34. [Google Scholar] [CrossRef]
- Bourbonnais, R.; Paice, M.G. Oxidation of non-phenolic substrates. an expanded role for laccase in lignin biodegradation. FEBS Lett. 1990, 267, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, Y.; Jiao, Y.; Liu, Y.; Qiao, L.; Liu, X. Browning Control of Fresh-Cut fruit and Vegetables by the Combination of Cold Shock and Pomelo Peel Extract Treatment. Food Res. Dev. 2023, 44, 8–14. [Google Scholar]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruit and vegetables. Food Chem. 2021, 126, 1821–1835. [Google Scholar] [CrossRef] [PubMed]
- Cueva, C.; Moreno-Arribas, M.V.; Martín-Álvarez, P.J.; Bills, G.; Vicente, M.F.; Rivas, C.L.; Basilio, A.; Requena, T.; Rodríguez, J.M.; Basilio, A.; et al. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res. Microbiol. 2010, 161, 372–382. [Google Scholar] [CrossRef]
- Reimers, P.J.; Leach, J.E. Race-specific resistance to xanthomonas oryzae pv. oryzae conferred by bacterial blight resistance gene xa-10 in rice (oryza sativa) involves accumulation of a lignin-like substance in host tissues. Physiol. Mol. Plant P 1991, 38, 39–55. [Google Scholar] [CrossRef]
- Kitahara, K.; Nakamura, Y.; Otani, M.; Hamada, T.; Nakayachi, O.; Takahata, Y. Carbohydrate components in Sweet potato storage roots: Their diversities and genetic improvement. Breed. Sci. 2017, 67, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Isherwood, F.A. Mechanism of starch-sugar interconversion in Solanum tuberosum. Phytochemistry 1976, 15, 33–41. [Google Scholar] [CrossRef]
- Chandrajith, U.G.; Wijewardane, R.M.; Wasala, W.M.; Dissanayake, C.A. Combined Effect of Citric Acid and Ascorbic Acid as Chemical PreTreatments to Prevent Enzymatic Browning in Fresh Cut Ambul Banana (Musa spp). In Proceedings of the 8th International Research Conference, Seville, Spain, 18–20 November 2015. KDU, Sri Lanka, 2015. [Google Scholar]
- Hu, B.; Li, G.; Xie, Z. Effect of different concentration of 1-MCP treatment on quality of Winter Jujube in Northern Hubei under Cold Storage. Food Res. Dev. 2014, 35, 1–3. [Google Scholar]
- Chu, Q.; Ren, G.; Duan, X.; Li, L.; Zhu, K.; Wang, Z. Effect of Different Pretreatment Methods on Brownning and Drying Characteristics of Hot Air-Dried dlily Buds. Food Sci. 2023, 44, 81–88. [Google Scholar]
- Ding, L.; Li, Y.; Wu, Y.; Li, T.; Geng, R.; Cao, J.; Zhang, W.; Tan, X. Plant Disease Resistance-Related Signaling Pathways: Recent Progress and Future Prospects. Int. J. Mol. Sci. 2022, 23, 16200. [Google Scholar] [CrossRef]
Indicators | Eigenvalues | Variance Contribution Rate (%) | Cumulative Variance Contribution Rate (%) |
---|---|---|---|
Hardness | 2.39 | 39.81 | 39.81 |
Cohesion | 1.36 | 22.64 | 62.44 |
Protein | 1.08 | 17.97 | 80.41 |
Soluble sugar | 0.70 | 11.70 | 92.11 |
Flavonoids | 0.36 | 6.42 | 98.53 |
Total Phenol | 0.09 | 1.47 | 100.00 |
Indicators | PC1 | PC2 | PC3 |
---|---|---|---|
Hardness | −0.51 | 0.66 | 0.32 |
Cohesion | −0.02 | −0.66 | 0.52 |
Protein | 0.46 | 0.66 | 0.43 |
Soluble sugar | −0.47 | 0.18 | 0.67 |
Flavonoids | 0.95 | −0.05 | −0.13 |
Total Phenol | 0.89 | 0.17 | −0.24 |
Indicators | PC1 | PC2 | PC3 |
---|---|---|---|
Hardness | −0.33 | 0.43 | 0.21 |
Cohesion | −0.02 | −0.56 | 0.45 |
Protein | 0.45 | 0.63 | 0.42 |
Soluble sugar | −0.56 | 0.22 | −0.79 |
Flavonoids | 1.58 | −0.08 | 0.22 |
Total Phenol | 3.01 | 0.56 | −0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Pang, L.; Bai, J.; Yu, W.; Zhu, Y.; George, M.S.; Lv, Z.; Lu, G. Exploring the Impact of Citric Acid on Mitigating Sweet Potato Soft Rot and Enhancing Postharvest Quality. Agriculture 2025, 15, 215. https://doi.org/10.3390/agriculture15020215
Chen Y, Pang L, Bai J, Yu W, Zhu Y, George MS, Lv Z, Lu G. Exploring the Impact of Citric Acid on Mitigating Sweet Potato Soft Rot and Enhancing Postharvest Quality. Agriculture. 2025; 15(2):215. https://doi.org/10.3390/agriculture15020215
Chicago/Turabian StyleChen, Yixi, Linjiang Pang, Jiacheng Bai, Wenbao Yu, Yueming Zhu, Melvin Sidikie George, Zunfu Lv, and Guoquan Lu. 2025. "Exploring the Impact of Citric Acid on Mitigating Sweet Potato Soft Rot and Enhancing Postharvest Quality" Agriculture 15, no. 2: 215. https://doi.org/10.3390/agriculture15020215
APA StyleChen, Y., Pang, L., Bai, J., Yu, W., Zhu, Y., George, M. S., Lv, Z., & Lu, G. (2025). Exploring the Impact of Citric Acid on Mitigating Sweet Potato Soft Rot and Enhancing Postharvest Quality. Agriculture, 15(2), 215. https://doi.org/10.3390/agriculture15020215