Arsenic Uptake in Durum Wheat (Triticum durum Desf.) as Influenced by Soil Tillage Practices and Fertilization Sources in Mediterranean Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Soil Characteristics
2.2. Experimental Site and Design
2.3. Field Setup and Crop Management
2.4. Sample Preparation and Arsenic Analysis
2.5. Bioaccumulation Factors (BAFs)
2.6. Statistical Analysis
3. Results
3.1. Arsenic Translocation in Different Parts of Wheat Plant
3.2. Accumulation of As in Wheat Plant and Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ingram, K.T. Drought-related characteristics of important cereal crops. In Monitoring and Predicting Agricultural Drought: A Global Study; Boken, V.K., Cracknell, A.P., Heathcote, R.L., Eds.; OUP: New York, NY, USA, 2005; pp. 11–27. [Google Scholar]
- Guo, G.; Lei, M.; Wang, Y.; Song, B.; Yang, J. Accumulation of As, Cd, and Pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment. Int. J. Environ. Res. Public Health 2018, 15, 2601. [Google Scholar] [CrossRef] [PubMed]
- Abedi, T.; Mojiri, A. Cadmium uptake by wheat (Triticum aestivum L.): An overview. Plants 2020, 9, 500. [Google Scholar] [CrossRef]
- Dessalew, G.; Beyene, A.; Nebiyu, A.; Astatkie, T. Effect of brewery spent diatomite sludge on trace metal availability in soil and uptake by wheat crop, and trace metal risk on human health through the consumption of wheat grain. Heliyon 2018, 4, e00783. [Google Scholar] [CrossRef] [PubMed]
- WHO. Safety Evaluation of Certain Contaminants in Food: Arsenic; WHO: Geneva, Switzerland, 2011.
- FDA. Arsenic in Rice and Rice Products. In FDA Guidance for Industry; FDA: Silver Spring, MD, USA, 2016. [Google Scholar]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Rafiq, M.; Bakhat, H.F.; Imran, M.; Abbas, T.; Bibi, I.; Dumat, C. Arsenic behaviour in soil-plant system: Biogeochemical reactions and chemical speciation influences. In Enhancing Cleanup of Environmental Pollutants: Volume 2: Non-Biological Approaches; Springer: Cham, Switzerland, 2017; pp. 97–140. [Google Scholar]
- Chandrakar, V.; Naithani, S.C.; Keshavkant, S. Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review. Biologia 2016, 71, 367–377. [Google Scholar] [CrossRef]
- Upadhyay, M.K.; Shukla, A.; Yadav, P.; Srivastava, S. A review of arsenic in crops, vegetables, animals and food products. Food Chem. 2019, 276, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Quraishi, U.M.; Malik, R.N. Arsenic uptake and toxicity in wheat (Triticum aestivum L.): A review of multi-omics approaches to identify tolerance mechanisms. Food Chem. 2021, 355, 129607. [Google Scholar] [CrossRef]
- Suman, S.; Sharma, P.K.; Siddique, A.B.; Rahman, M.A.; Kumar, R.; Rahman, M.M.; Bose, N.; Singh, S.K.; Ghosh, A.K.; Matthews, H.; et al. Wheat is an emerging exposure route for arsenic in Bihar, India. Sci. Total Environ. 2020, 703, 134774. [Google Scholar] [CrossRef]
- Jasrotia, P.; Kashyap, P.L.; Bhardwaj, A.K.; Kumar, S.; Singh, G.P. Scope and applications of nanotechnology for wheat production: A review of recent advances. Wheat Barley Res. 2018, 10, 1–14. [Google Scholar]
- Ning, C.C.; Gao, P.D.; Wang, B.Q.; Lin, W.P.; Jiang, N.H.; Cai, K.Z. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J. Integr. Agric. 2017, 16, 1819–1831. [Google Scholar] [CrossRef]
- Wang, A.; Wang, M.; Liao, Q.; He, X. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: Implication of maize cultivar selection for minimal risk to human health and for phytoremediation. Environ. Sci. Pollut. Res. 2016, 23, 5410–5419. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.X.; Liu, J.W.; Wu, M.Z.; Li, Y.; Zhao, Y.; Li, S.R. Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou, China. Bull. Environ. Contam. Toxicol. 2009, 82, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Shen, R.F.; Shao, J.F. Transport of cadmium from soil to grain in cereal crops: A review. Pedosphere 2021, 31, 3–10. [Google Scholar]
- Wan, Y.; Huang, Q.; Wang, Q.; Yu, Y.; Li, H. Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure. J. Hazard. Mater. 2020, 384, 121293. [Google Scholar] [CrossRef]
- Sobolewska, M.; Wenda-Piesik, A.; Jaroszewska, A.; Stankowski, S. Effect of habitat and foliar fertilization with K, Zn, and Mn on winter wheat grain and baking qualities. Agronomy 2020, 10, 276. [Google Scholar] [CrossRef]
- Wei, L.; Pu, H.; Wang, Z.; Yuan, Z.; Yan, X.; Cao, L. Estimation of soil arsenic content with hyperspectral remote sensing. Sensors 2020, 20, 4056. [Google Scholar] [CrossRef] [PubMed]
- Kraut-Cohen, J.; Zolti, A.; Shaltiel-Harpaz, L.; Argaman, E.; Rabinovich, R.; Green, S.J.; Minz, D. Effects of tillage practices on soil microbiome and agricultural parameters. Sci. Total Environ. 2020, 705, 135791. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, S.; Sun, J.; Liu, Z.; He, X.; Qiao, J. Effects of tillage and sowing methods on soil physical properties and corn plant characters. Agriculture 2023, 13, 600. [Google Scholar] [CrossRef]
- Singh, N.K.; Dogra, B.; Manes, G.S.; Parihar, D.S.; Salem, A.; Elbeltagi, A. Effect of the Spading Machine on Various Soil Parameters at Different Tillage Depths. Sustainability 2024, 16, 4334. [Google Scholar] [CrossRef]
- Schwalbert, R.; Stefanello, L.O.; Schwalbert, R.A.; Tarouco, C.P.; Nicoloso, F.T. Soil tillage affects soybean growth and promotes heavy metal accumulation in seeds. Ecotoxicol. Environ. Saf. 2021, 216, 112191. [Google Scholar] [CrossRef] [PubMed]
- Begum, M.; Li, L.; Young, E.; Carey, M.; Li, G.; Zhu, Y.G.; Banwart, S.; Meharg, A.A.; Meharg, C. Fertilization enhances grain inorganic arsenic assimilation in rice. Expo. Health 2024, 16, 417–430. [Google Scholar] [CrossRef]
- Golui, D.; Raza, M.B.; Roy, A.; Mandal, J.; Sahu, A.K.; Ray, P.; Datta, S.P.; Rahman, M.M.; Bezbaruah, A. Arsenic in the soil-plant-human continuum in regions of Asia: Exposure and risk assessment. Curr. Pollut. Rep. 2023, 9, 760–783. [Google Scholar] [CrossRef]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizers, Volume 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs; Springer: Cham, Switzerland, 2021; pp. 1–20. [Google Scholar]
- Stazi, S.R.; Mancinelli, R.; Marabottini, R.; Allevato, E.; Radicetti, E.; Campiglia, E.; Marinari, S. Influence of organic management on As bioavailability: Soil quality and tomato As uptake. Chemosphere 2018, 211, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Thompson, R.B.; Xu, J.; Liao, S.; Suo, L.; Peng, Y.; Chen, Q.; Yang, J.; Li, Y.; Zou, G.; et al. Arsenic and Cadmium Accumulation in Soil as Affected by Continuous Organic Fertilizer Application: Implications for Clean Production. Agronomy 2021, 11, 2272. [Google Scholar] [CrossRef]
- Liu, L.; Chen, H.; Cai, P.; Liang, W.; Huang, Q. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J. Hazard Mater. 2009, 163, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Halim, M.; Conte, P.; Piccolo, A. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 2003, 52, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Ding, Z.; Wang, X.; Hou, H.; Zhou, B.; Yue, Y.; Ma, W.; Ge, J.; Wang, Z.; Zhao, M. Subsoiling practices change root distribution and increase post-anthesis dry matter accumulation and yield in summer maize. PLoS ONE 2017, 12, e0174952. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, Z.; Xue, J.; Lin, W.; Sun, M. Subsoiling during summer fallow in rainfed winter-wheat fields enhances soil organic carbon sequestration on the Loess Plateau in China. PLoS ONE 2021, 16, e0245484. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yang, Z.; Ye, Q.; Peng, Z.; Zhu, S.; Chen, H.; Liu, D.; Li, Y.; Deng, L.; Shu, X.; et al. Positive effects of organic amendments on soil microbes and their functionality in agro-ecosystems. Plants 2023, 12, 3790. [Google Scholar] [CrossRef]
- Shu, X.; Liu, W.; Huang, H.; Ye, Q.; Zhu, S.; Peng, Z.; Li, Y.; Deng, L.; Yang, Z.; Chen, H.; et al. Meta-analysis of organic fertilization effects on soil bacterial diversity and community composition in agroecosystems. Plants 2023, 12, 3801. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zheng, F.; Jia, X.; Liu, P.; Dong, S.; Zhang, J.; Zhao, B. The combined application of organic and inorganic fertilizers increases soil organic matter and improves soil microenvironment in wheat-maize field. J. Soils Sediments 2020, 20, 2395–2404. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Jiang, P.; Wang, R.; Guo, J.; Xiao, H.; Wu, J.; Shaaban, M.; Li, Y.; Huang, M. Organic fertilizer substituting 20% chemical N increases wheat productivity and soil fertility but reduces soil nitrate-N residue in drought-prone regions. Front. Plant Sci. 2024, 15, 1379485. [Google Scholar] [CrossRef] [PubMed]
- Bianucci, E.; Peralta, J.M.; Furlan, A.; Hernández, L.E.; Castro, S. Arsenic in wheat, maize, and other crops. In Arsenic in Drinking Water and Food; Springer: Singapore, 2020; pp. 279–306. [Google Scholar]
- Wang, S.; Wang, T.; Wang, X.; Sun, Q.; Pei, Z. Effects of biochar amendment on the bioavailability of arsenic in paddy soil. Environ. Sci. Pollut. Res. 2018, 25, 11433–11440. [Google Scholar]
- Gao, J.; Sun, K.; Jin, J.; Wang, Z.; Xu, Y. Effect of compost amendment on the transformation of arsenic and microbial community structure in contaminated soil. J. Hazard. Mater. 2020, 388, 121796. [Google Scholar]
- European Food Safety Authority (EFSA). Scientific Opinion on Arsenic in Food. EFSA J. 2009, 7, 1351. [Google Scholar] [CrossRef]
Treatments | Treatments | Soil As (mg As kg−1 of Soil) | |
---|---|---|---|
Year | Soil tillage | ||
2018/2019 | Plowing | 0.096 | d |
2018/2019 | Subsoiling | 0.106 | d |
2018/2019 | Spading | 0.202 | c |
2019/2020 | Plowing | 0.166 | c,d |
2019/2020 | Subsoiling | 0.207 | c |
2019/2020 | Spading | 0.350 | b |
2020/2021 | Plowing | 0.552 | a |
2020/2021 | Subsoiling | 0.213 | c |
2020/2021 | Spading | 0.391 | b |
Year | Fertilization | ||
2018/2019 | Mineral | 0.157 | c,d |
2018/2019 | Organic | 0.113 | d |
2019/2020 | Mineral | 0.295 | b |
2019/2020 | Organic | 0.187 | c |
2020/2021 | Mineral | 0.595 | a |
2020/2021 | Organic | 0.176 | c,d |
Soil tillage | Fertilization | ||
Plowing | Mineral | 0.395 | b |
Plowing | Organic | 0.147 | c |
Subsoiling | Mineral | 0.160 | c |
Subsoiling | Organic | 0.191 | c |
Spading | Mineral | 0.491 | a |
Spading | Organic | 0.138 | c |
Treatments | Treatments | Kernel As (mg As kg−1 d.m.) | |
---|---|---|---|
Year | Soil tillage | ||
2018/2019 | Plowing | 0.014 | d,e |
2018/2019 | Subsoiling | 0.037 | b |
2018/2019 | Spading | 0.030 | b,c |
2019/2020 | Plowing | 0.023 | c,d |
2019/2020 | Subsoiling | 0.020 | c–e |
2019/2020 | Spading | 0.008 | e |
2020/2021 | Plowing | 0.026 | b–d |
2020/2021 | Subsoiling | 0.008 | e |
2020/2021 | Spading | 0.076 | a |
p value | <0.0001 | ||
Year | Fertilization | ||
2018/2019 | Mineral | 0.030 | b |
2018/2019 | Organic | 0.024 | b,c |
2019/2020 | Mineral | 0.015 | c,d |
2019/2020 | Organic | 0.019 | b–d |
2020/2021 | Mineral | 0.061 | a |
2020/2021 | Organic | 0.012 | d |
p value | <0.0001 | ||
Soil tillage | Fertilization | ||
Plowing | Mineral | 0.020 | b |
Plowing | Organic | 0.023 | b |
Subsoiling | Mineral | 0.024 | b |
Subsoiling | Organic | 0.020 | b |
Spading | Mineral | 0.063 | a |
Spading | Organic | 0.013 | b |
p value | <0.0001 |
Treatments | Treatments | Stem As (mg As kg−1 d.m.) | |
---|---|---|---|
Year | Soil tillage | ||
2018/2019 | Plowing | 0.023 | d |
2018/2019 | Subsoiling | 0.031 | d |
2018/2019 | Spading | 0.022 | d |
2019/2020 | Plowing | 0.099 | b |
2019/2020 | Subsoiling | 0.086 | b |
2019/2020 | Spading | 0.148 | a |
2020/2021 | Plowing | 0.051 | c |
2020/2021 | Subsoiling | 0.035 | c,d |
2020/2021 | Spading | 0.052 | c |
p value | <0.0001 | ||
Year | Fertilization | ||
2018/2019 | Mineral | 0.021 | e |
2018/2019 | Organic | 0.029 | d,e |
2019/2020 | Mineral | 0.083 | b |
2019/2020 | Organic | 0.139 | a |
2020/2021 | Mineral | 0.043 | c,d |
2020/2021 | Organic | 0.049 | c |
p value | <0.0001 | ||
Year | Fertilization | ||
Plowing | Mineral | 0.048 | c |
Plowing | Organic | 0.068 | b |
Subsoiling | Mineral | 0.047 | c |
Subsoiling | Organic | 0.055 | b,c |
Spading | Mineral | 0.053 | b,c |
Spading | Organic | 0.095 | a |
p value | <0.0172 |
Treatments | Treatments | Leaf As (mg As kg−1 d.m.) | |
---|---|---|---|
Year | Soil tillage | ||
2018/2019 | Plowing | 0.123 | b |
2018/2019 | Subsoiling | 0.040 | b |
2018/2019 | Spading | 0.044 | b |
2019/2020 | Plowing | 0.295 | a |
2019/2020 | Subsoiling | 0.064 | b |
2019/2020 | Spading | 0.270 | a |
2020/2021 | Plowing | 0.123 | b |
2020/2021 | Subsoiling | 0.064 | b |
2020/2021 | Spading | 0.061 | b |
p value | <0.0166 | ||
Year | Fertilization | ||
2018/2019 | Mineral | 0.075 | b |
2018/2019 | Organic | 0.063 | b |
2019/2020 | Mineral | 0.203 | a |
2019/2020 | Organic | 0.217 | a |
2020/2021 | Mineral | 0.109 | b |
2020/2021 | Organic | 0.056 | b |
p value | <0.0489 | ||
Soil tillage | Fertilization | ||
Plowing | Mineral | 0.138 | b |
Plowing | Organic | 0.223 | a |
Subsoiling | Mineral | 0.060 | c |
Subsoiling | Organic | 0.052 | c |
Spading | Mineral | 0.189 | a |
Spading | Organic | 0.061 | c |
p value | <0.0011 |
Treatments | Treatments |
Root As (mg As kg−1 d.m.) | |
---|---|---|---|
Year | Soil tillage | ||
2018/2019 | Plowing | 0.452 | d |
2018/2019 | Subsoiling | 0.354 | d |
2018/2019 | Spading | 0.216 | d,e |
2019/2020 | Plowing | 1.855 | a |
2019/2020 | Subsoiling | 0.766 | c |
2019/2020 | Spading | 1.446 | b |
2020/2021 | Plowing | 0.217 | d,e |
2020/2021 | Subsoiling | 0.063 | e |
2020/2021 | Spading | 0.058 | e |
p value | <0.0001 | ||
Year | Fertilization | ||
2018/2019 | Mineral | 0.337 | c |
2018/2019 | Organic | 0.344 | c |
2019/2020 | Mineral | 1.522 | a |
2019/2020 | Organic | 1.190 | b |
2020/2021 | Mineral | 0.061 | d |
2020/2021 | Organic | 0.164 | c,d |
p value | <0.0294 | ||
Soil tillage | Fertilization | ||
Plowing | Mineral | 0.412 | c,d |
Plowing | Organic | 1.271 | a |
Subsoiling | Mineral | 0.532 | c,d |
Subsoiling | Organic | 0.257 | d,e |
Spading | Mineral | 0.975 | b |
Spading | Organic | 0.171 | e |
p value | <0.0001 |
Treatments | Treatments | Grain Yield/Grain As Ratio (g m−2/mg kg−1) | |
---|---|---|---|
Year | Soil tillage | ||
2018/2019 | Plowing | 18,809 | d |
2018/2019 | Subsoiling | 9685 | d |
2018/2019 | Spading | 9238 | d |
2019/2020 | Plowing | 19,323 | c,d |
2019/2020 | Subsoiling | 20,299 | c,d |
2019/2020 | Spading | 56,896 | a |
2020/2021 | Plowing | 8520 | d |
2020/2021 | Subsoiling | 39,034 | b |
2020/2021 | Spading | 31,105 | b,c |
p value | <0.0001 | ||
Year | Fertilization | ||
2018/2019 | Mineral | 15,684 | c,d |
2018/2019 | Organic | 9471 | d |
2019/2020 | Mineral | 39,579 | a |
2019/2020 | Organic | 24,766 | b,c |
2020/2021 | Mineral | 22,616 | b,c |
2020/2021 | Organic | 29,824 | a,b |
p value | <0.0125 | ||
Soil tillage | Fertilization | ||
Plowing | Mineral | 21,564 | b,c |
Plowing | Organic | 9538 | d |
Subsoiling | Mineral | 28,353 | b |
Subsoiling | Organic | 17,659 | c,d |
Spading | Mineral | 27,962 | b |
Spading | Organic | 36,865 | a |
p value | <0.0034 |
Treatments | Aboveground Biomass (g DM m−2) | Up Taken As by Grain (mg m−2) | Soil TOC (%) | Soil TON (%) | ||||
---|---|---|---|---|---|---|---|---|
Year | ||||||||
2018/2019 | 596.3 | c | 0.0073 | a,b | 0.963 | b | 0.103 | b |
2019/2020 | 906.6 | a | 0.0066 | b | 1.185 | a | 0.139 | a |
2020/2021 | 727.1 | b | 0.0083 | a | 0.754 | c | 0.149 | a |
Soil tillage | ||||||||
Plowing | 680.8 | b | 0.0055 | b | 0.906 | b | 0.121 | a |
Subsoiling | 791.1 | a | 0.0071 | b | 0.988 | a | 0.129 | a |
Spading | 758.0 | a,b | 0.0095 | a | 1.008 | a | 0.142 | a |
Fertilization | ||||||||
Mineral | 821.4 | a | 0.0100 | a | 0.947 | b | 0.133 | a |
Organic | 665.3 | b | 0.0047 | b | 0.988 | a | 0.128 | a |
Treatments | Treatments | BAFrs | BAFss | BAFls | BAFgs | ||||
---|---|---|---|---|---|---|---|---|---|
Year | Soil tillage | ||||||||
2019 | Plowing | 6.724 | b | 0.340 | c | 2.122 | a | 0.225 | b |
2019 | Subsoiling | 5.640 | c,d | 0.317 | e | 0.524 | b | 0.425 | b,c |
2019 | Spading | 1.806 | b,c | 0.144 | c,d | 0.312 | b | 0.191 | a |
2020 | Plowing | 12.996 | a | 0.658 | b | 2.188 | a | 0.156 | b,d |
2020 | Subsoiling | 6.650 | b,d | 0.539 | a | 0.459 | b | 0.152 | d |
2020 | Spading | 3.099 | b | 0.999 | b | 0.720 | b | 0.051 | b,d |
2021 | Plowing | 0.906 | d | 0.164 | d,e | 0.240 | b | 0.067 | c,d |
2021 | Subsoiling | 0.373 | d | 0.181 | c,e | 0.322 | b | 0.048 | b,d |
2021 | Spading | 0.223 | d | 0.235 | c,e | 0.237 | b | 0.131 | d |
Year | Fertilization | ||||||||
2019 | Mineral | 5.524 | a,b | 0.262 | b | 1.267 | a,b | 0.320 | a |
2019 | Organic | 3.922 | b,c | 0.271 | a | 0.706 | b,c | 0.241 | a |
2020 | Mineral | 6.736 | a,b | 0.445 | c | 0.626 | b,c | 0.113 | b |
2020 | Organic | 8.427 | a,b | 1.019 | c | 1.618 | a | 0.127 | b |
2021 | Mineral | 0.121 | d | 0.089 | d | 0.193 | c | 0.098 | b |
2021 | Organic | 0.880 | c,d | 0.297 | c | 0.339 | c | 0.066 | b |
Soil tillage | Fertilization | ||||||||
Plowing | Mineral | 3.882 | c | 0.277 | c | 1.185 | a,b | 0.124 | b |
Plowing | Organic | 9.867 | a | 0.498 | b | 1.848 | a | 0.174 | a,b |
Subsoiling | Mineral | 6.611 | b | 0.417 | b,c | 0.537 | b,c | 0.260 | a |
Subsoiling | Organic | 1.831 | c | 0.274 | c | 0.333 | c | 0.157 | a,b |
Spading | Mineral | 1.888 | c | 0.102 | d | 0.363 | c | 0.147 | a,b |
Spading | Organic | 1.531 | c | 0.816 | a | 0.482 | c | 0.102 | b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bravo, I.; Atait, M.; Colamatteo, I.; Mancinelli, R.; Allam, M.; Papetti, P.; Radicetti, E. Arsenic Uptake in Durum Wheat (Triticum durum Desf.) as Influenced by Soil Tillage Practices and Fertilization Sources in Mediterranean Environment. Agriculture 2025, 15, 217. https://doi.org/10.3390/agriculture15020217
Bravo I, Atait M, Colamatteo I, Mancinelli R, Allam M, Papetti P, Radicetti E. Arsenic Uptake in Durum Wheat (Triticum durum Desf.) as Influenced by Soil Tillage Practices and Fertilization Sources in Mediterranean Environment. Agriculture. 2025; 15(2):217. https://doi.org/10.3390/agriculture15020217
Chicago/Turabian StyleBravo, Ilenia, Mariam Atait, Ilenia Colamatteo, Roberto Mancinelli, Mohamed Allam, Patrizia Papetti, and Emanuele Radicetti. 2025. "Arsenic Uptake in Durum Wheat (Triticum durum Desf.) as Influenced by Soil Tillage Practices and Fertilization Sources in Mediterranean Environment" Agriculture 15, no. 2: 217. https://doi.org/10.3390/agriculture15020217
APA StyleBravo, I., Atait, M., Colamatteo, I., Mancinelli, R., Allam, M., Papetti, P., & Radicetti, E. (2025). Arsenic Uptake in Durum Wheat (Triticum durum Desf.) as Influenced by Soil Tillage Practices and Fertilization Sources in Mediterranean Environment. Agriculture, 15(2), 217. https://doi.org/10.3390/agriculture15020217