Plant Adaptability to Improved Dredged Sediment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.1.1. Test Materials
2.1.2. Test Instruments and Equipment
2.2. Experimental Design
2.2.1. Preparation of Improved Soil
2.2.2. Seed Germination Test
2.3. Analytical Methods
2.4. Biodiversity Detection
2.5. Data Analysis
3. Results and Discussion
3.1. Heavy Metal Content Analysis
3.2. Main Control Indicators and Nutritional Composition
3.3. Seed Germination Analysis
3.4. Analysis of Fungal Diversity in Planting Soil
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, Z.; Hou, B.; Chang, Z.; Wei, X.; Song, Z.; Li, H. The Properties of Cement Stabilized Dredged Sludge Solidifying in Seawater and Its Application in the Protection of Subsea Pipelines. Appl. Ocean Res. 2024, 153, 104264. [Google Scholar] [CrossRef]
- Crocetti, P.; González-Camejo, J.; Li, K.; Foglia, A.; Eusebi, A.L.; Fatone, F. An Overview of Operations and Processes for Circular Management of Dredged Sediments. Waste Manag. 2022, 146, 20–35. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhou, X.; Zhou, L.; Huang, Z.; Shen, J. Constant-Current Electro-Dewatering of Sewage Sludge: Effect of Anthracite Modification on Dehydration Performance and Economic Benefit. J. Environ. Chem. Eng. 2022, 10, 107087. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Z.; Zhao, J.; Cui, X.; Liang, C.; Hou, S. Mechanical, Freeze-Thaw Resistance and Heavy Metals Leaching Properties of Alkali-Activated Recycled Concrete Powder Solidified Sludge. Constr. Build. Mater. 2024, 447, 138154. [Google Scholar] [CrossRef]
- Lang, L.; Liu, N.; Chen, B. Strength Development of Solidified Dredged Sludge Containing Humic Acid with Cement, Lime and Nano-SiO2. Constr. Build. Mater. 2020, 230, 116971. [Google Scholar] [CrossRef]
- Cai, S.; Liu, M.; Zhang, Y.; Hu, A.; Zhang, W.; Wang, D. Molecular Transformation of Dissolved Organic Matter and Formation Pathway of Humic Substances in Dredged Sludge under Aerobic Composting. Bioresour. Technol. 2022, 364, 128141. [Google Scholar] [CrossRef] [PubMed]
- Jebesa, W.T.; Astatkie, T.; Zerfu, A.; Kenea, H.D.; Abamecha, N.; Shumuye, M.; Abera, G.; Kidane, A.; Hirko, M.; Assefa, F. Impact of Brewery Sludge Application on Heavy Metal Build-up, Translocation, Growth and Yield of Bread Wheat (Triticum aestivum L.) Crop in Northern Ethiopia. Heliyon 2024, 10, e32559. [Google Scholar] [CrossRef] [PubMed]
- Angon, P.B.; Islam, M.S.; Kc, S.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, Effects and Present Perspectives of Heavy Metals Contamination: Soil, Plants and Human Food Chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Planting Soil for Greening; Standards Press of China: Beijing, China, 2016. [Google Scholar]
- Kong, Y.; Zhang, J.; Yang, Y.; Liu, Y.; Zhang, L.; Wang, G.; Liu, G.; Dang, R.; Li, G.; Yuan, J. Determining the Extraction Conditions and Phytotoxicity Threshold for Compost Maturity Evaluation Using the Seed Germination Index Method. Waste Manag. 2023, 171, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Hoshyari, E.; Hassanzadeh, N.; Keshavarzi, B.; Jaafarzadeh, N.; Rezaei, M. Spatial Distribution, Source Apportionment, and Ecological Risk Assessment of Elements (PTEs, REEs, and ENs) in the Surface Soil of Shiraz City (Iran) under Different Land-Use Types. Chemosphere 2023, 311, 137045. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Z.; Feng, B.; Shi, J.; Liao, M.; He, K.; Tian, H.; Megharaj, M.; He, W. Arsenic Stress on Soil Microbial Nutrient Metabolism Interpreted by Microbial Utilization of Dissolved Organic Carbon. J. Hazard. Mater. 2024, 470, 134232. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.D. Soil Agricultural Chemical Analysis, 3rd, ed.; Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Yu, G.; Chen, H.; Chen, J.; Chen, S.; Long, Y.; Huang, J.; Wang, Y.; He, S. Enhanced Nitrogen Removal through Aerobic Denitrifying Bacteria in Horizontal Subsurface Flow Constructed Wetlands: Influencing Factors and Microbial Community Structure. Chem. Eng. J. 2024, 481, 148654. [Google Scholar] [CrossRef]
- Dong, S.; Li, L.; Chen, W.; Chen, Z.; Wang, Y.; Wang, S. Evaluation of Heavy Metal Speciation Distribution in Soil and the Accumulation Characteristics in Wild Plants: A Study on Naturally Aged Abandoned Farmland Adjacent to Tailings. Sci. Total Environ. 2024, 917, 170594. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qiu, G.; Liu, C.; Lin, Y.; Chen, X.; Li, H.; Fu, Q.; Guo, B. Intercropping of Euonymus Japonicus with Photinia × Fraseri Improves Phytoremediation Efficiency in Cd/Cu/Zn Contaminated Field. Biology 2022, 11, 1133. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Z.; Gong, P.; He, X.; Liu, H.; Li, L.; Wang, C.; Li, P.; Wei, J.; Yu, X. Enhanced Irrigation Volume Reduces Salinity and Improves Deep Root Zone Soil Nutrients, Phosphatase Activity and Changes Root Traits of Fruit Trees. Agric. Water Manag. 2024, 302, 109001. [Google Scholar] [CrossRef]
- Sun, X.; Niu, L.; Zhang, M.; Zhang, H.; Liu, H.; Zhao, M.; Zhang, X.; Zhang, Q.; Zhang, Y. Application of Carbon-Based Nutrient Fertilizer Improved Soil Fertility and Seed Yield of Paeonia Ostii ‘Feng Dan’. Ind. Crops Prod. 2024, 212, 118348. [Google Scholar] [CrossRef]
- Lv, Y.Z.; Li, B.G. Soil Science; China Agriculture Press: Beijing, China, 2006; ISBN 978-7-109-10593-8. [Google Scholar]
- Wang, L.; Wang, Z.; Wang, Z.; Zheng, J. Integrated Aerobic-Anaerobic Digestion of Highly Solids-Loaded Corn Stover and Swine Manure under Dynamic Aeration: Temperature Rise, Physicochemical Characteristics, and Methane Production. J. Environ. Manag. 2024, 366, 121864. [Google Scholar] [CrossRef] [PubMed]
- Magaña Ugarte, R.; Hurtado Martínez, M.; Díaz-Santiago, E.; Pugnaire, F.I. Microbial Controls on Seed Germination. Soil Biol. Biochem. 2024, 199, 109576. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Y.; Yang, T.; Chu, H. Threshold Effects of Soil pH on Microbial Co-Occurrence Structure in Acidic and Alkaline Arable Lands. Sci. Total Environ. 2021, 800, 149592. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, A.; Chen, X.; Zhang, S.; Zhang, Y.; McLaughlin, N.B.; Gao, Y.; Jia, S. The Impact of Cropping System, Tillage and Season on Shaping Soil Fungal Community in a Long-Term Field Trial. Eur. J. Soil Biol. 2021, 102, 103253. [Google Scholar] [CrossRef]
- Mondo, S.J.; Jiménez, D.J.; Hector, R.E.; Lipzen, A.; Yan, M.; LaButti, K.; Barry, K.; Van Elsas, J.D.; Grigoriev, I.V.; Nichols, N.N. Genome Expansion by Allopolyploidization in the Fungal Strain Coniochaeta 2T2.1 and Its Exceptional Lignocellulolytic Machinery. Biotechnol. Biofuels 2019, 12, 229. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-H.; Hong, L.; Li, J.-J.; Zhang, Q.-X.; Wang, A.-Q.; Lin, S.-X.; Hu, M.-Y.; Chen, Y.-L.; Lin, W.-X.; Wang, H.-B.; et al. Analysis of Growth Inhibition of Continuously Planted Casuarina Equisetifolia in Relation to Characteristic Soil Microbial Functions and Nutrient Cycling. Appl. Soil Ecol. 2024, 202, 105607. [Google Scholar] [CrossRef]
- Neme, A.; Leta, A.; Yones, A.M.; Tahir, M. Seedborne Mycoflora of Faba Bean (Vicia fabae L.) and Evaluation of Plant Extract and Trichoderma Species against Mycelium Growth of Selected Fungi. Heliyon 2023, 9, e17291. [Google Scholar] [CrossRef] [PubMed]
- Rocha, T.M.; Marcelino, P.R.F.; Antunes, F.A.F.; Sánchez-Muñoz, S.; dos Santos, J.C.; da Silva, S.S. Biocompatibility of Brazilian Native Yeast-Derived Sophorolipids and Trichoderma Harzianum as Plant-Growth Promoting Bioformulations. Microbiol. Res. 2024, 283, 127689. [Google Scholar] [CrossRef]
- Hu, Y.; Jia, F.; Liu, Z.; Zhang, Y.; Li, L. Impact of Storage Time on Microbial Communities and Flavor Profiles in Highland Barley Grains. J. Stored Prod. Res. 2024, 107, 102321. [Google Scholar] [CrossRef]
- Anckaert, A.; Declerck, S.; Poussart, L.-A.; Lambert, S.; Helmus, C.; Boubsi, F.; Steels, S.; Argüelles-Arias, A.; Calonne-Salmon, M.; Ongena, M. The Biology and Chemistry of a Mutualism between a Soil Bacterium and a Mycorrhizal Fungus. Curr. Biol. 2024, 34, 4934–4950.e8. [Google Scholar] [CrossRef] [PubMed]
Item | Raw Material (g) | ||||
---|---|---|---|---|---|
Eucalyptus Topsoil | Desilting Mud | CPM | Sawdust | CBA | |
Ctrl1 | 0 | 0 | 0 | 0 | 0 |
Ctrl2 | 100 | 0 | 0 | 0 | 0 |
Ctrl3 | 0 | 100 | 0 | 0 | 0 |
IS0 | 0 | 100 | 0 | 0 | 0.01 |
IS1 | 0 | 89 | 1 | 10 | 0.01 |
IS3 | 0 | 87 | 3 | 10 | 0.01 |
IS5 | 0 | 85 | 5 | 10 | 0.01 |
IS7 | 0 | 83 | 7 | 10 | 0.01 |
IS9 | 0 | 81 | 9 | 10 | 0.01 |
Treatment | pH | EC (mS·cm−1) | ρ (g·cm−3) | TN (g·kg−1) | TP (g·kg−1) | TK (g·kg−1) |
---|---|---|---|---|---|---|
Ctrl2 | 4.48 | 0.51 | 1.32 | 1.24 | 0.16 | 20.69 |
Ctrl3 | 7.59 | 0.77 | 1.58 | 1.02 | 0.65 | 14.50 |
CPM | 5.91 | 3.68 | 0.43 | 18.3 | 12.5 | 5.37 |
IS0 | 7.32 | 0.79 | 1.58 | 1.03 | 0.65 | 14.54 |
IS1 | 7.26 | 0.84 | 1.45 | 1.09 | 0.71 | 13.12 |
IS3 | 7.19 | 0.88 | 1.43 | 1.40 | 0.92 | 12.98 |
IS5 | 7.14 | 0.98 | 1.42 | 1.69 | 1.12 | 12.85 |
IS7 | 7.03 | 1.09 | 1.40 | 1.98 | 1.31 | 12.72 |
IS9 | 6.95 | 1.12 | 1.38 | 2.25 | 1.50 | 12.60 |
Treatment | AN (mg·kg−1) | AP (mg·kg−1) | AK (mg·kg−1) | AFe (mg·kg−1) | EGa (mg·kg−1) | EMn (mg·kg−1) | EMg (mg·kg−1) |
---|---|---|---|---|---|---|---|
Ctrl2 | 28.7 | 0.363 | 47.07 | 50.30 | 114 | 22.0 | 12.3 |
Ctrl3 | 45.9 | 22.1 | 84.34 | 9.78 | 224 | 30.3 | 25.2 |
CPM | 574 | 3643.3 | 2720.0 | 397 | 979 | 201 | 37.5 |
IS0 | 45.8 | 22.4 | 84.30 | 9.73 | 222.86 | 30.0 | 25.1 |
IS1 | 46.52 | 52.73 | 100.49 | 12.39 | 210.62 | 32.7 | 23.0 |
IS3 | 55.86 | 116.27 | 146.85 | 19.19 | 224.22 | 35.8 | 23.3 |
IS5 | 64.87 | 177.61 | 191.60 | 25.77 | 237.35 | 38.7 | 23.5 |
IS7 | 73.57 | 236.85 | 234.82 | 32.11 | 250.03 | 41.4 | 23.8 |
IS9 | 81.98 | 294.09 | 276.59 | 38.24 | 262.28 | 44.1 | 24.0 |
Standards | 40~200 | 5~60 | 60~300 | 4~350 | 200~500 | 50~280 | 0.6~25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Mo, R.; Shi, H.; Li, Y.; Zhou, Y.; Wang, C.; Yu, G. Plant Adaptability to Improved Dredged Sediment. Agriculture 2025, 15, 218. https://doi.org/10.3390/agriculture15020218
Zhang S, Mo R, Shi H, Li Y, Zhou Y, Wang C, Yu G. Plant Adaptability to Improved Dredged Sediment. Agriculture. 2025; 15(2):218. https://doi.org/10.3390/agriculture15020218
Chicago/Turabian StyleZhang, Shoulong, Rixiong Mo, Haorong Shi, Yuanzhen Li, Yaoyao Zhou, Chenhao Wang, and Guanlong Yu. 2025. "Plant Adaptability to Improved Dredged Sediment" Agriculture 15, no. 2: 218. https://doi.org/10.3390/agriculture15020218
APA StyleZhang, S., Mo, R., Shi, H., Li, Y., Zhou, Y., Wang, C., & Yu, G. (2025). Plant Adaptability to Improved Dredged Sediment. Agriculture, 15(2), 218. https://doi.org/10.3390/agriculture15020218