Pre-Season Precipitation and Temperature Have a Larger Influence on Vegetation Productivity than That of the Growing Season in the Agro-Pastoral Ecotone in Northern China
Abstract
:1. Introduction
- (1)
- Is the sensitivity of vegetation productivity to climate variables (including VPD and precipitation) affected by LUCC in the APENC region?
- (2)
- How do precipitation metric interactions and vegetation productivity respond to the sensitivity of vegetation in the APENC?
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Vegetation Productivity
2.2.2. Land Cover Dataset
2.2.3. Climate Data
2.3. Land Cover Changes
2.4. Influence of Land Cover Variations on Vegetation’s Climatic Sensitivity
2.5. Sensitivities of Vegetation Index to Climate Change
2.6. Spatial Autocorrelation Analysis
3. Results
3.1. Spatial–Temporal Processes of Land Cover Changes
3.2. Impacts of Land Cover Changes on Vegetation Climatic Sensitivity
3.3. Correlation Among Climate Factors and Collinearity Analysis
3.4. Spatial Distributions of Sensitivities of Vegetation Index to Climate Variability
3.5. Spatial Autocorrelation Analysis Results
4. Discussion
4.1. Relationship Between LUCC and Anthropogenic Activities
4.2. Impacts of Land Cover Changes on Vegetation Sensitivity to Climate
4.3. Vegetation Index Response to Climate Change
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- He, L.; Wang, J.; Ciais, P.; Ballantyne, A.; Yu, K.; Zhang, W.; Xiao, J.; Ritter, F.; Liu, Z.; Wang, X.; et al. Non-Symmetric Responses of Leaf Onset Date to Natural Warming and Cooling in Northern Ecosystems. PNAS Nexus 2023, 2, pgad308. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, J.; Peñuelas, J.; Zohner, C.M.; Crowther, T.W.; Fu, Y.; Zhang, W.; Xiao, J.; Liu, Z.; Wang, X.; et al. Asymmetric Temperature Effect on Leaf Senescence and Its Control on Ecosystem Productivity. PNAS Nexus 2024, 3, pgae477. [Google Scholar] [CrossRef]
- Jiao, K.; Liu, Z.; Wang, W.; Yu, K.; Mcgrath, M.J.; Xu, W. Carbon Cycle Responses to Climate Change across China’s Terrestrial Ecosystem: Sensitivity and Driving Process. Sci. Total Environ. 2024, 915, 170053. [Google Scholar] [CrossRef]
- Li, C.; Zhang, S. Disentangling the Impact of Climate Change, Human Activities, Vegetation Dynamics and Atmospheric CO2 Concentration on Soil Water Use Efficiency in Global Karst Landscapes. Sci. Total Environ. 2024, 932, 172865. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Wei, J.; Jia, X.; Ye, Z.; Yu, S.; Yin, S. Spatiotemporal Patterns of Land Surface Phenology from 2001 to 2021 in the Agricultural Pastoral Ecotone of Northern China. Sustainability 2023, 15, 5830. [Google Scholar] [CrossRef]
- Wei, B.; Xie, Y.; Jia, X.; Wang, X.; He, H.; Xue, X. Land Use/Land Cover Change and It’s Impacts on Diurnal Temperature Range over the Agricultural Pastoral Ecotone of Northern China. Land Degrad. Dev. 2018, 29, 3009–3020. [Google Scholar] [CrossRef]
- Zhang, K.; Dang, H.; Tan, S.; Cheng, X.; Zhang, Q. Change in Soil Organic Carbon Following the ‘Grain-for-Green’ Programme in China. Land Degrad. 2009, 21, 13–23. [Google Scholar] [CrossRef]
- Bao, Z.; Zhang, J.; Wang, G.; Guan, T.; Jin, J.; Liu, Y.; Li, M.; Ma, T. The Sensitivity of Vegetation Cover to Climate Change in Multiple Climatic Zones Using Machine Learning Algorithms. Ecol. Indic. 2021, 124, 107443. [Google Scholar] [CrossRef]
- Wei, B.; Bao, Y.; Yu, S.; Yin, S.; Zhang, Y. Analysis of Land Surface Temperature Variation Based on MODIS Data a Case Study of the Agricultural Pastural Ecotone of Northern China. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102342. [Google Scholar] [CrossRef]
- Zhu, H.; Ding, H.; Bi, R.; Hou, M. Characterizing Multiscale Effects of Climatic Factors on the Temporal Variation of Vegetation in Different Climatic Regions of China. Theor. Appl. Climatol. 2021, 148, 33–47. [Google Scholar] [CrossRef]
- Feldman, A.F.; Feng, X.; Felton, A.J. Plant responses to changing rainfall frequency and intensity. Nat. Rev. Earth Environ. 2024, 5, 276–294. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, B.; He, C.; Shao, R. Detecting Vegetation Variations and Main Drivers over the Agropastoral Ecotone of Northern China through the Ensemble Empirical Mode Decomposition Method. Remote Sens. 2019, 11, 1860. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Li, Y. Anthropogenic Contributions Dominate Trends of Vegetation Cover Change over the Farming-Pastoral Ecotone of Northern China. Ecol. Indic. 2018, 95, 370–378. [Google Scholar] [CrossRef]
- Chen, W.; Li, A.; Hu, Y.; Li, L.; Zhao, H.; Han, X.; Yang, B. Exploring the Long-Term Vegetation Dynamics of Different Ecological Zones in the Farming-Pastoral Ecotone in Northern China. Environ. Sci. Pollut. Res. 2021, 28, 27914–27932. [Google Scholar] [CrossRef]
- He, L.; Li, Z.; Wang, X.; Xie, Y.; Ye, J. Lagged Precipitation Effect on Plant Productivity Is Influenced Collectively by Climate and Edaphic Factors in Drylands. Sci. Total Environ. 2021, 755, 142506. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Xie, Y.; Wang, J.; Zhang, J.; Si, M.; Guo, Z.; Ma, C.; Bie, Q.; Li, Z.-L.; Ye, J.-S. Precipitation Regimes Primarily Drive the Carbon Uptake in the Tibetan Plateau. Ecol. Indic. 2023, 154, 110694. [Google Scholar] [CrossRef]
- Cai, S.; Li, Q. Snow Cover Dynamics: Impacts on Soil Moisture and Plant Growth in Temperate Ecosystems. Mol. Soil Biol. 2024, 3, 109–117. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Guo, H.; Liu, D.; Zhao, Y.; Zhang, T.; Liu, Q.; Piao, S. Disentangling the Mechanisms behind Winter Snow Impact on Vegetation Activity in Northern Ecosystems. Glob. Change Biol. 2018, 24, 1651–1662. [Google Scholar] [CrossRef]
- Yang, T.; Huang, F.; Li, Q. Spatial-temporal Variation of NDVI for Growing Season and Its Relationship with Winter Snowfall in Northern Xinjiang. Remote Sens. Technol. Appl. 2017, 32, 1132–1140. [Google Scholar] [CrossRef]
- Huang, F.; Feng, T.; Guo, Z.; Li, L. Impact of Winter Snowfall on Vegetation Greenness in Central Asia. Remote Sens. 2021, 13, 4205. [Google Scholar] [CrossRef]
- Liang, H.; Zhao, H.; Cheng, W.; Lu, Y.; Chen, Y.; Li, M.; Gao, M.; Fan, Q.; Xu, Z.; Li, X. Accelerating Urban Warming Effects on the Spring Phenology in Cold Cities but Decelerating in Warm Cities. Urban For. Urban Green. 2024, 102, 128585. [Google Scholar] [CrossRef]
- Wang, Z. The Variability in Sensitivity of Vegetation Greenness to Climate Change across Eurasia. Ecol. Indic. 2024, 163, 112140. [Google Scholar] [CrossRef]
- Jegede, S.L.; Lukman, A.F.; Alqasem, O.A.; Elwahab, M.E.A.; Ayinde, K.; Golam Kibria, B.M.; Adewinbi, H. Handling Linear Dependency in Linear Regression Models: Almost Unbiased Modified Ridge-Type Estimator. Sci. Afr. 2024, 25, e02324. [Google Scholar] [CrossRef]
- Mermi, S.; Akkuş, Ö.; Göktaş, A.; Gündüz, N. A New Robust Ridge Parameter Estimator Having No Outlier and Ensuring Normality for Linear Regression Model. J. Radiat. Res. Appl. Sci. 2024, 17, 100788. [Google Scholar] [CrossRef]
- Wang, Q.; Moreno-Martínez, Á.; Muñoz-Marí, J.; Campos-Taberner, M.; Camps-Valls, G. Estimation of Vegetation Traits with Kernel NDVI. ISPRS J. Photogramm. Remote Sens. 2023, 195, 408–417. [Google Scholar] [CrossRef]
- Wei, B.; Xie, Y.; Wang, X.; Jiao, J.; He, S.; Bie, Q.; Jia, X.; Xue, X.; Duan, H. Land Cover Mapping Based on Time-series MODIS-NDVI Using a Dynamic Time Warping Approach: A Casestudy of the Agricultural Pastoral Ecotone of Northern China. Land Degrad. Dev. 2020, 31, 1050–1068. [Google Scholar] [CrossRef]
- Jia, Q.; Gao, X.; Jiang, Z.; Li, H.; Guo, J.; Lu, X.; Yonghong Li, F. Sensitivity of Temperate Vegetation to Precipitation Is Higher in Steppes than in Deserts and Forests. Ecol. Indic. 2024, 166, 112317. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L.; et al. A Unified Vegetation Index for Quantifying the Terrestrial Biosphere. Sci. Adv. 2021, 7, eabc7447. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Porcar-Castell, A.; Tyystjärvi, E.; Atherton, J.; Van Der Tol, C.; Flexas, J.; Pfündel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A. Linking Chlorophyll a Fluorescence to Photosynthesis for Remote Sensing Applications: Mechanisms and Challenges. J. Exp. Bot. 2014, 65, 4065–4095. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Köhler, P.; Duveiller, G.; Parazoo, N.C.; Magney, T.S.; Hooker, G.; Yu, L.; Chang, C.Y.; Sun, Y. A Framework for Harmonizing Multiple Satellite Instruments to Generate a Long-Term Global High Spatial-Resolution Solar-Induced Chlorophyll Fluorescence (SIF). Remote Sens. Environ. 2020, 239, 111644. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product; USGS: Reston, VA, USA, 2018. [Google Scholar]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G. MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. Bull. Am. Meteorol. Soc. 2019, 3, 473–500. [Google Scholar] [CrossRef]
- Ritter, F.; Berkelhammer, M.; Garcia, C. Distinct Response of Gross Primary Productivity in Five Terrestrial Biomes to Precipitation Variability. Commun. Earth Environ. 2020, 1, 34. [Google Scholar] [CrossRef]
- Beck, H.E.; Pan, M.; Dutra, E.; Miralles, D.G. Global 3-Hourly 0.1° Bias-Corrected Meteorological Data Including Near-Real-Time Updates and Forecast Ensembles. Bull. Am. Meteorol. Soc. 2022, 103, E710–E732. [Google Scholar] [CrossRef]
- Duursma, R.A. Plantecophys—An R Package for Analysing and Modelling Leaf Gas Exchange Data. PLoS ONE 2015, 10, e0143346. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Ming, D.P.; Wang, Q.; Yang, J.Y. Spatial Scale of Remote Sensing Image and Selection of Optimal Spatial Resolution. J. Remote Sens. 2008, 4, 529–537. [Google Scholar] [CrossRef]
- Franceschi, S.; Fattorini, L.; Gregoire, T.G. Exploiting Nearest-Neighbour Maps for Estimating the Variance of Sample Mean in Equal-Probability Systematic Sampling of Spatial Populations. Spat. Stat. 2024, 64, 100865. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1948; p. 160. [Google Scholar]
- Tan, X.; Zhang, L.; He, C.; Zhu, Y.; Han, Z.; Li, X. Applicability of Cosmic-Ray Neutron Sensor for Measuring Soil Moisture at the Agricultural-Pastoral Ecotone in Northwest China. Sci. China Earth Sci. 2020, 63, 1730–1744. [Google Scholar] [CrossRef]
- Guo, X.; Arshad, M.U.; Zhao, Y.; Gong, Y.; Li, H. Effects of Climate Change and Grazing Intensity on Grassland Productivity—A Case Study of Inner Mongolia, China. Heliyon 2023, 9, e17814. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P. Strengthening MaxEnt modelling through screening of redundant explanatory bioclimatic variables with variance inflation factor analysis. Researcher 2016, 8, 29–34. [Google Scholar] [CrossRef]
- Chen, Y. New Approaches for Calculating Moran’s Index of Spatial Autocorrelation. PLoS ONE 2013, 8, e68336. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhao, H.; Zhang, S.; He, Q.; Huete, A.; Yang, L.; Zhang, X.; Zhang, X.; Zhang, Q.; Cai, S. Grassland Irrigation and Grazing Prohibition Have Significantly Affected Vegetation and Microbial Diversity by Changing Soil Temperature and Moisture, Evidences from a 6 Years Experiment of Typical Temperate Grassland. Agric. Ecosyst. Environ. 2025, 380, 109414. [Google Scholar] [CrossRef]
- Guo, Y.; Boughton, E.H.; Qiu, J. Interactive Effects of Land-Use Intensity, Grazing and Fire on Decomposition of Subtropical Seasonal Wetlands. Ecol. Indic. 2021, 132, 108301. [Google Scholar] [CrossRef]
- Kong, X. Hotspots of Land-Use Change in Global Biodiversity Hotspots. Resour. Conserv. Recycl. 2021, 174, 105770. [Google Scholar] [CrossRef]
- Li, X. Spatio-Temporal Characteristics and Driving Factors of Cultivated Land Change in Various Agricultural Regions of China: A Detailed Analysis Based on County-Level Data. Ecol. Indic. 2024, 166, 112485. [Google Scholar] [CrossRef]
- He, Y.; Kou, W.; Chen, Y.; Lai, H.; Zhao, K. Returning Cropland to Grassland as a Potential Method for Increasing Carbon Storage in Dry-Hot Valley Areas. Sustainability 2024, 16, 4150. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Sun, L.; Cao, G.; Fischer, G.; Tramberend, S. An Estimation of the Extent of Cropland Abandonment in Mountainous Regions of China. Land Degrad. Dev. 2018, 29, 1327–1342. [Google Scholar] [CrossRef]
- Zhu, Y. Simulating the Dynamics of Cultivated Land Use in the Farming Regions of China: A Social-Economic-Ecological System Perspective. J. Clean. Prod. 2024, 478, 143907. [Google Scholar] [CrossRef]
- Luxi, H.; Yong, G.; Defu, W.; Xiaojing, C.; Huimin, Z.; Jiamao, Y.; Miaomiao, G. Natural Grassland Restoration Exhibits Enhanced Carbon Sequestration and Soil Improvement Potential in Northern Sandy Grasslands of China: An Empirical Study. Catena 2024, 246, 108396. [Google Scholar] [CrossRef]
- Yang, X.; You, L.; Hu, H.; Chen, Y. Conversion of Grassland to Cropland Altered Soil Nitrogen-Related Microbial Communities at Large Scales. Sci. Total Environ. 2022, 816, 151645. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Liu, J.; Guo, Z.; Wang, C.; Pan, K.; Zhang, F.; Pan, X. Soil Microbial Community Composition but Not Diversity Is Affected by Land-Use Types in the Agro-Pastoral Ecotone Undergoing Frequent Conversions between Cropland and Grassland. Geoderma 2021, 401, 115165. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, M.; Wei, X.; Liu, S.; Li, Q.; Liu, W.; Cai, T.; Yu, E. A Comparison of Annual Streamflow Sensitivities to Vegetation Change and Climate Variability in Fourteen Large Watersheds along Climate Zones in China. Catena 2024, 234, 107571. [Google Scholar] [CrossRef]
- Deng, G.; Jiang, H.; Zhu, S.; Wen, Y.; He, C.; Wang, X.; Sheng, L.; Guo, Y.; Cao, Y. Projecting the Response of Ecological Risk to Land Use/Land Cover Change in Ecologically Fragile Regions. Sci. Total Environ. 2024, 914, 169908. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.L.; Billings, S.A.; Hirmas, D.; Li, L.; Zhang, X.; Ziegler, S.; Murenbeeld, K.; Ajami, H.; Guthrie, A.; Singha, K.; et al. Embracing the Dynamic Nature of Soil Structure: A Paradigm Illuminating the Role of Life in Critical Zones of the Anthropocene. Earth-Sci. Rev. 2022, 225, 103873. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, J.; Guan, J.; Li, C.; Ma, L.; Liu, Y.; Han, W. Strong Positive Direct Impact of Soil Moisture on the Growth of Central Asian Grasslands. Sci. Total Environ. 2024, 954, 176663. [Google Scholar] [CrossRef]
- Arca, V.; Power, S.A.; Delgado-Baquerizo, M.; Pendall, E.; Ochoa-Hueso, R. Seasonal Effects of Altered Precipitation Regimes on Ecosystem-Level CO2 Fluxes and Their Drivers in a Grassland from Eastern Australia. Plant Soil 2021, 460, 435–451. [Google Scholar] [CrossRef]
- Manzoni, S.; Vico, G.; Katul, G.; Fay, P.A.; Polley, W.; Palmroth, S.; Porporato, A. Optimizing Stomatal Conductance for Maximum Carbon Gain under Water Stress: A Meta-Analysis across Plant Functional Types and Climates: Optimal Leaf Gas Exchange under Water Stress. Funct. Ecol. 2011, 25, 456–467. [Google Scholar] [CrossRef]
- Pastore, M.A.; Lee, T.D.; Hobbie, S.E.; Reich, P.B. Interactive Effects of Elevated CO2, Warming, Reduced Rainfall, and Nitrogen on Leaf Gas Exchange in Five Perennial Grassland Species. Plant Cell Environ. 2020, 43, 1862–1878. [Google Scholar] [CrossRef]
- Flach, M.; Brenning, A.; Gans, F.; Reichstein, M.; Sippel, S.; Mahecha, M.D. Vegetation Modulates the Impact of Climate Extremes on Gross Primary Production. Biogeosciences 2021, 18, 39–53. [Google Scholar] [CrossRef]
- Yue, Y.; Geng, L.; Li, M. The Impact of Climate Change on Aeolian Desertification: A Case of the Agro-Pastoral Ecotone in Northern China. Sci. Total Environ. 2023, 859, 160126. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Sun, R.; Deng, Y.; Zhu, H.; Hou, M. The Variability of Net Primary Productivityand Its Response to Climatic Changes Basedon the Methods of Spatiotemporal Decompositionin the Yellow River Basin, China. Pol. J. Environ. Stud. 2022, 31, 4229–4312. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, B.; Zhang, Z.; Tian, L.; Kunstmann, H.; He, C. Identifying Spatiotemporal Propagation of Droughts in the Agro-Pastoral Ecotone of Northern China with Long-Term WRF Simulations. Agric. For. Meteorol. 2023, 336, 109474. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential Impacts of a Warming Climate on Water Availability in Snow-Dominated Regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Changchun, X.; Yaning, C.; Weihong, L.; Yapeng, C.; Hongtao, G. Potential Impact of Climate Change on Snow Cover Area in the Tarim River Basin. Environ. Geol. 2008, 53, 1465–1474. [Google Scholar] [CrossRef]
- Thomey, M.L.; Collins, S.L.; Vargas, R.; Johnson, J.E.; Brown, R.F.; Natvig, D.O.; Friggens, M.T. Effect of Precipitation Variability on Net Primary Production and Soil Respiration in a Chihuahuan Desert Grassland: Precipitation Variability in Desert Grassland. Glob. Change Biol. 2011, 17, 1505–1515. [Google Scholar] [CrossRef]
- Yuan, X.; Li, L.; Chen, X.; Shi, H. Effects of Precipitation Intensity and Temperature on NDVI-Based Grass Change over Northern China during the Period from 1982 to 2011. Remote Sens. 2015, 7, 10164–10183. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased Atmospheric Vapor Pressure Deficit Reduces Global Vegetation Growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef]
- Satti, Z.; Naveed, M.; Shafeeque, M.; Li, L. Investigating the Impact of Climate Change on Trend Shifts of Vegetation Growth in Gilgit Baltistan. Glob. Planet. Change 2024, 232, 104341. [Google Scholar] [CrossRef]
- Rosińska, W. Climate Change’s Ripple Effect on Water Supply Systems and the Water-Energy Nexus—A Review. Water Resour. Ind. 2024, 32, 100266. [Google Scholar] [CrossRef]
- Nasr Esfahani, M.; Sonnewald, U. Unlocking Dynamic Root Phenotypes for Simultaneous Enhancement of Water and Phosphorus Uptake. Plant Physiol. Biochem. 2024, 207, 108386. [Google Scholar] [CrossRef] [PubMed]
- Kühnhammer, K.; Van Haren, J.; Kübert, A.; Bailey, K.; Dubbert, M.; Hu, J.; Ladd, S.N.; Meredith, L.K.; Werner, C.; Beyer, M. Deep Roots Mitigate Drought Impacts on Tropical Trees despite Limited Quantitative Contribution to Transpiration. Sci. Total Environ. 2023, 893, 164763. [Google Scholar] [CrossRef] [PubMed]
- Van Der Molen, M.K.; Dolman, A.J.; Ciais, P.; Eglin, T.; Gobron, N.; Law, B.E.; Meir, P.; Peters, W.; Phillips, O.L.; Reichstein, M.; et al. Drought and Ecosystem Carbon Cycling. Agric. For. Meteorol. 2011, 151, 765–773. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Shu, B.; Liu, J.-F.; Xia, R.-X. Relationships Between Arbuscular Mycorrhizal Symbiosis and Soil Fertility Factors in Citrus Orchards Along an Altitudinal Gradient. Pedosphere 2015, 25, 160–168. [Google Scholar] [CrossRef]
- Lei, T.; Wu, J.; Wang, J.; Shao, C.; Wang, W.; Chen, D.; Li, X. The Net Influence of Drought on Grassland Productivity over the Past 50 Years. Sustainability 2022, 14, 12374. [Google Scholar] [CrossRef]
- Wu, S.; Guo, Z.; Askar, A.; Li, X.; Hu, Y.; Li, H.; Saria, A.E. Dynamic Land Cover and Ecosystem Service Changes in Global Coastal Deltas under Future Climate Scenarios. Ocean. Coast. Manag. 2024, 258, 107384. [Google Scholar] [CrossRef]
- Hussien, K.; Kebede, A.; Mekuriaw, A.; Beza, S.A.; Erena, S.H. Spatiotemporal Trends of NDVI and Its Response to Climate Variability in the Abbay River Basin, Ethiopia. Heliyon 2023, 9, e14113. [Google Scholar] [CrossRef]
- New, M.; Lister, D.; Hulme, M.; Makin, I. A High-Resolution Data Set of Surface Climate over Global Land Areas. Clim. Res. 2002, 21, 1–25. [Google Scholar] [CrossRef]
- Breinl, K.; Di Baldassarre, G. Space-Time Disaggregation of Precipitation and Temperature across Different Climates and Spatial Scales. J. Hydrol. Reg. Stud. 2019, 21, 126–146. [Google Scholar] [CrossRef]
- Abdollahipour, A.; Ahmadi, H.; Aminnejad, B. A Review of Downscaling Methods of Satellite-Based Precipitation Estimates. Earth Sci. Inform. 2022, 15, 1–20. [Google Scholar] [CrossRef]
- Masteali, S.H.; Bayat, M.; Bettinger, P.; Ghorbanpour, M. Uncertainty Analysis of Linear and Non-Linear Regression Models in the Modeling of Water Quality in the Caspian Sea Basin: Application of Monte-Carlo Method. Ecol. Indic. 2025, 170, 112979. [Google Scholar] [CrossRef]
- Wenbo, X.; Hengzhou, X.; Xiaoyan, L.; Hua, Q.; Ziyao, W. Ecosystem Services Response to Future Land Use/Cover Change (LUCC) under Multiple Scenarios: A Case Study of the Beijing-Tianjin-Hebei (BTH) Region, China. Technol. Forecast. Soc. Change 2024, 205, 123525. [Google Scholar] [CrossRef]
Data Type | Data Name | Unit | Spatial Resolution | Temporal Resolution | Spatial Range | Source |
---|---|---|---|---|---|---|
Climate data | Precipitation | mm | 0.1° | daily | Global | MSWEP |
Temperature | °C | 0.1° | daily | Global | MSWX | |
Solar radiation | W m−2 | 0.1° | daily | Global | MSWX | |
Air pressure | Pa | 0.1° | monthly | Global | MSWX | |
Relative humidity | % | 0.1° | monthly | Global | MSWX | |
Soil moisture | % | 0.1° | monthly | Global | ERA5–Land | |
Plant productivity | kNDVI | – | 0.05° | monthly | Global | MOD13C2 |
Land cover | Land cover | – | 0.05° | yearly | Global | MCD12C1 |
P | fdry | Pint | VPD | T | Rad | SWV | Tpre | Ppre | UGi | |
---|---|---|---|---|---|---|---|---|---|---|
VIF | 38.3 | 28.1 | 18.5 | 13.2 | 9.1 | 8.7 | 5.3 | 3.9 | 2.8 | 2.3 |
Positive (Not Significant) | Positive (Significant) | Negative (Not Significant) | Negative (Significant) | |
---|---|---|---|---|
Fdry (dry-day fraction) | 28.4% | 2.36% | 55.52% | 13.72% |
Tpre (pre-season temperature) | 70.89% | 7.89% | 20.71% | 0.51% |
Ppre (pre-season precipitation) | 67.95% | 22.93% | 8.99% | 0.13% |
T (temperature) | 55.61% | 2.94% | 40.15% | 1.30% |
Rad (radiation) | 26.16% | 0.19% | 63.92% | 9.73% |
SWV (soil moisture) | 45.04% | 23.43% | 29.07% | 2.46% |
Pint (precipitation intensity) | 58.23% | 22.56% | 18.59% | 0.62% |
P (precipitation) | 55.41% | 34.12% | 10.38% | 0.09% |
Ugi (Unranked-Gini index) | 43.25% | 5.75% | 47.60% | 3.40% |
VPD (vapor pressure deficit) | 7.34% | 0.47% | 53.39% | 38.80% |
fdry | P | Ppre | Pint | Rad | SWV | T | UGi | VPD | Tpre | |
---|---|---|---|---|---|---|---|---|---|---|
Moran’s I | 0.84 | 0.85 | 0.86 | 0.88 | 0.88 | 0.89 | 0.84 | 0.89 | 0.86 | 0.86 |
Z | 162.53 | 163.21 | 164.79 | 168.84 | 168.99 | 171.30 | 159.99 | 170.22 | 165.54 | 164.65 |
P | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, Q.; Zhang, X.; Guo, Z.; Guo, X.; Ma, C.; Wei, B.; He, L. Pre-Season Precipitation and Temperature Have a Larger Influence on Vegetation Productivity than That of the Growing Season in the Agro-Pastoral Ecotone in Northern China. Agriculture 2025, 15, 219. https://doi.org/10.3390/agriculture15020219
Zhang Y, Wang Q, Zhang X, Guo Z, Guo X, Ma C, Wei B, He L. Pre-Season Precipitation and Temperature Have a Larger Influence on Vegetation Productivity than That of the Growing Season in the Agro-Pastoral Ecotone in Northern China. Agriculture. 2025; 15(2):219. https://doi.org/10.3390/agriculture15020219
Chicago/Turabian StyleZhang, Yuanyuan, Qingtao Wang, Xueyuan Zhang, Zecheng Guo, Xiaonan Guo, Changhui Ma, Baocheng Wei, and Lei He. 2025. "Pre-Season Precipitation and Temperature Have a Larger Influence on Vegetation Productivity than That of the Growing Season in the Agro-Pastoral Ecotone in Northern China" Agriculture 15, no. 2: 219. https://doi.org/10.3390/agriculture15020219
APA StyleZhang, Y., Wang, Q., Zhang, X., Guo, Z., Guo, X., Ma, C., Wei, B., & He, L. (2025). Pre-Season Precipitation and Temperature Have a Larger Influence on Vegetation Productivity than That of the Growing Season in the Agro-Pastoral Ecotone in Northern China. Agriculture, 15(2), 219. https://doi.org/10.3390/agriculture15020219