A Compliant Active Roller Gripper with High Positional Offset Tolerance for Delicate Spherical Fruit Handling
Abstract
:1. Introduction
2. Gripper Implementation
2.1. Mechanical Design
2.2. Force Sensing Capability
2.3. Gripper–Fruit Interaction Model
3. Gripper Evaluation
3.1. Experiment #1
3.1.1. Experimental Setup and Methods
3.1.2. Results and Discussion
3.2. Experiment #2
3.2.1. Experimental Setup and Methods
3.2.2. Results and Discussion
3.3. Experiment #3
3.3.1. Experimental Setup and Methods
3.3.2. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oguntibeju, O.; Truter, E.; Esterhuyse, A. The role of fruit and vegetable consumption in human health and disease prevention. Diabetes Mellit.-Insights Perspect. 2013, 3, 172–180. [Google Scholar]
- Zhou, H.; Wang, X.; Au, W.; Kang, H.; Chen, C. Intelligent robots for fruit harvesting: Recent developments and future challenges. Precis. Agric. 2022, 23, 1856–1907. [Google Scholar] [CrossRef]
- Ren, X.; Huang, B.; Yin, H. A review of the large-scale application of autonomous mobility of agricultural platform. Comput. Electron. Agric. 2023, 206, 107628. [Google Scholar] [CrossRef]
- Oliveira, L.F.; Moreira, A.P.; Silva, M.F. Advances in agriculture robotics: A state-of-the-art review and challenges ahead. Robotics 2021, 10, 52. [Google Scholar] [CrossRef]
- Birrell, S.; Hughes, J.; Cai, J.Y.; Iida, F. A field-tested robotic harvesting system for iceberg lettuce. J. Field Robot. 2020, 37, 225–245. [Google Scholar] [CrossRef]
- Droukas, L.; Doulgeri, Z.; Tsakiridis, N.L.; Triantafyllou, D.; Kleitsiotis, I.; Mariolis, I.; Giakoumis, D.; Tzovaras, D.; Kateris, D.; Bochtis, D. A Survey of Robotic Harvesting Systems and Enabling Technologies. J. Intell. Robot. Syst. 2023, 107, 21. [Google Scholar] [CrossRef] [PubMed]
- Au, W.; Zhou, H.; Liu, T.; Kok, E.; Wang, X.; Wang, M.; Chen, C. The Monash Apple Retrieving System: A review on system intelligence and apple harvesting performance. Comput. Electron. Agric. 2023, 213, 108164. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, X.; Wang, C. A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots. Int. J. Adv. Robot. Syst. 2022, 19, 17298806221104906. [Google Scholar] [CrossRef]
- Kakogawa, A.; Kaizu, Y.; Ma, S. Sensor-Less and Control-Less Underactuated Grippers With Pull-In Mechanisms for Grasping Various Objects. Front. Robot. AI 2021, 8, 631242. [Google Scholar] [CrossRef]
- Yuan, S.; Shao, L.; Yako, C.L.; Gruebele, A.; Salisbury, J.K. Design and control of roller grasper v2 for in-hand manipulation. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 9151–9158. [Google Scholar]
- Zhang, B.; Xie, Y.; Zhou, J.; Wang, K.; Zhang, Z. State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review. Comput. Electron. Agric. 2020, 177, 105694. [Google Scholar] [CrossRef]
- Liu, C.H.; Chiu, C.H.; Chen, T.L.; Pai, T.Y.; Chen, Y.; Hsu, M.C. A soft robotic gripper module with 3D printed compliant fingers for grasping fruits. In Proceedings of the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, New Zealand, 9–12 July 2018; pp. 736–741. [Google Scholar]
- Russo, M.; Ceccarelli, M.; Corves, B.; Hüsing, M.; Lorenz, M.; Cafolla, D.; Carbone, G. Design and test of a gripper prototype for horticulture products. Robot. Comput.-Integr. Manuf. 2017, 44, 266–275. [Google Scholar] [CrossRef]
- Silwal, A.; Davidson, J.R.; Karkee, M.; Mo, C.; Zhang, Q.; Lewis, K. Design, integration, and field evaluation of a robotic apple harvester. J. Field Robot. 2017, 34, 1140–1159. [Google Scholar] [CrossRef]
- Yaguchi, H.; Nagahama, K.; Hasegawa, T.; Inaba, M. Development of an autonomous tomato harvesting robot with rotational plucking gripper. In Proceedings of the 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 652–657. [Google Scholar]
- Zhou, S.; Li, Y.; Wang, Q.; Lyu, Z. Integrated Actuation and Sensing: Toward Intelligent Soft Robots. Cyborg Bionic Syst. 2024, 5, 0105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Fan, W.; Long, Y.; Dai, J.; Luo, J.; Tang, S.; Lu, Q.; Wang, X.; Wang, H.; Chen, G. Hybrid-Driven Origami Gripper with Variable Stiffness and Finger Length. Cyborg Bionic Syst. 2024, 5, 0103. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Epps, A.D.; Nowak, J.B.; Salisbury, J.K. Design of a roller-based dexterous hand for object grasping and within-hand manipulation. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 8870–8876. [Google Scholar]
- Ma, R.R.; Dollar, A.M. In-hand manipulation primitives for a minimal, underactuated gripper with active surfaces. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; American Society of Mechanical Engineers: New York, NY, USA, 2016; Volume 50152, p. V05AT07A072. [Google Scholar]
- Vita Ostuni, B.M.; Grazioso, S.; Caporaso, T.; Lanzotti, A. Design and Testing of a Single-Tentacle Soft Gripper with an Embedded Suction Cup. Procedia CIRP 2024, 125, 337–342. [Google Scholar] [CrossRef]
- Hohimer, C.J.; Wang, H.; Bhusal, S.; Miller, J.; Mo, C.; Karkee, M. Design and field evaluation of a robotic apple harvesting system with a 3D-printed soft-robotic end-effector. Trans. ASABE 2019, 62, 405–414. [Google Scholar] [CrossRef]
- Xie, M.; Zhu, M.; Yang, Z.; Okada, S.; Kawamura, S. Flexible self-powered multifunctional sensor for stiffness-tunable soft robotic gripper by multimaterial 3D printing. Nano Energy 2021, 79, 105438. [Google Scholar] [CrossRef]
- Wang, Z.; Or, K.; Hirai, S. A dual-mode soft gripper for food packaging. Robot. Auton. Syst. 2020, 125, 103427. [Google Scholar] [CrossRef]
- Park, W.; Seo, S.; Bae, J. A hybrid gripper with soft material and rigid structures. IEEE Robot. Autom. Lett. 2018, 4, 65–72. [Google Scholar] [CrossRef]
- Chen, K.; Li, T.; Yan, T.; Xie, F.; Feng, Q.; Zhu, Q.; Zhao, C. A soft gripper design for apple harvesting with force feedback and fruit slip detection. Agriculture 2022, 12, 1802. [Google Scholar] [CrossRef]
- Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft robotic grippers. Adv. Mater. 2018, 30, 1707035. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Park, Y.; Son, H.I. A suction cup-based soft robotic gripper for cucumber harvesting: Design and validation. Biosyst. Eng. 2024, 238, 143–156. [Google Scholar] [CrossRef]
- Koivikko, A.; Drotlef, D.M.; Dayan, C.B.; Sariola, V.; Sitti, M. 3D-Printed Pneumatically Controlled Soft Suction Cups for Gripping Fragile, Small, and Rough Objects. Adv. Intell. Syst. 2021, 3, 2100034. [Google Scholar] [CrossRef]
- Krahn, J.M.; Fabbro, F.; Menon, C. A soft-touch gripper for grasping delicate objects. IEEE/ASME Trans. Mechatronics 2017, 22, 1276–1286. [Google Scholar] [CrossRef]
- Li, S.; Stampfli, J.J.; Xu, H.J.; Malkin, E.; Diaz, E.V.; Rus, D.; Wood, R.J. A vacuum-driven origami “magic-ball” soft gripper. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 7401–7408. [Google Scholar]
- Song, S.; Drotlef, D.M.; Son, D.; Koivikko, A.; Sitti, M. Adaptive Self-Sealing Suction-Based Soft Robotic Gripper. Adv. Sci. 2021, 8, 2100641. [Google Scholar] [CrossRef] [PubMed]
- D’Avella, S.; Sundaram, A.M.; Friedl, W.; Tripicchio, P.; Roa, M.A. Multimodal Grasp Planner for Hybrid Grippers in Cluttered Scenes. IEEE Robot. Autom. Lett. 2023, 8, 2030–2037. [Google Scholar] [CrossRef]
- Shea, H.; Shintake, J.; Floreano, D. Soft Compliant Gripper for Safe Manipulation of Extremely Fragile Objects. Technical Report; Springer Nature: Lausanne, Switzerland, 2016. [Google Scholar]
- Pettersson, A.; Davis, S.; Gray, J.O.; Dodd, T.J.; Ohlsson, T. Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. J. Food Eng. 2010, 98, 332–338. [Google Scholar] [CrossRef]
- Tsugami, Y.; Barbié, T.; Tadakuma, K.; Nishida, T. Development of universal parallel gripper using reformed magnetorheological fluid. In Proceedings of the 2017 11th Asian control conference (ASCC), Gold Coast, Australia, 17–20 December 2017; pp. 778–783. [Google Scholar]
- Cacucciolo, V.; Shea, H.; Carbone, G. Peeling in electroadhesion soft grippers. Extrem. Mech. Lett. 2022, 50, 101529. [Google Scholar] [CrossRef]
- Sîrbu, I.D.; Bolignari, M.; D’Avella, S.; Damiani, F.; Agostini, L.; Tripicchio, P.; Vertechy, R.; Pancheri, L.; Fontana, M. Adhesion State Estimation for Electrostatic Gripper Based on Online Capacitance Measure. Actuators 2022, 11, 283. [Google Scholar] [CrossRef]
- Hu, F.; Liu, Y. A magneto-elastica reinforced elastomer makes soft robotic grippers. Sens. Actuators A Phys. 2024, 379, 115977. [Google Scholar] [CrossRef]
Type | Typical Gripper | Target Object | Features | |
---|---|---|---|---|
Rigid | Parallel two-finger gripper [11] | Apple | Adv. Fast response, force controllability Disad. Limited adaptability | |
3D-printed two-finger gripper [12] | Orange | |||
Three-finger robotic gripper [13] | Tomato | |||
Soft | Three-finger soft gripper [21] | Apple | Adv. Pliable bending motion, inherent compliance Disad. Low control frequency and robustness | |
Three-finger hybrid gripper [24] | Apple | |||
Three-finger soft gripper [25] | Apple | |||
Other | Vacuum | Vacuum suction gripper [28] | Pear | Adv. Limited fruit adaptability, low control complexity Disad. Sensitivity to dust, air pump requirement |
Vacuum-driven origami gripper [30] | Banana | |||
Smart material | Soft compliant gripper [33] | Strawberry | Adv. Handling capability for fragile objects Disad. High requirements for voltage, current, etc. | |
Magnetorheological gripper [35] | Orange |
Size (mm) | Number | Success Rate | Damage Rate |
---|---|---|---|
80–90 | 12 | 0.833 | 0.100 |
70–80 | 15 | 0.866 | 0 |
60–70 | 17 | 0.882 | 0.067 |
50–60 | 12 | 0.916 | 0.091 |
Average | - | 0.874 | 0.064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Qin, H.; Qiu, Z.; Chen, X.; Xue, J.; Gu, X.; Lu, M. A Compliant Active Roller Gripper with High Positional Offset Tolerance for Delicate Spherical Fruit Handling. Agriculture 2025, 15, 220. https://doi.org/10.3390/agriculture15020220
Zhu H, Qin H, Qiu Z, Chen X, Xue J, Gu X, Lu M. A Compliant Active Roller Gripper with High Positional Offset Tolerance for Delicate Spherical Fruit Handling. Agriculture. 2025; 15(2):220. https://doi.org/10.3390/agriculture15020220
Chicago/Turabian StyleZhu, Haoran, Huanhuan Qin, Zicheng Qiu, Xinwen Chen, Jinlin Xue, Xingjian Gu, and Mingzhou Lu. 2025. "A Compliant Active Roller Gripper with High Positional Offset Tolerance for Delicate Spherical Fruit Handling" Agriculture 15, no. 2: 220. https://doi.org/10.3390/agriculture15020220
APA StyleZhu, H., Qin, H., Qiu, Z., Chen, X., Xue, J., Gu, X., & Lu, M. (2025). A Compliant Active Roller Gripper with High Positional Offset Tolerance for Delicate Spherical Fruit Handling. Agriculture, 15(2), 220. https://doi.org/10.3390/agriculture15020220