Systemic Acquired Resistance: Plant Priming for Ecological Management of Mealybug-Induced Wilt in MD2 and Queen Victoria Pineapples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Mealybugs
2.3. Biological Effect: Comparing ISR and SAR Efficiency and Application Methods
2.4. Biochemical Effect: Phenylalanine Ammonia-Lyase (PAL) Activity
2.5. Molecular Effect: Candidate Genes as Molecular Markers to Characterize SAR Priming
2.6. Protocols for Enzymatic and Gene Expression Measurements
3. Results
3.1. Biological Effect: Comparison of Stimulation with Salicylic Acid or Methyl Jasmonate
3.2. Biochemical Effects: Enzymatic Markers of SAR Defence
3.3. Molecular Effects
3.3.1. Timing Between Mealybug Inoculation and AcPAL Gene Expression in Stimulated vs. Unstimulated MD2 Plants
3.3.2. Molecular Markers of SAR Defence in MD2 and Queen Victoria
4. Discussion
4.1. Biological Effect: Reducing Mealybug Multiplication
4.2. Biochemical and Molecular Effects of Salicylic Acid (SA) Treatment
4.3. Integrating SAR Priming in an Ecologically Integrated Pest Management Strategy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, J.S.; Sether, D.M.; Metzer, M.J.; Pérez, E.; Gonsalves, A.; Karasev, A.V.; Nagai, C. Pineapple mealybug wilt associated virus and mealybug wilt of pineapple. Acta Hort. (ISHS) 2005, 666, 209–212. [Google Scholar] [CrossRef]
- Hernandez-Rodriguez, L.; Ramos-Gonzalez, P.L.; Garcia-Garcia, G.; Zamora, V.; Peralta-Martin, A.M.; Pena, I.; Perez, J.M.; Ferriol, X. Geographic distribution of mealybug wilt disease of pineapple and genetic diversity of viruses infecting pineapple in Cuba. Crop Prot. 2014, 65, 43–50. [Google Scholar] [CrossRef]
- Massé, D.; Cassam, N.; Darnaudéry, M.; Dorey, E.; Hostachy, B.; Tullus, G.; Soler, A. Reunion Island: General survey of pineapple parasites with a focus on wilt disease and associated viruses. In X Pineapple Symposium, Uvero Alto, Dominican Republic; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2024; pp. 67–74. [Google Scholar]
- Nurbel, T.; Soler, A.; Thuries, L.; Dorey, E.; Chabanne, A.; Tisserand, G.; Hoarau, I.; Darnaudery, M. Concevoir des systèmes de production d’ananas en agriculture biologique. Innov. Agron. 2021, 82, 1–24. [Google Scholar]
- Soler, A.; Marie-Alphonsine, P.A.; Corbion, C.; Fernandes, P.; Portal Gonzalez, N.; Gonzalez, R.; Repellin, A.; Declerck, S.; Quénéhervé, P. A strategy towards bioprotection of tropical crops: Experiences and perspectives with ISR on pineapple and banana in Martinique. In Congrès: 6th Meeting of IOBC-WPRS Working Group “Induced Resistance in Plants Against Insects and Diseases”: Induced Resistance in Plants Against Insects and diseases: Leaping from Success in the Lab to Success in the Field; IOBC, Ed.; IOBC: Avignon, France, 2013. [Google Scholar]
- N’Guessan, L.; Chillet, M.; Chiroleu, F.; Soler, A. Ecologically Based Management of Pineapple Mealybug Wilt: Controlling Dysmicoccus brevipes Mealybug Populations with Salicylic Acid Analogs and Plant Extracts. Horticulturae 2024, 10, 227. [Google Scholar] [CrossRef]
- Marie-Alphonsine, P.-A.; Soler, A.; Gaude, J.-M.; Bérimée, M.; Qénéhervé, P. Effects of cover crops on Rotylenchulus reniformis and Hanseniella sp. Populations. In Proceedings of the IX International Pineapple Symposium, Havana, Cuba, 15–19 October 2017; Bartholomew, D.P., Reinhardt, D.H., Duarte Souza, F.V., Eds.; ISHS: Leuven, Belgium, 2019; pp. 185–193. [Google Scholar]
- Pai, L.; Lu, Y.-J.; Chen, H.; Day, B. The Lifecycle of the Plant Immune System. Crit. Rev. Plant Sci. 2020, 39, 72–100. [Google Scholar]
- Boller, T.; Felix, G. A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annu. Rev. Plant Biol. 2009, 60, 379–406. [Google Scholar] [CrossRef]
- Freeman, B.C.; Beattie, G.A. An overview of plant defenses against pathogens and herbivores. Plant Health Instr. 2008. [Google Scholar] [CrossRef]
- Mithöfer, A.; Boland, W. Recognition of herbivory-associated molecular patterns. Plant Physiol. 2008, 146, 825–831. [Google Scholar] [CrossRef]
- Zipfel, C. Plant pattern-recognition receptors. Trends Immunol. 2014, 35, 345–351. [Google Scholar] [CrossRef]
- Klessig, D.F.; Choi, H.W.; Dempsey, D.M.A. Systemic acquired resistance and salicylic acid: Past, present, and future. Mol. Plant-Microbe Interact. 2018, 31, 871–888. [Google Scholar] [CrossRef]
- Holmes, E.; Chen, Y.C.; Sattely, E.; Mudgett, M.B. Conservation of N-hydroxy-pipecolic acid-mediated systemic acquired resistance in crop plants. bioRxiv 2019. [Google Scholar] [CrossRef]
- Villena, J.; Kitazawa, H.; Van Wees, S.C.M.; Pieterse, C.M.J.; Takahashi, H. Receptors and Signaling Pathways for Recognition of Bacteria in Livestock and Crops: Prospects for Beneficial Microbes in Healthy Growth Strategies. Front. Immunol. 2018, 9, 2223. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Medina, A.; Flors, V.; Heil, M.; Mauch-Mani, B.; Pieterse, C.M.J.; Pozo, M.J.; Ton, J.; van Dam, N.M.; Conrath, U. Recognizing Plant Defense Priming. Trends Plant Sci. 2016, 21, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Conrath, U. Molecular aspects of defense priming. Trends Plant Sci. 2011, 16, 524–531. [Google Scholar] [CrossRef]
- Conrath, U.; Beckers, G.J.; Langenbach, C.J.; Jaskiewicz, M.R. Priming for enhanced defense. Annu. Rev. Phytopathol. 2015, 53, 97–119. [Google Scholar] [CrossRef]
- Mehari, Z.H.; Elad, Y.; Rav-David, D.; Graber, E.R.; Harel, Y.M. Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant Soil. 2015, 395, 31–44. [Google Scholar] [CrossRef]
- Ganguly, P.; Ganguly, N.; Chakraborty, B.; Adhya, T.K. Pathogenesis related proteins: Milestones in five decades of research. Indian. Phytopathol. 2024, 77, 899–923. [Google Scholar] [CrossRef]
- Breen, S.; Williams, S.J.; Outram, M.; Kobe, B.; Solomon, P.S. Emerging Insights into the Functions of Pathogenesis-Related Protein 1. Trends Plant Sci. 2017, 22, 871–879. [Google Scholar] [CrossRef]
- Durrant, W.; Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 2004, 42, 185–209. [Google Scholar] [CrossRef]
- Mou, Z.; Fan, W.; Dong, X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 2003, 113, 935–944. [Google Scholar] [CrossRef]
- Spoel, S.H.; Koornneef, A.; Claessens, S.M.C.; Korzelius, J.P.; Van Pelt, J.A.; Mueller, M.J.; Buchala, A.J.; Métraux, J.-P.; Brown, R.; Kazan, K.; et al. NPR1 Modulates Cross-Talk between Salicylate- and Jasmonate-Dependent Defense Pathways through a Novel Function in the Cytosol. Plant Cell Online 2003, 15, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Withers, J.; Dong, X. Posttranslational modifications of NPR1: A single protein playing multiple roles in plant immunity and physiology. PLoS Path. 2016, 12, e1005707. [Google Scholar] [CrossRef] [PubMed]
- Younus Wani, M.; Mehraj, S.; Rathe, R.A.; Rani, S.; Hajam, O.A.; Ganie, N.A.; Mir, M.R.; Baqual, M.F.; Kamili, A.S. SAR:A novel strategy for plant protection with reference to mulberry. Int. J. Chem. Stud. 2018, 6, 1184–1192. [Google Scholar]
- Monci, F.; García-Andrés, S.; Sánchez-Campos, S.; Fernández-Muñoz, R.; Díaz-Pendón, J.A.; Moriones, E. Use of Systemic Acquired Resistance and Whitefly Optical Barriers to Reduce Tomato Yellow Leaf Curl Disease Damage to Tomato Crops. Plant Dis. 2019, 103, 1181–1188. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Dou, K.; Lu, Z.; Wang, X.; Li, Y.; Chen, J. Enhanced biocontrol activity of cellulase from Trichoderma harzianum against Fusarium graminearum through activation of defense-related genes in maize. Physiol. Mol. Plant Pathol. 2018, 103, 130–136. [Google Scholar] [CrossRef]
- Hodge, S.; Thompson, G.A.; Powell, G. Application of DL-[beta]-aminobutyric acid (BABA) as a root drench to legumes inhibits the growth and reproduction of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae). Bull. Entomol. Res. 2005, 95, 449. [Google Scholar] [CrossRef]
- Soler, A.; Marie-Alphonsine, P.A.; Quénéhervé, P.; Prin, Y.; Sanguin, H.; Tisseyre, P.; Daumur, R.; Pochat, C.; Dorey, E.; Gonzalez Rodriguez, R.; et al. Field management of Rotylenchulus reniformis on pineapple combining crop rotation, chemical-mediated induced resistance and endophytic bacterial inoculation. Crop Prot. 2021, 141, 105446. [Google Scholar] [CrossRef]
- Joy, P.; Anjana, R.; Soumya, K. Insect Pests of pineapple and management. In Insect Pests Management of FRUIT CROPS; Ajay Kumar Pandey, P.M., Ed.; Biotech Books: New Delhi, India, 2016; pp. 471–492. [Google Scholar]
- Tripathi, D.; Raikhy, G.; Kumar, D. Chemical elicitors of systemic acquired resistance—Salicylic acid and its functional analogs. Curr. Plant Biol. 2019, 17, 48–59. [Google Scholar] [CrossRef]
- Soler, A.; Marie-Alphonsine, P.-A.; Corbion, C.; Quénéhervé, P. Differential response of two pineapple cultivars (Ananas comosus (L.) Merr.) to SAR and ISR inducers against the nematode Rotylenchulus Reniformis. Crop Prot. 2013, 54, 48–54. [Google Scholar]
- Terry, L.A.; Joyce, D.C. Elicitors of induced disease resistance in postharvest horticultural crops: A brief review. Postharvest Biol. Technol. 2004, 32, 1–13. [Google Scholar] [CrossRef]
- Elicitra. Guide Méthodologique D’évaluation de L’efficacité des Stimulateurs des Defenses des Plantes; Elicitra: Avignon, France, 2013; p. 35. [Google Scholar]
- Py, C.; Lacoeuilhe, J.J.; Teisson, C. The Pineapple: Cultivation and Uses; Editions G.-P. Maisonneuve: Paris, France, 1987; p. 568. [Google Scholar]
- Zhou, Y.; Dahler, J.; Underhill, S.; Wills, R. Enzymes associated with blackheart development in pineapple fruit. Food Chem. 2003, 80, 565–572. [Google Scholar] [CrossRef]
- Soler, A.; Portal, N.; Marie-Alphonsine, P.-A.; Santos Bermúdez, R. Induced systemic resistance (ISR) and native tolerance to pathogens in banana: Preliminary results. In X International Symposium on Banana: ISHS-ProMusa Symposium on Agroecological Approaches to Promote Innovative Banana Production Systems, Montpellier, France; ProMusa: Montpellier, France, 2016. [Google Scholar]
- Rodriguez, P.A.; Rothballer, M.; Chowdhury, S.P.; Nussbaumer, T.; Gutjahr, C.; Falter-Braun, P. Systems biology of plant microbiome interactions. Mol. Plant 2019, 12, 804–821. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-L.; Paull, R.E. Genetic Transformation of Pineapple. In Genetics and Genomics of Pineapple; Springer: Berlin/Heidelberg, Germany, 2018; pp. 69–86. [Google Scholar]
- Tanpure, R.S.; Kondhare, K.R.; Venkatesh, V.; Gupta, V.S.; Joshi, R.S.; Giri, A.P. Non-host Armor Against Insect: Characterization and Application of Capsicum annuum Protease Inhibitors in Developing Insect Tolerant Plants. In Genetically Modified Crops: Current Status, Prospects and Challenges Volume 2; Kavi Kishor, P.B., Rajam, M.V., Pullaiah, T., Eds.; Springer: Singapore, 2021; pp. 85–110. [Google Scholar]
- Raimbault, A.-K.; Zuily-Fodil, Y.; Soler, A.; Mora, P.; Cruz de Carvalho, M.H. The expression patterns of bromelain and AcCYS1 correlate with blackheart resistance in pineapple fruits submitted to postharvest chilling stress. J. Plant Physiol. 2013, 170, 1442–1446. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, J.N.; Urwin, P.E.; Clarke, M.C.; McPherson, M.J. Image Analysis of the Growth of Globodera pallida and Meloidogyne incognita on Transgenic Tomato Roots Expressing Cystatins. J. Nematol. 1996, 28, 209–215. [Google Scholar]
- Raimbault, A.K.; Zuily-Fodil, Y.; Soler, A.; Mora, P.; Cruz de Carvalho, M.H. Postharvest Chilling Treatment Induces Distinct Expression in Fruit Bromelain and Cystatin in Two Pineapple (Ananas comosus (L.) Merr.) Varieties Differing in Their Susceptibility to Blackheart Physiopathy. Ph.D. Thesis, Paris Créteil’, Paris, France, 2012. [Google Scholar]
- Soneji, J.R.; Nageswara Rao, M. Genetic engineering of pineapple. Transgenic Plant J. 2009, 3, 47–56. [Google Scholar]
- Barral, B.; Chillet, M.; Léchaudel, M.; Lugan, R.; Schorr-Galindo, S. Coumaroyl-isocitric and caffeoyl-isocitric acids as markers of pineapple fruitlet core rot disease. Fruits 2019, 74, 11–17. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Q.; Mou, Z. Redox signaling and oxidative stress in systemic acquired resistance. J. Exp. Bot. 2024, 75, 4535–4548. [Google Scholar] [CrossRef]
Genes | Accession n° | Front (F) and Reverse (R) Primers |
---|---|---|
AcPAL | Aco010091.1 (Phytozomev3) | F-AGGTGTTTGACGCCATTTG R-CACCGTTCCAGTCCTTCAA |
AcMYB-like | Aco011681.1 (Phytozomev3) | F-GTTCAAGCAAGTCAAGAACC R-GAGTCCATTGATTCGCATTG |
AcICS2 | XM_020232036 (NCBI) | F-AGTGAATTTGCTGTCGGTAT R-GCAATCTTGTGAACTGGGA |
AcCAT | XM_020259660.1 (NCBI) | F-CAGCTATTGTGGTGCCTGGA R- CTTCCAGAGAGAACGAGGG |
Housekeeping Gene | ||
AcActin like-fe Housekeeping gene | XM_020238587.1 (NCBI) | F-CCTACGTTGCCCTCGACTAC R-GGAAGAGCACTTCAGGACACA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soler, A.; Pochat, C.; Perrin, M.; Mendoza, J.; Latchimy, F. Systemic Acquired Resistance: Plant Priming for Ecological Management of Mealybug-Induced Wilt in MD2 and Queen Victoria Pineapples. Agriculture 2025, 15, 264. https://doi.org/10.3390/agriculture15030264
Soler A, Pochat C, Perrin M, Mendoza J, Latchimy F. Systemic Acquired Resistance: Plant Priming for Ecological Management of Mealybug-Induced Wilt in MD2 and Queen Victoria Pineapples. Agriculture. 2025; 15(3):264. https://doi.org/10.3390/agriculture15030264
Chicago/Turabian StyleSoler, Alain, Corentin Pochat, Marie Perrin, Jessica Mendoza, and Flora Latchimy. 2025. "Systemic Acquired Resistance: Plant Priming for Ecological Management of Mealybug-Induced Wilt in MD2 and Queen Victoria Pineapples" Agriculture 15, no. 3: 264. https://doi.org/10.3390/agriculture15030264
APA StyleSoler, A., Pochat, C., Perrin, M., Mendoza, J., & Latchimy, F. (2025). Systemic Acquired Resistance: Plant Priming for Ecological Management of Mealybug-Induced Wilt in MD2 and Queen Victoria Pineapples. Agriculture, 15(3), 264. https://doi.org/10.3390/agriculture15030264