Design and Testing of a Peanut Roller Digging Harvester
Abstract
:1. Introduction
2. Materials and Methods
2.1. Complete Machine Design and Working Principle
2.1.1. Peanut Plant Characteristics
2.1.2. Overall Structure
2.1.3. Working Principle
2.2. Design of the Key Components of Multistage Roller Peanut Digging and Harvesting Machine
2.2.1. Design of the Vibration Digging Shovel
2.2.2. Design of the Conveying Roller Group
2.2.3. Conveyor Roll Spacing
2.2.4. Series of Conveyor Rolls
2.2.5. Conveying Roll Diameter
2.3. Field Trial
2.3.1. Test Conditions
2.3.2. Evaluation Index
- (1)
- Peanut burying rate:In the formula, Y1 is the percentage of peanut buried fruit, %; W1 is the total mass of peanuts actually harvested, kg; W2 is the mass of unexcavated peanut, kg; and W3 is the mass of peanuts dropped during the excavation and transportation of soil, including the mass of peanuts scattered on the surface and covered by soil clods, kg.
- (2)
- Peanut crushing rate:In the formula, Y2 is the peanut crushing rate, %; and Ps is the total mass of damaged peanuts (kg).
2.3.3. Test Scheme
2.3.4. Test Results
2.3.5. Analysis of Experimental Results
3. Results and Discussion
3.1. Response Surface Analysis
3.2. Model Optimization and Experimental Verification
3.3. Comparative Test Under Optimized Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Hu, Z.; Xu, H.; Cao, M.; Yu, Z.; Peng, B. Design and test of pickup and conveyor device for full-feeding peanut pickup harvester. Trans. Chin. Soc. Agric. Eng. 2019, 35, 20–28. [Google Scholar]
- Chen, Z.; Gao, L.; Chen, C.; Butts, C.L. Analysis on technology status and development of peanut harvest mechanization of China and the United States. Trans. Chin. Soc. Agric. Mach. 2017, 48, 1–21. [Google Scholar]
- Anco, D. Peanut Money-Maker 2022 Production Guide. 2022. Available online: https://blogs.clemson.edu/sccrops/peanut-money-maker-2022-production-guide/ (accessed on 12 October 2024).
- Fletcher, S.M.; Revoredo, C.L. World Peanut Market: An Overview of the Past 30 Years; University of Georgia: Athens, GA, USA, 2009. [Google Scholar]
- Xu, T.; Liu, Z.; Gao, L.; Shen, Y. Technology research status and development of peanut pickup device of China and the United States. J. Shenyang Agric. Univ. 2023, 54, 372–384. [Google Scholar]
- Zheng, J. Design and Experiment of Peanut Digging and Placing Machine Based on Two—Stage Harvest. J. Agric. Mech. Res. 2022, 44, 133–139. [Google Scholar] [CrossRef]
- Jiang, G. Design and Experimental Research of Vibration Type Small Peanut Harvester. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2021. [Google Scholar]
- He, Y.; Tang, Z.; Yang, H.; Meng, X.; Qin, T.; Zhang, D. Design and test of 4HQ-150 peanut digging and harvesting machine. J. Agric. Mech. Res. 2018, 53, 180–186. [Google Scholar] [CrossRef]
- Lv, B. Design and Simulation of Vibrating Type Peanut Harvester. Master’s Thesis, Shandong Agricultural University, Taian, China, 2013. [Google Scholar]
- Wang, B.; Hu, Z.; Zhou, D.; Peng, B.; Chen, Y. Mechanical model and experimental research of peanut harvest digger blade. J. Agric. Mech. Res. 2017, 39, 58–62. [Google Scholar] [CrossRef]
- Zhou, Q. Design of Shovel-Chain Type Low-Laying Peanut Harvester and Performance Test of Conveying and Laying. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2022. [Google Scholar]
- Li, H.; Shang, S.; Wang, D.; He, X.; Yue, D.; Guo, P.; Xu, N.; Xia, C. Design and simulation analysis of digging shovel for six-row monopoly crop(flat crop)peanut harvester. J. Agric. Mech. Res. 2023, 45, 107–112. [Google Scholar] [CrossRef]
- Yang, R.; Chai, H.; Shang, S. Design and performance test of spring-toothed soil removal device for flower combine. Trans. Chin. Soc. Agric. Mach. 2014, 45, 66–71+92. [Google Scholar]
- He, Y. Optimization and Experimental Study of Key Components of Tooth Shank Chain Peanut Soil Removal Device. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2018. [Google Scholar]
- Zang, X.; Tang, F.; Zhang, J.; Liu, J.; Zhang, Z.; Xu, J.; Miao, L. Effects of ridge planting with different densities on peanut yield and quality. J. Henan Agric. Sci. 2015, 44, 42–44. [Google Scholar] [CrossRef]
- Dai, Z.; Wu, M.; Fang, Z.; Qu, Y.; Liu, Y. Design and test of a throwing roller type lily bulb harvester. Trans. Chin. Soc. Agric. Eng. 2023, 39, 20–29. [Google Scholar]
- Lv, J.; Yang, X.; Lv, Y.; Li, Z.; Li, J.; Du, C. Analysis and Experiment of Potato Damage in Process of Lifting and Separating Potato Excavator. Trans. Chin. Soc. Agric. Mach. 2020, 51, 103–113. [Google Scholar]
- Zhang, Z.; Wang, H.; Li, Y.; Yang, X.; Ibrahim, I.; Zhang, Z. Design and Experiment of Multi-stage Separation Buffer Potato Harvester. Trans. Chin. Soc. Agric. Mach. 2021, 52, 96–109. [Google Scholar]
- NY/T 502-2016; Operating Quality for Peanut Harvesters. Agriculture Industry Standard: Beijing, China, 2016.
- Ge, Y. Design of Experiments Methods and Design-Expert Software Applications; Harbin Institute of Technology Press: Harbin, China, 2015. [Google Scholar]
- Li, Y.; Hu, C. Experimental Design and Data Processing; Chemical Industry Press: Beijing, China, 2017. [Google Scholar]
Parameter | Value |
---|---|
Dimensions (L × W × H)/(mm × mm × mm) | 1600 × 1650 × 980 |
Output power/(kW) | 40–60 |
Rated speed/(r·min−1) | 540 |
Working width/(mm) | 1600 |
Digging depth/(mm) | 0–250 |
Speed of operation/(km·h−1) | 1.5–3.0 |
Productivity/(hm2·h−1) | 0.25–0.45 |
Level | A/(m∙s−1) | B/mm | C/(r∙min−1) |
---|---|---|---|
−1 | 0.5 | 150 | 70 |
0 | 0.75 | 175 | 90 |
+1 | 1.0 | 200 | 110 |
Serial Number | A/(m∙s−1) | B/(mm) | C/(r∙min−1) | Embedded Fruit Rate, Y1/% | Percentage of Breakage, Y2/% |
---|---|---|---|---|---|
1 | 0.75 | 200 | 110 | 21.5 | 18.5 |
2 | 0.75 | 175 | 90 | 7.6 | 10.6 |
3 | 0.75 | 175 | 90 | 4.3 | 10.8 |
4 | 0.5 | 150 | 90 | 4.7 | 9.6 |
5 | 0.75 | 200 | 70 | 25.1 | 3.9 |
6 | 0.75 | 150 | 70 | 14.6 | 5.2 |
7 | 0.5 | 200 | 90 | 10.6 | 14.2 |
8 | 1 | 175 | 70 | 15.6 | 4.6 |
9 | 0.75 | 175 | 90 | 8.2 | 9.8 |
10 | 1 | 150 | 90 | 3.7 | 13.9 |
11 | 0.75 | 175 | 90 | 9.3 | 11.1 |
12 | 0.5 | 175 | 70 | 15.2 | 4.7 |
13 | 0.5 | 175 | 110 | 19.4 | 23.2 |
14 | 1 | 175 | 110 | 17.3 | 20.9 |
15 | 1 | 200 | 90 | 13.8 | 8.7 |
16 | 0.75 | 175 | 90 | 7.8 | 10.6 |
17 | 0.75 | 150 | 110 | 17.8 | 20.7 |
Source | Embedded Fruit Rate, Y1/% | ||||
Sum of Squares | df | Mean Square | f-Value | p-Value | |
Model | 623.20 | 9 | 69.24 | 22.74 | 0.0002 |
A-A | 0.0313 | 1 | 0.0313 | 0.0103 | 0.9222 |
B-B | 114.01 | 1 | 114.01 | 37.43 | 0.0005 |
C-C | 3.78 | 1 | 3.78 | 1.24 | 0.3020 |
AB | 4.41 | 1 | 4.41 | 1.45 | 0.2680 |
AC | 1.56 | 1 | 1.56 | 0.5130 | 0.4970 |
BC | 11.56 | 1 | 11.56 | 3.80 | 0.0924 |
A2 | 4.71 | 1 | 4.71 | 1.55 | 0.2537 |
B2 | 13.91 | 1 | 13.91 | 4.57 | 0.0699 |
C2 | 463.55 | 1 | 463.55 | 152.20 | <0.0001 |
Residual | 21.32 | 7 | 3.05 | ||
Lack of Fit | 7.27 | 3 | 2.42 | 0.6896 | 0.6042 |
Pure Error | 14.05 | 4 | 3.51 | ||
Source | Percentage of breakage, Y2/% | ||||
Sum of squares | df | Mean square | f-Value | p-Value | |
Model | 573.15 | 9 | 63.68 | 90.60 | <0.0001 |
A-A | 1.62 | 1 | 1.62 | 2.30 | 0.1728 |
B-B | 2.10 | 1 | 2.10 | 2.99 | 0.1274 |
C-C | 526.50 | 1 | 526.50 | 749.01 | <0.0001 |
AB | 24.01 | 1 | 24.01 | 34.16 | 0.0006 |
AC | 1.21 | 1 | 1.21 | 1.72 | 0.2309 |
BC | 0.2025 | 1 | 0.2025 | 0.2881 | 0.6081 |
A2 | 5.54 | 1 | 5.54 | 7.89 | 0.0262 |
B2 | 0.0684 | 1 | 0.0684 | 0.0974 | 0.7641 |
C2 | 11.08 | 1 | 11.08 | 15.77 | 0.0054 |
Residual | 4.92 | 7 | 0.7029 | ||
Lack of Fit | 3.99 | 3 | 1.33 | 5.74 | 0.0623 |
Error | 0.9280 | 4 | 0.2320 |
Harvesting Method | Embedded Fruit Rate/% | Percentage of Breakage/% | Total Loss Rate/% |
---|---|---|---|
4HW-160 multi-roll peanut harvester | 6.5 | 7.3 | 13.8 |
4H-160 chain rod peanut harvester | 11.4 | 5.2 | 16.6 |
4H-160 vibrating-screen peanut harvester | 13.8 | 9.1 | 22.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Liu, L.; Qian, K.; Chen, K.; Wang, D.; Sun, W. Design and Testing of a Peanut Roller Digging Harvester. Agriculture 2025, 15, 265. https://doi.org/10.3390/agriculture15030265
Liu D, Liu L, Qian K, Chen K, Wang D, Sun W. Design and Testing of a Peanut Roller Digging Harvester. Agriculture. 2025; 15(3):265. https://doi.org/10.3390/agriculture15030265
Chicago/Turabian StyleLiu, Daoqi, Long Liu, Kai Qian, Kaiyang Chen, Dongwei Wang, and Wenxi Sun. 2025. "Design and Testing of a Peanut Roller Digging Harvester" Agriculture 15, no. 3: 265. https://doi.org/10.3390/agriculture15030265
APA StyleLiu, D., Liu, L., Qian, K., Chen, K., Wang, D., & Sun, W. (2025). Design and Testing of a Peanut Roller Digging Harvester. Agriculture, 15(3), 265. https://doi.org/10.3390/agriculture15030265