Agricultural Machinery Path Tracking with Varying Curvatures Based on an Improved Pure-Pursuit Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Platform
2.1.1. Structure
2.1.2. Control System
2.2. Improved Pure-Pursuit Model
2.2.1. Definition of Vehicle Deviation
2.2.2. Definition of Path Bending Degree
2.2.3. Kinematic Model of the Vehicle
2.3. Design of the Fuzzy Controller
2.3.1. Input and Output Variables
2.3.2. Control Rules
2.3.3. Defuzzification
2.4. Speed-Control Model
2.5. Experiment Design
3. Results and Discussion
3.1. Results of Experiment 1
3.2. Discussion of Experiment 1
3.2.1. Tracking Accuracy (Experiment 1)
3.2.2. Tracking Stability (Experiment 1)
3.2.3. Tracking Time (Experiment 1)
3.3. Results of Experiment 2
3.4. Discussion of Experiment 2
3.4.1. Tracking Accuracy (Experiment 2)
3.4.2. Tracking Stability (Experiment 2)
3.4.3. Tracking Time (Experiment 2)
3.5. Discussion of the Comparison of the Proposed Method to Other Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Zhang, M.; Ji, Y.; Zhang, Z.; Cao, R.; Chen, B.; Li, H.; Yin, Y. Agricultural machinery GNSS/IMU-integrated navigation based on fuzzy adaptive finite impulse response Kalman filtering algorithm. Comput. Electron. Agric. 2021, 191, 106524. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Z.; Luo, X.; Wang, H.; Huang, P.; Zhang, J. Design of automatic navigation operation system for Lovol ZP9500 high clearance boom sprayer based on GNSS. Trans. Chin. Soc. Agric. Eng. 2018, 34, 15–21. [Google Scholar]
- Yao, Z.; Zhao, C.; Zhang, T. Agricultural machinery automatic navigation technology. Iscience 2023, 27, 108714. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhao, J.; Wang, M.; Hao, H.; He, X.; Meng, Y. Beidou navigation method based on intelligent computing and extended Kalman filter fusion. J. Ambient Intell. Humaniz. Comput. 2019, 10, 4431–4438. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Zheng, H.; Dong, Y. Global agricultural robotics research and development: Trend forecasts. J. Phys. Conf. Ser. 2020, 1693, 012227. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, X.; Liu, Z.; Cai, Z.; Wu, Z.; Feng, Y. Path tracking of snake-like robot based on neural network identifier. In Proceedings of the 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), Toyonaka, Japan, 3–5 July 2019; pp. 750–755. [Google Scholar]
- Hu, C.; Ru, Y.; Li, X.; Fang, S.; Zhou, H.; Yan, X.; Liu, M.; Xie, R. Path tracking control for brake-steering tracked vehicles based on an improved pure pursuit algorithm. Biosyst. Eng. 2024, 242, 1–15. [Google Scholar] [CrossRef]
- Wu, C.; Wu, J.; Wen, L.; Chen, Z.; Yang, W.; Zhai, W. Variable curvature path tracking control for the automatic navigation of tractors. Trans. CSAE 2022, 38, 1–7. [Google Scholar]
- Hameed, I.A.; la Cour-Harbo, A.; Osen, O.L. Side-to-side 3D coverage path planning approach for agricultural robots to minimize skip/overlap areas between swaths. Robot. Auton. Syst. 2016, 76, 36–45. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Luo, J.; Wu, Z.; Chen, J.; Zhou, Y.; Sun, Y.; Shen, Z.; Xu, N.; Yang, Y. Farmland parcel mapping in mountain areas using time-series SAR data and VHR optical images. Remote Sens. 2020, 12, 3733. [Google Scholar] [CrossRef]
- Hong, R.; Park, J.; Jang, S.; Shin, H.; Kim, H.; Song, I. Development of a parcel-level land boundary extraction algorithm for aerial imagery of regularly arranged agricultural areas. Remote Sens. 2021, 13, 1167. [Google Scholar] [CrossRef]
- Ren, H.; Wu, J.; Lin, T.; Yao, Y.; Liu, C. Research on an Intelligent Agricultural Machinery Unmanned Driving System. Agriculture 2023, 13, 1907. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, H.; Zhou, M.; Zhu, J.; Chen, J.; Li, B. Design and Experiment of an Autonomous Navigation System for a Cattle Barn Feed-Pushing Robot Based on UWB Positioning. Agriculture 2024, 14, 694. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, J.; Liu, Y.; Zhang, T.; Meng, Y.; Chen, J.; Zhou, C.; Hu, J.; Chen, X. An Ultrasonic Ridge-Tracking Method Based on Limiter Sliding Window Filter and Fuzzy Pure Pursuit Control for Ridge Transplanter. Agriculture 2024, 14, 1713. [Google Scholar] [CrossRef]
- Wei, S.; Li, S.; Zhang, M.; Ji, Y.; Xiang, M.; Li, M. Automatic navigation path search and turning control of agricultural machinery based on GNSS. Trans. Chin. Soc. Agric. Eng. 2017, 33, 70–77. [Google Scholar]
- Yao, L.; Hu, D.; Zhao, C.; Yang, Z.; Zhang, Z. Wireless positioning and path tracking for a mobile platform in greenhouse. Int. J. Agric. Biol. Eng. 2021, 14, 216–223. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, G.; Lu, Y.; Qin, C.; Liu, L.; Gong, J. Agricultural machinery automatic navigation control system based on improved pure tracking model. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2020, 51, 18–25. [Google Scholar]
- Xu, L.; Yang, Y.; Chen, Q.; Fu, F.; Yang, B.; Yao, L. Path tracking of a 4WIS–4WID agricultural machinery based on variable look-ahead distance. Appl. Sci. 2022, 12, 8651. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, Z.; Lu, Y. Steering wheel AGV path tracking control based on improved pure pursuit model. J. Phys. Conf. Ser. 2021, 2093, 012005. [Google Scholar] [CrossRef]
- Nagasaka, Y.; Saito, H.; Tamaki, K.; Seki, M.; Kobayashi, K.; Taniwaki, K. An autonomous rice transplanter guided by global positioning system and inertial measurement unit. J. Field Robot. 2009, 26, 537–548. [Google Scholar] [CrossRef]
- Ahn, J.; Shin, S.; Kim, M.; Park, J. Accurate path tracking by adjusting look-ahead point in pure pursuit method. Int. J. Automot. Technol. 2021, 22, 119–129. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Wen, X.; Zhang, G.; Ma, Q.; Cheng, S.; Qi, J.; Xu, L.; Chen, L. An optimal goal point determination algorithm for automatic navigation of agricultural machinery: Improving the tracking accuracy of the Pure Pursuit algorithm. Comput. Electron. Agric. 2022, 194, 106760. [Google Scholar] [CrossRef]
- Sun, X.; Liu, L.; Liu, Y.; Li, S.; Wan, F. Disturbance event triggered-model predictive tracking control for 4WIS–4WID mobile robot. Signal Image Video Process. 2024, 18, 7431–7443. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Xu, L.; Yang, T. Path tracking of farming platform with unmanned four-wheel independent driving and four-wheel independent steering in ridge tillage mode. Trans. CSAE 2024, 40, 37–47. [Google Scholar]
- Sui, Y.; Yang, Z.; Zhuo, H.; You, Y.; Que, W.; He, N. A Fuzzy Pure Pursuit for Autonomous UGVs Based on Model Predictive Control and Whole-Body Motion Control. Drones 2024, 8, 554. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Han, K.; Choi, S.B. Vehicle path tracking control using pure pursuit with MPC-based look-ahead distance optimization. IEEE Trans. Veh. Technol. 2023, 73, 53–66. [Google Scholar] [CrossRef]
- Yu, L.; Yan, X.; Kuang, Z.; Chen, B.; Zhao, Y. Driverless bus path tracking based on fuzzy pure pursuit control with a front axle reference. Appl. Sci. 2019, 10, 230. [Google Scholar] [CrossRef]
- Li, W.; Xu, H.; Liu, X.; Wang, Y.; Zhu, Y.; Lin, X.; Wang, Z.; Zhang, Y. Regenerative braking control strategy for pure electric vehicles based on fuzzy neural network. Ain Shams Eng. J. 2024, 15, 102430. [Google Scholar] [CrossRef]
- Lu, Y. Adaptive-fuzzy control compensation design for direct adaptive fuzzy control. IEEE Trans. Fuzzy Syst. 2018, 26, 3222–3231. [Google Scholar] [CrossRef]
- Bennajeh, A.; Ben Said, L. Driving control based on bilevel optimization and fuzzy logic. Int. J. Intell. Syst. 2021, 36, 4495–4523. [Google Scholar] [CrossRef]
Ld | θe | |||||
---|---|---|---|---|---|---|
NB | NS | ZO | PS | PB | ||
de | NB | NB | NB | NS | ZO | PS |
NS | NS | NS | ZO | PS | PS | |
ZO | ZO | PS | PB | PS | ZO | |
PS | PS | PS | ZO | NS | NS | |
PB | PS | ZO | NS | NB | NB |
Ld | θe | |||||
---|---|---|---|---|---|---|
NB | NS | ZO | PS | PB | ||
de | NB | NB | NB | NS | NS | ZO |
NS | NB | NS | NS | ZO | ZO | |
ZO | NS | ZO | PS | ZO | NS | |
PS | ZO | ZO | NS | NS | NB | |
PB | ZO | NS | NS | NB | NB |
Ld | θe | |||||
---|---|---|---|---|---|---|
NB | NS | ZO | PS | PB | ||
de | NB | NB | NB | NB | NB | NS |
NS | NB | NB | NB | NS | NS | |
ZO | NB | NS | ZO | NS | NB | |
PS | NS | NS | NB | NB | NB | |
PB | NS | NB | NB | NB | NB |
Tracking Path | Look-Ahead Distance (m) | Average Lateral Deviation (cm) | Maximum Lateral Deviation (cm) | Standard Deviation (cm) | Path-Tracking Time (s) |
---|---|---|---|---|---|
U-shaped | 1.5 | 4.1 | 20.4 | 4.8 | 32.9 |
Dynamic Ld | 2.3 | 12.5 | 2.5 | 33.8 | |
S-shaped | 1.5 | 7.5 | 25.6 | 8.1 | 31.9 |
Dynamic Ld | 4.5 | 15.9 | 4.9 | 32.7 |
Tracking Path | Vehicle Speed (m·s⁻¹) | Average Lateral Deviation (cm) | Maximum Lateral Deviation (cm) | Standard Deviation (cm) | Path-Tracking Time (s) |
---|---|---|---|---|---|
U-shaped | 0.8 | 2.3 | 12.5 | 2.5 | 33.8 |
Variable-Speed | 1.8 | 10.1 | 2.1 | 28.8 | |
S-shaped | 0.8 | 4.5 | 15.9 | 4.9 | 32.7 |
Variable-Speed | 3.3 | 10.5 | 3.6 | 32.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Wen, J.; Yao, L.; Yang, Z.; Xu, L.; Yao, L. Agricultural Machinery Path Tracking with Varying Curvatures Based on an Improved Pure-Pursuit Method. Agriculture 2025, 15, 266. https://doi.org/10.3390/agriculture15030266
Zhou J, Wen J, Yao L, Yang Z, Xu L, Yao L. Agricultural Machinery Path Tracking with Varying Curvatures Based on an Improved Pure-Pursuit Method. Agriculture. 2025; 15(3):266. https://doi.org/10.3390/agriculture15030266
Chicago/Turabian StyleZhou, Jiawei, Junhao Wen, Liwen Yao, Zidong Yang, Lijun Xu, and Lijian Yao. 2025. "Agricultural Machinery Path Tracking with Varying Curvatures Based on an Improved Pure-Pursuit Method" Agriculture 15, no. 3: 266. https://doi.org/10.3390/agriculture15030266
APA StyleZhou, J., Wen, J., Yao, L., Yang, Z., Xu, L., & Yao, L. (2025). Agricultural Machinery Path Tracking with Varying Curvatures Based on an Improved Pure-Pursuit Method. Agriculture, 15(3), 266. https://doi.org/10.3390/agriculture15030266