Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils
Abstract
:1. Introduction
- (i)
- Evaluate the yields and properties of biochars from four different local feedstocks (pecan shells, pecan orchard prunings, urban yard waste, and cotton gin trash).
- (ii)
- Assess the impacts of biochar amendments on multiple soil quality indicators in two different soil textures (sandy loam and clay loam).
2. Experimental Section
2.1. Biomass Feedstocks
2.2. Biochar Preparation
2.3. Biomass and Biochar Characterization
2.4. Biochar-Amended Soil Incubation
2.5. Soil Quality Assessments
2.6. Statistical Data Analysis
3. Results and Discussion
3.1. Biochar Yields and Characteristics
3.2. Biochar-Amended Soil Quality
3.2.1. Coarse Textured Soil (Sandy Loam)
3.2.2. Fine Textured Soil (Clay Loam Soil)
3.3. Implications of This Study
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil quality: A concept, definition, and framework for evaluation (a guest editorial). Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef]
- Idowu, O.J.; Flynn, R. Understanding Soil Health for Production Agriculture in New Mexico, Guide A-148; New Mexico State University: Las Cruces, NM, USA, 2013. [Google Scholar]
- Reeves, D.W. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res. 1997, 43, 131–167. [Google Scholar] [CrossRef]
- Ulery, A.L.; Tugel, A.J. Farming in New Mexico: Soil quality and productivity maintenance. New Mexico J. Sci. 1999, 39, 86–108. [Google Scholar]
- Magdoff, F. Concepts, components, and strategies of soil health in agroecosystems. J. Nematol. 2001, 33, 169. [Google Scholar] [PubMed]
- Idowu, O.J.; Marsalis, M.; Flynn, R. Agronomic Principles to Help with Farming During Drought Periods, Guide A-147; New Mexico State University: Las Cruces, NM, USA, 2012. [Google Scholar]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- McHenry, M.P. Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agric. Ecosyst. Environ. 2009, 129, 1–7. [Google Scholar] [CrossRef]
- Lehmann, J.; Pereira da Silva, J.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant. Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Laird, D.A. The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron. J. 2008, 100, 178–181. [Google Scholar] [CrossRef]
- Lal, R. Black and buried carbons’ impact on soil quality and ecosystem services. Soil Tillage. Res. 2008, 99, 1–3. [Google Scholar] [CrossRef]
- Barrow, C.J. Biochar: Potential for countering land degradation and for improving agriculture. Appl. Geogr. 2012, 34, 21–28. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizao, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Lehmann, J.; Engelhard, M.H. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Acta 2008, 72, 1598–1610. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef]
- Steiner, C.; Glaser, B.; Teixeira, W.G.; Lehmann, J.; Blum, W.; Zech, W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J. Plant. Nutr. Soil Sci. 2008, 171, 893–899. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Steinbeiss, S.; Gleixner, G.; Antonietti, M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem. 2009, 41, 1301–1310. [Google Scholar] [CrossRef]
- Karhu, K.; Mattila, T.; Bergström, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.; Lehmann, J.; Nehls, T.; de Macêdo, J.; Blum, W.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant. Soil 2007, 291, 275–290. [Google Scholar] [CrossRef]
- Kimetu, J.; Lehmann, J.; Ngoze, S.; Mugendi, D.; Kinyangi, J.; Riha, S.; Verchot, L.; Recha, J.; Pell, A. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 2008, 11, 726–739. [Google Scholar] [CrossRef]
- Lillywhite, J.M.; Heerema, R.; Simonsen, J.E.; Herrera, E. Pecan Marketing Channels in New Mexico, 2010, Guide Z-307; New Mexico State University Cooperative Extension Service: Las Cruces, NM, USA, 2010; p. 8. [Google Scholar]
- Mexal, J.G.; Herrera, E.; Sammis, T.W.; Zachritz, W.H. Noncommensurable Values of the Pecan Industry, Guide H-654; New Mexico State University Cooperative Extension Service: Las Cruces, NM, USA, 2003; p. 4. [Google Scholar]
- Kallestad, J.C.; Mexal, J.G.; Sammis, T.W. Mesilla Valley Pecan Orchard Pruning Residues: Biomass Estimates and Value-Added Opportunities, Research Report 764; New Mexico State University Agricultural Research Station: Las Cruces, NM, USA, 2008; p. 16. [Google Scholar]
- Idowu, O.J. New Mexico State University, Las Cruces, NM, USA. Unpublished work. 2013. [Google Scholar]
- ASTM E1755–01(2007): Standard Test Method for Ash in Biomass. Available online: http://www.astm.org/DATABASE.CART/HISTORICAL/E1755-01R07.htm (accessed on 7 March 2016).
- ASTM D1762–84(2007): Standard Test Method for Chemical Analysis of Wood Charcoal. Available online: http://www.astm.org/DATABASE.CART/HISTORICAL/D1762-84R07.htm (accessed on 7 March 2016).
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Natural Resources Conservation Service: Washington, DC, USA, 1999. [Google Scholar]
- United States Salinity Laboratory Staff. Diagnosis and improvement of saline and alkali soils. In USDA Agricultural Handbook 60; U.S. Government Print Office: Washington, DC, USA, 1954. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis Part 3. Chemical Methods; Sparks, D.L., Ed.; SSSA and ASA: Madison, WI, USA, 1996; Volume 5. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U. S. Dept. Agric. Circ. 1954, 939, 1–18. [Google Scholar]
- Cihacek, L.J. Interpreting Soil Analysis; New Mexico State University Publication Office: Las Cruces, NM, USA, 1983. [Google Scholar]
- Ludwick, A.E.; Reuess, J.O. Guide to Fertilizer Recommendations in Colorado; Colorado State University Cooperative Extension: Fort Collins, CO, USA, 1974. [Google Scholar]
- Brewer, C.E.; Hu, Y.-Y.; Schmidt-Rohr, K.; Loynachan, T.E.; Laird, D.A.; Brown, R.C. Extent of pyrolysis impacts on fast pyrolysis biochar properties. J. Environ. Qual. 2012, 41, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Flynn, R. Appropriate Analyses for New Mexico Soils, Guide A-146; New Mexico State University Cooperative Extension Service: Las Cruces, NM, USA, 2012; p. 8. [Google Scholar]
- Deenik, J.L.; McClellan, T.; Goro, U.; Antal, M.J.; Campbell, S. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci. Soc. Am. J. 2010, 74, 1259–1270. [Google Scholar] [CrossRef]
- Brewer, C.; Unger, R.; Schmidt-Rohr, K.; Brown, R. Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Res. 2011, 4, 312–323. [Google Scholar] [CrossRef]
Soil | pH | EC (dS·m−1) | SOM (g·kg−1) | Na (mg·kg−1) | Ca (mg·kg−1) | Mg (mg·kg−1) | SAR |
Sandy Loam | 7.3 | 1.49 | 0.76 | 1.77 | 4.54 | 1.36 | 1.03 |
Clay Loam | 7.1 | 5.94 | 1.13 | 16.75 | 39.48 | 8.18 | 3.43 |
NO3-N (mg·kg−1) | Olsen P (mg·kg−1) | K (mg·kg−1) | Cu (mg·kg−1) | Mn (mg·kg−1) | Fe (mg·kg−1) | Zn (mg·kg−1) | |
Sandy Loam | 14.2 | 10.1 | 31.4 | 0.87 | 4.56 | 3.51 | 0.91 |
Clay Loam | 132.1 | 13.1 | 56.7 | 1.27 | 8.37 | 5.78 | 0.75 |
Sample | Biochar Yield (%) | Bio-Oil Yield (%) | NCG + Tar Yield (%) | Moisture (%) | Ash (%) | HHV (MJ·kg−1) |
---|---|---|---|---|---|---|
Pecan shell | -- | -- | -- | 5.8 | 1.5 ± 0.3 | 18 ± 0.5 |
Pecan prunings | -- | -- | -- | 5.7 | 2.9 ± 0.2 | 23 ± 3 |
Cotton gin trash | -- | -- | -- | 6.1 | 13 ± 1 | 17 ± 1 |
Yard waste | -- | -- | -- | 4.2 | 4.9 ± 0.3 | 22 ± 2 |
Pecan shell biochar | 28 | 18 | 54 | 3.9 | 4.4 ± 0.1 | 31 ± 1 |
Pecan prunings biochar | 35 | 13 | 52 | 4.3 | 11.3 ± 0.1 | 31 ± 2 |
Cotton gin trash biochar | 42 | 11 | 57 | 3.3 | 32 ± 4 | 24 ± 3 |
Yard waste biochar | 32 | 17 | 51 | 2.4 | 19 ± 2 | 32 ± 4 |
Biochar | pH | EC (dS·m−1) | Walkley-Black Org C (%) | C (%) | H (%) | N (%) | S (%) |
---|---|---|---|---|---|---|---|
PS | 8.2 | 2.98 | 1.5 ± 0.2 | 76.0 ± 1.1 | 3.07 ± 0.01 | 0.77 ± 0.04 | 1.72 ± 0.24 |
PP | 9.5 | 2.66 | 7.5 ± 2 | 71.9 ± 0.8 | 3.50 ± 0.10 | 1.09 ± 0.71 | 1.96 ± 0.12 |
CGT | 8.4 | 44.6 | 24 ± 0 | 55.4 ± 3.0 | 2.75 ± 0.17 | 2.29 ± 0.09 | 1.84 ± 0.02 |
YW | 9.7 | 2.01 | 4.4 ± 0.5 | 83.2 ± 1.2 | 3.55 ± 0.04 | 1.02 ± 0.22 | 1.61 ± 0.13 |
Biochar | NO3-N | Olsen P | K | Cu | Mn | Fe | Zn | Na | Ca | Mg | SAR |
---|---|---|---|---|---|---|---|---|---|---|---|
(mg·kg−1) | |||||||||||
PS | 0.32 | 12.0 | 330.3 | 0.65 | 33.2 | 3.28 | 13.21 | 0.42 | 0.74 | 1.01 | 0.45 |
PP | 0.43 | 72.3 | 562.3 | 0.61 | 4.48 | 0.08 | 10.69 | 6.45 | 2.81 | 1.93 | 4.19 |
CGT | 6.2 | 866.4 | 26,360 | 0.53 | 2.45 | 0.49 | 8.20 | 18.91 | 35.09 | 40.43 | 3.08 |
YW | 0.57 | 65.8 | 640.4 | 1.00 | 3.99 | 0.37 | 13.37 | 1.20 | 1.08 | 0.37 | 3.99 |
Soil | Biochar Treatment | pH | EC (dS·m−1) | SOM (g·kg−1) | Na (mg·kg−1) | Ca (mg·kg−1) | Mg (mg·kg−1) | SAR |
---|---|---|---|---|---|---|---|---|
Sandy loam | Control | 7.45 | 1.45 a | 0.55 a | 8.3 a | 5.0 a | 1.4 a | 4.5 b |
PS | 7.48 | 1.28 a | 0.49 a | 6.6 a | 4.9 a | 1.2 a | 3.7 ab | |
PP | 7.40 | 2.00 a | 0.51 a | 9.5 a | 8.8 a | 2.6 a | 3.9 ab | |
CGT | 7.41 | 7.12 b | 1.16 b | 17.0 b | 49.6 b | 16.3 b | 2.9 a | |
YW | 7.43 | 1.25 a | 0.65 a | 6.7 a | 4.8 a | 1.4 a | 3.8 ab | |
ns | ||||||||
Clay loam | Control | 6.90 a | 6.86 a | 1.19 a | 23.5 a | 47.2 a | 13.8 a | 4.3 a |
PS | 7.03 ab | 7.47 a | 1.20 a | 28.4 a | 52.0 a | 15.4 a | 4.9 ab | |
PP | 6.88 a | 15.5 c | 1.24 a | 62.9 c | 133 c | 35.3 b | 6.9 c | |
CGT | 7.08 b | 9.12 ab | 1.89 b | 35.2 ab | 64.5 ab | 23.0 a | 5.3 b | |
YW | 6.90 a | 12.0 b | 1.33 a | 44.5 b | 94.9 b | 24.7 a | 5.7 b |
Soil | Biochar Treatment | NO3-N | Olsen P | K | Cu | Mn | Fe | Zn |
---|---|---|---|---|---|---|---|---|
(mg·kg−1) | ||||||||
Sandy loam | Control | 3.7 | 6.0 a | 26 a | 1.2 | 3.4 a | 2.7 b | 0.86 a |
PS | 2.5 | 6.1 a | 34 a | 1.1 | 6.1 b | 2.8 b | 0.88 a | |
PP | 2.7 | 7.1 a | 43 a | 1.0 | 8.4 c | 2.6 ab | 1.12 b | |
CGT | 0.8 | 25 b | 361 b | 0.9 | 11.6 d | 2.4 a | 1.08 b | |
YW | 1.9 | 6.4 a | 35 a | 1.2 | 8.7 c | 2.5 ab | 0.90 a | |
ns | ns | |||||||
Clay loam | Control | 136 a | 12 a | 60 a | 2.3 | 4.5 a | 3.4 b | 0.88 |
PS | 138 a | 13 a | 70 a | 1.6 | 7.0 b | 3.6 b | 0.95 | |
PP | 759 c | 12 a | 113 c | 2.1 | 7.5 bc | 2.5 a | 1.19 | |
CGT | 1 a | 28 b | 252 d | 1.7 | 8.2 cd | 2.8 a | 1.07 | |
YW | 466 b | 13 a | 92 b | 1.5 | 8.8 d | 2.7 a | 1.94 | |
ns | ns |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Idowu, O.J.; Brewer, C.E. Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils. Agriculture 2016, 6, 10. https://doi.org/10.3390/agriculture6010010
Zhang Y, Idowu OJ, Brewer CE. Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils. Agriculture. 2016; 6(1):10. https://doi.org/10.3390/agriculture6010010
Chicago/Turabian StyleZhang, Yunhe, Omololu John Idowu, and Catherine E. Brewer. 2016. "Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils" Agriculture 6, no. 1: 10. https://doi.org/10.3390/agriculture6010010
APA StyleZhang, Y., Idowu, O. J., & Brewer, C. E. (2016). Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils. Agriculture, 6(1), 10. https://doi.org/10.3390/agriculture6010010