Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis
Abstract
:1. Introduction
1.1. Background
1.2. Production-Dependent Biochar Properties
1.3. Agronomical Important Parameters of Biochar
1.4. Environmental and Economic Aspects of Biochar Production and Use
1.5. Scope of the Paper
2. Materials and Methods
2.1. Selected Feedstock
(a) Slow Pyrolysis Reactor | ||||||||||
Residence time: 60 min. Inert atmosphere (O2 0%) | Residence time: 60 min: Inert atmosphere (O2 1%) | |||||||||
Greenhouse Waste (Pepper, GHW 1) | 400 °C | 600 °C | - | 600 °C | ||||||
Oak Wood | 400 °C | 600 °C | - | - | ||||||
(b) Small Lab-Scale Fluidized Bed | ||||||||||
Fluidizing agent: Nitrogen | Fluidizing agent: Air | Fluidizing agent: Steam | ||||||||
Greenhouse Waste (Pepper, GHW 1) | 600 °C | 750 °C | 600 °C | 750 °C | 600 °C | 750 °C | ||||
Rice Husk (RH) | - | - | - | 750 °C | 750 °C | |||||
Chicken Manure (CM) | - | - | - | 750 °C | 750 °C | |||||
Swine Manure (SM) | - | - | - | 750 °C | 750 °C | |||||
(c) Larger Lab-Scale Fluidized Bed | ||||||||||
Fluidizing agent: Air | ||||||||||
Greenhouse Waste (Pepper, GHW 1) | 670 °C | 750 °C | ||||||||
Wood SBB | 670 °C | - | ||||||||
Wood SBB and GHW 2 (Blend 80% 20%) | 670 °C | - | ||||||||
Beech Wood and GHW 2 (Blend 80% 20%) | 670 °C | - |
2.2. Production of Biochars
2.3. Characterisation of Feedstock, Biochar and Product Gas
2.3.1. Product Gas Composition and Higher Heating Value
2.3.2. Polycyclic Aromatic Hydrocarbons
Variable Measured | Standard and Method | Comments |
---|---|---|
Proximate Analysis (CEN Solid Biofuels) | ||
Ash Content (dry mass fraction %) | EN 14775 | Solid biofuels–Method for the determination of ash content. Brussels, Belgium: European Committee for Standardization; 2004. |
Moisture Content (as received. mass fraction %) | EN 14774-1/2 | Solid biofuels–Determination of moisture content – Oven dry method – Part 1: Total moisture – Reference Method. Brussels, Belgium: European Committee for Standardization; 2009. |
Volatile Matter (dry mass fraction %) | EN 15148 | Solid biofuels–Determination of the content of volatile matter. Brussels, Belgium: European Committee for Standardization; 2010 |
Ultimate Analysis (CEN Solid Biofuels) | ||
C, H, N Content (dry mass fraction %) | EN 15104 | Solid biofuels–Determination of total content of carbon, hydrogen and nitrogen – Instrumental methods. Brussels, Belgium: European Committee for Standardization; 2011. |
Calorific Value (MJ·kg−1) | EN 14918 | Solid biofuels–Determination of calorific value. Brussels, Belgium: European Committee for Standardization; 2009. |
S and Cl content (mg·kg−1 dry) | BS EN 15289 | Determination of total content of sulfur and chlorine. Brussels, Belgium: European Committee for Standardization; 2011. |
Ash Elements | ||
Ash inorganic elements and heavy metals (mg·kg−1 dry) | NEN 6966 | Al As B Ba Ca Cd Co Cr Cu Fe K Li Mg Mn Mo Na Ni P Pb S Sb Se Si Sn Sr Ti V Zn Hg- Analyses of selected elements in water, eluates and destruates - Atomic emission spectrometry with inductively coupled plasma (ICP-AES). The Netherlands. |
BET Surface Area | ||
Brunauer-Emmett-Teller (BET) Surface Area Analysis (m2·g−1) and Barrett-Joyner-Halenda (BJH) Pore Size and Volume | ISO-9277 ISO-15901 | Determination of the specific surface area of solid by gas adsorption-BET method Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-part 1: Mercury porosimetry. Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-part 2: Analysis of mesoporesand macropores by gas adsorption. Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-part 3: Analysis of micropores by gas adsorption. |
PAH | ||
Main 2–6 ring PAH (mg·kg−1 dry) | EN 15527 (extraction with toluene) | 16 USEPA PAHs: (Acenaphtene, Acenaphtylene, Naphthalene, Anthracene, Fluorene, Phenanthrene, Benzo(a) anthracene, Pyrene, Chrysene, Fluoranthene, Benzo(a)pyrene Benzo(k) fluoranthene, Benzo(b) fluoranthene, Dibenz(ah) anthracene, Benzo(ghi) perylene, Indeno(123-cd) pyrene, Coronene |
Dioxins | ||
Polychlorinated dibenzo-p-dioxins (PCDDs), Polychlorinated dibenzofurans (PCDFs), Polychlorinated biphenyls (PCBs) (ng kg-1) | SS-EN-1948 High Resolution Gas Chromatography Mass Spectrometry | BS EN 1948 Parts 1–3: 2006 Stationary source emissions - Determination of the mass concentration of PCDDs/PCDFs and dioxin-like PCBs |
Variable measured | Standard and Method |
---|---|
sample preparation | DIN 51701-3 |
water content | DIN 51718 |
ash content 550 °C | analog DIN 51719/EN 14775 |
Thermogravimetry | ISO 11358 (LECO) |
C, H, N | DIN 51732 |
Sulfur | DIN 51724-3 |
oxygen (calculation) | DIN 51733 |
carbonate-CO2 | DIN 51726 |
Corg (calculation from Ctot und C in carbonate form) | Calculation |
H/C und O/C | Calculation |
trace metals Pb, Cd, Cu, Ni, Hg, Zn, Cr, B, Mn in microwave digestion | EN ISO 17294-2 /EN 1483 |
main elements P, Mg, Ca, K, Na, Fe, Si, S in melting digestion | EN ISO 11885 /EN ISO 17294-2 |
PAH (EPA) | DIN EN 15527 (extraction with toluene) |
pH-value | DIN ISO 10390 (CaCl2) |
bulk density | DIN 51705 |
conductivity (salt content) | DIN ISO 11265/BGK, Kap. III. C2 |
surface area analysis according to BET (incl. pure density) | DIN 66132/ISO 9277 |
Gross calorific value Ho | DIN 51900 |
Net calorific value, Hu, p | DIN 51900 |
PCB, dioxins/furans (high resolution) | HRMS |
water holding capacity (WHC) on fraction < 2mm | E DIN ISO 14238 |
ash content 815 °C | DIN 51719 |
volatile matter | DIN 51720 |
volatile matter | DIN 51720 |
2.3.3. Surface Area, (Micro) Porosity and Morphology Using SEM
- (a)
- Pretreatment: Drying of sample at 105 °C for 90 min, milling the sample (1 min, 30 s)
- (1)
- Weighing in as much sample as possible (~1.5 g), because of expected low specific surface area
- (2)
- Evacuating the sample at a temperature of 150 °C to remove adsorbed material from the surface, e.g., water (degassing), about 3 h
- (3)
- Filling the sample cell with gas (e.g., N2)
- (4)
- Weighing back the sample, to measure the net weight
- (5)
- Placing the sample in the measurement position, flushing with Helium, evacuating, placing the sample in liquid nitrogen (−197 °C)
- (6)
- Adding nitrogen until preset pressures, while measuring the adsorbed amount of nitrogen
- (7)
- After the measurement of a complete adsorption isotherm, calculating of the multipoint BET surface area in the range P/P0: 0.05–0.3
- (8)
- Calculating the porosity, using the appropriate model.
- (b)
- The methods and models applied:
- (1)
- BET method for determination of the total SSA
- (2)
- V-t method for the SSA corresponding to pores smaller than 2 nm (micropores) and larger than 2 nm (external surface area)
- (3)
- BJH method for determination of SSA and pore volume for pores bigger than 3 nm and characterization of PSD (also for pores larger than 3 nm).
2.3.4. pH Values
2.3.5. Water Holding Capacity (WHC)
2.3.6. Carbonate CO2
3. Results and Discussion
3.1. Physicochemical Properties of Feedstock and Biochars
3.1.1. Proximate, Ultimate and Elements Composition
Ash % | C % | H % | N % | O by diff.% | Pmg·kg−1 | Kmg·kg−1 | Clmg·kg−1 | Smg·kg−1 | Camg·kg−1 | Simg·kg−1 | |
---|---|---|---|---|---|---|---|---|---|---|---|
GHW 1 Ppper | 6.9 | 42.5 | 5.8 | 1.2 | 44.7 | 1638 | 20003 | 12100 | 2670 | 15303 | 1330 |
GHW 2 Tomato | 35 | 30 | 4.5 | 3.4 | 45 | 10163 | 49455 | 14531 | 25873 | 78576 | 440 |
Oak Wood | 2.8 | 52 | 6.7 | 1.6 | 38 | 800 | 13800 | 220 | 200 | 15500 | 204 |
Wood SBB | 4.0 | 46 | 5.8 | 0.5 | 42 | 598 | 3098 | 226 | 500 | 7981 | 5204 |
Beech Wood | 2.5 | 47 | 6.4 | 0.2 | 49 | 105 | 1331 | 357 | 200 | 2965 | 245 |
Chicken Manure | 17 | 39 | 5.3 | 4.3 | 39 | 12711 | 23459 | 4700 | 5874 | 40678 | 5393 |
Swine Manure | 25 | 36.0 | 4.9 | 1.9 | 37 | 29613 | 17270 | 4700 | 6667 | 28212 | 19061 |
Rice Husk | 18 | 36.0 | 5.2 | 0.3 | 38 | 160 | 484 | 41 | 311 | 1626 | 76857 |
Pyrolysis Biochars | |||||||||||
GHW 1 600 °C/60min | 25 | 70 | 1.2 | 0.9 | 9 | 4299 | 48978 | 28135 | 4159 | 43652 | 13707 |
GHW 1 600 °C/60min/1% O2 | 19 | 67 | 1.5 | 1.3 | 9.3 | 3647 | 51807 | 28000 | 4575 | 37685 | 5764 |
GHW 1 400 °C/60min | 27 | 59 | 2.9 | 1.2 | 12 | 3519 | 39562 | 21196 | 3791 | 37702 | 24489 |
Oak 400 °C/60min | 11 | 72 | 3.2 | 0.3 | 14 | 718 | 9700 | 1551 | 314 | 31857 | 15966 |
Oak 600 °C/60min | 10 | 79 | 1.8 | 0.1 | 6 | 794 | 11508 | 3884 | 616 | 29530 | 6835 |
Small Scale Gasification | |||||||||||
GHW1 steam 750 °C | 27 | 65.9 | 0.8 | 0.20 | 9.8 | 6603 | 51609 | 19977 | 4637 | 41088 | 24466 |
GHW1 air 750 °C | 25 | 66.5 | 0.8 | 0.50 | 15.1 | 4415 | 73769 | 33405 | 4294 | 37328 | 15468 |
GHW1 inert 750 °C | 31 | 60.1 | 0.6 | 0.10 | 10.4 | 1768 | 27214 | 4782 | 1245 | 9080 | 12610 |
GHW1 air 600 °C | 37 | 51.4 | 1.4 | 0.20 | 13.3 | 2924 | 49063 | 11667 | 2264 | 18963 | 7582 |
GHW1 steam 600 °C | 37 | 54.8 | 0.96 | 0.20 | 10.9 | 2655 | 39940 | 7789 | 2139 | 2780 | 5272 |
RH steam 750 °C | 83 | 15.1 | 0.18 | 0.1 | 0.53 | 425 | 4703 | 28 | 125 | 4251 | 364759 |
RH air 750 °C | 82 | 12 | 0.40 | 0.16 | 0.88 | 2215 | 5659 | 711 | 467 | 9314 | 492490 |
CM steam 750 °C | 78 | 25 | 0.52 | 0.56 | 0.58 | 48519 | 47302 | 5000 | 11146 | 260317 | 37950 |
CM air 750 °C | 86 | 7 | 0.33 | 0.2 | 0.0 | 8929 | 23284 | 1800 | 3731 | 161043 | 261152 |
SM air 750 °C | 77 | 21 | 0.30 | 0.3 | 3.90 | 23750 | 30515 | 2300 | 11400 | 59140 | 88502 |
SM steam 750 °C | 62 | 34 | 0.40 | 0.5 | 4.60 | 56456 | 35444 | 3200 | 11397 | 54193 | 95397 |
Larger Scale Gasification | |||||||||||
GHW1 670 °C | 33.5 | 59 | 1.2 | 0.8 | 3.8 | 3100 | 44000 | 28700 | 4900 | 37000 | 46000 |
GHW1 750 °C | 26.5 | 59 | 1.3 | 0.9 | 4.5 | 3000 | 59000 | 36200 | 3700 | 35000 | 44000 |
Wood SBB 670 °C | 10.7 | 82 | 1.5 | 0.8 | 2.9 | 2600 | 11000 | 720 | 470 | 23000 | 17000 |
Beech wood 670 °C | 23.8 | 72.3 | 1.2 | 0.4 | 0.6 | 700 | 13000 | 1130 | 240 | 16000 | 85000 |
Beech wood & GHW2 670 °C | 17.3 | 77 | 1.3 | 0.68 | 1.6 | 2400 | 39000 | 11400 | 6400 | 28000 | 9300 |
Wood SBB & GHW2 670 °C | 22.5 | 67.9 | 1.4 | 0.95 | 0.3 | 6600 | 36000 | 9150 | 11000 | 55000 | 20000 |
3.2. Product Distribution
3.2.1. Effect of Temperature and Residence Time on Yield of Biochar
3.2.3. Biochar Properties of Agronomic Relevance (WHC, Density, pH, EC, Salt Content)
WHC (%) | Bulk Density (kg·m3) | True Density (g·cm3) | EC (μS·cm−1) | pH | Salt (g·kg−1) | Salt (g·L−1) | |
---|---|---|---|---|---|---|---|
Slow Pyrolysis | |||||||
GHW 1 600 °C/60min | 139 | 150 | 1.89 | 17300 | 9.3 | 46.8 | 7.03 |
GHW 1 400 °C/60 min | - | 197 | 1.67 | 16400 | 9.4 | 44.6 | 8.8 |
GHW 1 600 °C/60min /1% O2 | - | 136 | 1.68 | 13300 | 9.0 | 36 | 4.9 |
Oak 600 °C/60min | 77 | 231 | 1.7 | 1660 | 9.7 | 4.5 | 1.04 |
Oak 400 °C/60min | 7.5 | 273 | 1.56 | 1320 | 8.3 | 3.6 | 0.48 |
GHW 1 steam 600 °C | 75 | n.a. | n.a. | n.a. | 12.0 | n.a. | n.a. |
GHW 1 air 600 °C | 82.5 | n.a. | n.a. | n.a. | 9.9 | n.a. | n.a. |
GHW 1 inert 750 °C | 162.5 | n.a. | n.a. | n.a. | 10.6 | n.a. | n.a. |
GHW 1 steam 750 °C | 194 | n.a. | n.a. | n.a. | 11.6 | n.a. | n.a. |
GHW 1 air 750 °C | 227.5 | n.a. | n.a. | n.a. | 10.6 | n.a. | n.a. |
RH steam 750 °C | 74 | 202 | 2.32 | 1820 | 8.9 | 2.4 | 0.49 |
RH air 750 °C | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
CM steam 750 °C | 52 | 412 | 2.56 | 39600 | 12.4 | 52.3 | 21.5 |
CM air 750 °C | 23 | 760 | 2.5 | 42800 | 12.3 | 56.7 | 43.1 |
SM steam 750 °C | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
SM air 750 °C | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
GHW 1 670 °C | 284 | 104 | 1.8 | 11700 | 11 | 32.6 | 3.4 |
GHW 1 750 °C | 234 | 129 | 1.8 | 12900 | 11.5 | 67.4 | 8.75 |
Wood SBB 670 °C | 217 | 102 | 1.75 | 598 | 8.5 | 1.68 | 0.17 |
Beech wood 670 °C | 86 | 143 | 2.1 | 2030 | 11.9 | 5.5 | 0.79 |
Beech wood and GHW 2 blend (80%–20%) 670 °C | 171 | 131 | 1.7 | 5960 | 10.2 | 16.7 | 2.19 |
Wood SBB and GHW 2 670 °C | 210 | 113 | 1.8 | 9380 | 11 | 25.7 | 2.9 |
3.3. Polycyclic Aromatic Hydrocarbon Levels
3.4. Surface Properties (Total and Specific Surface Area, Pore Volume and Pore Size)
3.4.1. Scanning Electron Microscopy
3.4.2. Surface Area, Pore Volume and Relation to Water Holding Capacity
Total SA (m2·g−1) | WHC (%) | Total PV cm3·g−1 | Total SA (m2·g−1) | Micropore volume (cm3·g−1) | Micropore SSA (m2·g−1) | Micropore SSA (m2·g−1) | Micropore volume (cm3·g−1) | |
---|---|---|---|---|---|---|---|---|
Sample | BET / N2 | BET/N2 | BET /CO2 | DR / CO2 | DR / CO2 | NLDFT (<1.5nm) | NLDFT (<1.5nm) | |
Small scale gasification | ||||||||
GHW 1 air 600 °C | 8.7 | 82.5 | 0.0117 | 81 | 0.069 | 159 | 162 | 0.053 |
GHW 1 N2 600 °C | 6.9 | 69 | 0.0112 | 80 | 0.038 | 88 | 91 | 0.026 |
GHW 1 steam 600 °C | 15.3 | 75 | 0.0172 | 152 | 0.038 | 87 | 91 | 0.0262 |
GHW 1 air/steam blend 750 °C | 99.5 | 140.6 | 0.009 | 37 | 0.022 | 49 | 59.8 | 0.0177 |
GHW 1 N2 750 °C | 176 | 162.5 | 0.1099 | 163 | 0.073 | 169 | 254 | 0.087 |
GHW1 steam750 °C | 355 | 194 | 0.2567 | 320 | 0.108 | 251 | 447.9 | 0.158 |
GHW1 air 750 °C | 239 | 227.5 | 0.1275 | 335 | 0.129 | 299 | 540 | 0.1745 |
Large scale gasification | ||||||||
GHW 1 670 °C | 30.87 | 284 | 0.0327 | 239 | 0.14 | 325 | 365 | 0.082 |
GHW 1 750 °C | 52.5 | 234 | 0.0413 | 248 | 0.143 | 333 | 364 | 0.085 |
Wood SBB 670 °C | 196 | 217 | 0.1137 | 314 | 0.21 | 466 | 461 | 0.108 |
Beech wood 670 °C | 54 | 86 | 0.0377 | 252 | 0.149 | 346 | 372 | 0.087 |
Beech wood. And GHW 2 (80%–20%) 670 °C | 67.1 | 171 | 0.0472 | 273 | 0.168 | 390 | 416 | 0.095 |
Wood SBB and GHW 2 (80%–20%) 670 °C | 93.5 | 210.4 | 0.0651 | 202 | 0.124 | 288 | 302 | 0.071 |
3.5. pH of Biochar Samples
3.6. Heavy Metals and PCB/Dioxins Furans
4. Conclusions and Prospects for Biochar Research
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Laird, D.A. The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy 2008, 100, 178–181. [Google Scholar] [CrossRef]
- Montanarella, L.; Lugato, E. The Application of Biochar in the EU: Challenges and Opportunities, Review. Agronomy 2013, 3, 462–473. [Google Scholar] [CrossRef]
- Field, J.L.; Keske, C.M.H.; Birch, G.L.; Defoort, M.W.; Cotrufo, M.F. Distributed biochar and bioenergy coproduction: a regionally specific case study of environmental benefits and economic impacts. GCB Bioenergy 2013, 5, 177–191. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: Sterling, VA, USA, 2012; pp. 127–146. [Google Scholar]
- Sohi, S.; Lopez-Capel, E.; Krull, E.; Bol, R. Biochar’s roles in soil and climate change: A review of research needs. CSIRO Land Water Sci. Rep. 2009, 5, 1–57. [Google Scholar]
- Kimetu, J.M.; Lehmann, J.; Ngoze, S.O.; Mugendi, D.N.; Kinyangi, J.M.; Riha, S.; Verchot, L.; Recha, J.W.; Pell, A.N. Reversibility of Soil Productivity Decline with Organic Matter of Differing Quality Along a Degradation Gradient. Ecosystem 2008, 11, 726–739. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Speir, R.A.; Harris, K.; Das, K.C.; Lee, R.D.; Morris, L.A.; Fisher, D.S. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agrono. J. 2010, 102, 623–633. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R.; Zimmerman, A.R. Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded. Soil. Sci. Total Environ. 2014, 487, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Smider, B.; Singh, B. Agronomic performance of a high ash biochar in two contrasting soils. Agric. Ecosyst. Environ. 2014, 191, 99–107. [Google Scholar] [CrossRef]
- Rutherford, D.W.; Wershaw, R.L.; Rostad, C.E.; Kelly, C.N. Effect of formation conditions on biochars: Compositional and structural properties of cellulose, lignin, and pine biochars. Biomass Bioenergy. 2012, 46, 693–701. [Google Scholar] [CrossRef]
- Herath, H.M.S.K.; Camps-Arbestain, M.; Hedley, M. Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 2013, 209, 188–197. [Google Scholar] [CrossRef]
- Rosa, J.M.; Paneque, M.; Miller, A.Z.; Knicker, H. Relating physical and chemical properties of four different biochars and their application rate to biomass production of Loliumperenne on a Calcic Cambisol during a pot experiment of 79 days. Sci. Total Environt. 2014, 499, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, L.M.; Farrell, M.; Van Zwieten, L.; Krull, E.S. Plant growth responses to biochar addition: An Australian soils perspective. Biol. Fertil. Soils 2014, 50, 1035–1045. [Google Scholar] [CrossRef]
- Rogovska, N.; Laird, D.A.; Rathke, S.J.; Karlen, D.L. Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma 2014, 230, 340–347. [Google Scholar] [CrossRef]
- Chan, K.Y.; van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Kammann, C.I.; Schmidt, H.P.; Messerschmidt, N.; Linsel, S.; Steffens, D.; Müller, C.; Koyro, H.W.; Conte, P.; Joseph, S. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 2015. [Google Scholar] [CrossRef]
- Glaser, B.; Wiedner, K.; Seelig, S.; Schmidt, H.P.; Gerber, H. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron. Sustain. Dev. 2014, 35, 667–678. [Google Scholar] [CrossRef]
- Huang, M.; Yang, L.; Qin, H.; Jiang, L.; Zou, Y. Quantifying the effect of biochar amendment on soil quality and crop productivity in Chinese rice paddies. Field Crops Res. 2013, 154, 172–177. [Google Scholar] [CrossRef]
- Schimmelpfennig, S.; Müller, C.; Grünhage, L.; Koch, C.; Kammann, C. Biochar, Hydrochar and Uncarbonized Feedstock Application to Permanent Grassland—Effects on Greenhouse Gas Emissions and Plant Growth. Agric. Ecosyst. Environ. 2014, 191, 39–52. [Google Scholar] [CrossRef]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; Lentz, R.D.; Nichols, K.A. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 2012, 41, 973–989. [Google Scholar] [CrossRef] [PubMed]
- Schimmelpfennig, S.; Glaser, B. One step forward toward characterization: some important material properties to distinguish biochars. J. Environ. Qual. 2012, 41, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
- Verheijen, F.G.A.; Jeffery, S.; Bastos, A.C.; van der Velde, M.; Diafas, I. Biochar Application to Soils, A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; EUR24099EN; Office for the Official Publications of the European Communities: Luxembourg, Luxembourg, 2009; p. 149. [Google Scholar]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Graber, E.R.; Ameloot, N.; Bastos, A.C.; Sohi, S.; Knicke, H. Biochars in soils: new insights and emerging research needs. Eur. J. Soil Sci. 2014, 65, 22–27. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Ojeda, G.; Mattana, S.; Àvila, A.; Alcañiz, J.M.; Volkmann, M.; Bachmann, J. Are soil–water functions affected by biochar application? Geoderma 2015, 249, 1–11. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, R.A. Short Communication, Effect of Biochar Amendment on Sorption and Leaching of Nitrate, Ammonium, And Phosphate in a Sandy Soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Mimmo, T.; Panzacchi, P.M.; Baratieri, C.A.; Davies, G. Effect of pyrolysis temperature on Miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biomass Bioenergy 2014, 62, 149–157. [Google Scholar] [CrossRef]
- Manya, J.J. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 2012, 46, 7939–7954. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Zimmerman, A.R.; Harris, W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Li, X.; Shen, Q.; Zhang, D.; Mei, X.; Ran, W. Functional Groups Determine Biochar Properties (pH and EC) as Studied by Two-Dimensional 13C NMR Correlation Spectroscopy. PLoS ONE 2013. [Google Scholar] [CrossRef]
- Sun, H.; Hockaday, W.C.; Masiello, C.A.; Zygourakis, K. Multiple Controls on the Chemical and Physical Structure of Biochars. Ind. Eng. Chem. Res. 2012, 51, 3587–3597. [Google Scholar] [CrossRef]
- Crombie, K.; Mašek, O. Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. GCB Bioenergy 2015, 7, 349–361. [Google Scholar] [CrossRef]
- Mašek, O.; Brownsort, P.; Cross, A.; Sohi, S. Influence of production conditions on the yield and environmental stability of biochars. Fuel. 2013, 103, 151–155. [Google Scholar] [CrossRef]
- Budai, A.; Wang, L.; Gronli, M.; Strand, L.T.; Antal, M.J.; Abiven, S.; Dieguez-Alonso, A.; Anca-Couce, A.; Rasse, D.P. Surface Properties and Chemical Composition of Corncob and Miscanthus Biochars: Effects of Production Temperature and Method. J. Agric. Food Chem. 2014, 62, 3791–3799. [Google Scholar] [CrossRef] [PubMed]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A Review of Biochar and Its Use and Function in Soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Singh, B.; Singh, B.P.; Cowie, A.L. Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res. 2010, 48, 516–525. [Google Scholar] [CrossRef]
- Novak, J.M.; Lima, I.; Xing, B.; Gaskin, J.W.; Steiner, C.; Das, K.; Ahmedna, M.; Rehrah, D.; Watts, D.W.; Busscher, W.J. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals. Environ. Sci. 2009, 3, 195–206. [Google Scholar]
- Karhu, K.; Mattila, T.; Bergström, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agr. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Yu, O.Y.; Raichle, B.; Sink, S. Impact of biochar on the water holding capacity of loamy sand soil. Int. J. Energy Environ. Eng. 2013, 4, 1–9. [Google Scholar] [CrossRef]
- Zhang, J.; You, C. Water Holding Capacity and Absorption Properties of Wood Chars. Energy Fuels 2013, 27, 2643–2648. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Li, G.; Andersen, M.N.; Liu, F. Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manag. 2014, 138, 37–44. [Google Scholar] [CrossRef]
- Kinney, T.J.; Masiello, C.A.; Dugan, B.; Hockaday, W.C.; Dean, M.R.; Zygourakis, K.; Barnes, R.T. Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 2012, 41, 34–43. [Google Scholar] [CrossRef]
- Gray, M.; Johnson, M.; Dragila, M.I.; Kleber, M. Water uptake in biochars: The roles of porosity and Hydrophobicity. Biomass Bioenergy 2014, 61, 196–205. [Google Scholar] [CrossRef]
- Jeffery, S.; Bezemer, T.M.; Cornelis, G.; Kuyper, T.W.; Lehmann, J.; Mommer, L.; Saran, P.S.; van de Voorde, T.F.J.; Wardlevand, D.A.; Groenigen, J.W. The way forward in biochar research: targeting trade-offs, between the potential wins. GCB Bioenergy 2015, 7, 1–13. [Google Scholar] [CrossRef]
- Shen, W.; Li, Z.; Liu, Y. Surface Chemical Functional Groups Modification of Porous Carbon. Recent Pat. Chem. Eng. 2008, 1, 27–40. [Google Scholar] [CrossRef]
- Morales, V.L.; Pérez-Reche, F.J.; Hapca, S.M.; Hanley, K.L.; Lehmann, J.; Zhang, W. Reverse Engineering of Biochar. Bioresour. Technol. 2015, 183, 163–174. [Google Scholar] [CrossRef] [PubMed]
- IBI. Standardized Product Definition and Product Testing Guidelines for Biochar that Isused in Soil; The International Biochar Initiative (IBI): Philadelphia, PA, USA, 2012. [Google Scholar]
- EBC. European Biochar Certificate: Guidelines for a Sustainable Production of Biochar; European Biochar Foundation (EBC): Arbaz, Switzerland, 2015. [Google Scholar]
- Peterson, S.C.; Jackson, M.A. Simplifying pyrolysis: Using gasification to produce corn stover and wheat straw biochar for sorptive and horticultural media. Ind. Crop. Prod. 2014, 53, 228–235. [Google Scholar] [CrossRef]
- Lugato, E.; Vaccari, F.; Genesio, L.; Baronti, S.; Pozzi, A.; Rack, M.; Woods, J.; Simonetti, G.; Montanarella, L.; Miglietta, F. An energy-biochar chain involving biomass gasification and rice cultivation in Northern Italy. GCB Bioenergy 2012. [Google Scholar] [CrossRef]
- The Biomass Environmental Assessment Tool, 2nd ed.; Provided by Defra, the Biomass Energy Centre and the Environment Agency as an aid to assessing the likely environmental impact of a biomass energy project; Defra: London, UK, 1990.
- Tsai, W.T.; Liu, S.C.; Chen, H.R.; Chang, Y.M.; Tsai, Y.L. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 2012, 89, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Gaunt, J.L.; Lehmann, J. Energy Balance and Emissions Associated with Biochar Sequestration and Pyrolysis Bioenergy Production. J. Environ. Sci. Technol. 2008, 42, 4152–4158. [Google Scholar] [CrossRef]
- Galinato, S.P.; Yoder, J.K.; Granatstein, D. The economic value of biochar in crop production and carbon sequestration. Energy Policy 2011, 39, 6344–6350. [Google Scholar] [CrossRef]
- Ahrenfeldt, J.; Thomsen, T.P.; Henriksen, U.; Clausen, R. Biomass gasification cogeneration: A review of state of the art technology and near future perspectives. Appl. Therm. Eng. 2013, 50, 1407–1417. [Google Scholar] [CrossRef]
- Hansen, V.; Müller-Stöver, D.; Ahrenfeldt, J.; Holm, J.K.; Henriksen, U.B.; Hauggaard-Nielsen, H. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass Bioenergy 2015, 72, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Shackley, S.; Carter, S.; Knowles, T.; Middelink, E.; Haefele, S.; Sohi, S.; Cross, A.; Haszeldine, S. Sustainable gasification–biochar systems? A case-study of rice-husk gasificationin Cambodia, Part I: Context, chemical properties, environmental and health and safety issues. Energy Policy 2012, 42, 49–58. [Google Scholar] [CrossRef]
- Shackley, S.; Carter, S.; Knowles, T.; Middelink, E.; Haefele, S.; Haszeldine, S. Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part II: Field trial results, carbon abatement, economic assessment and conclusions. Energy Policy 2012, 41, 618–623. [Google Scholar] [CrossRef]
- Project FERTIPLUS ‘Reducing mineral fertilizers and agro-chemicals by recycling treated organic waste as compost and bio-char’. Available online: http://www.fertiplus.eu (accessed on 26 October 2015).
- Beuth Standard Solutions. Available online: http://www.beuth.de/en/ (accessed on 26 October 2015).
- BSI Shop. Available online: http://shop.bsigroup.com/Navigate-by/Standards (accessed on 26 October 2015).
- Dong, C.D.; Chen, F.; Chen, C.W. Determination of Polycyclic Aromatic Hydrocarbons in Industrial Harbor Sediments by GC-MS. Int. J. Environ. Res. Public Health 2012, 9, 2175–2188. [Google Scholar] [CrossRef] [PubMed]
- Van Krevelen, D.W. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 1950, 29, 269–84. [Google Scholar]
- Spokas, K.A. Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef]
- Buss, W.; Mašek, O.; Graham, M.; Wüst, D. Inherent organic compounds in biochar—Their content, composition and potential toxic effects. J. Environ. Manag. 2015. [Google Scholar] [CrossRef] [PubMed]
- Hale, S.E.; Lehmann, J.; Rutherford, D.; Zimmerman, A.R.; Bachmann, R.T.; Shitumbanuma, V.; O’Toole, A.; Sundqvist, K.L.; Arp, H.P.; Cornelissen, G. Quantifying the Total and Bioavailable Polycyclic Aromatic Hydrocarbons and Dioxins in Biochars. Environ. Sci. Technol. 2012, 46, 2830–2838. [Google Scholar] [CrossRef] [PubMed]
- Spokas, K.; Novak, J.M.; Stewart, C.E.; Cantrell, K.B.; Uchimiya, M.; Du Saire, M.G.; Ro, K.S. Qualitative analysis of volatile organic compounds on biochars. Chemosphere 2011, 85, 869–882. [Google Scholar] [CrossRef] [PubMed]
- Yargicoglu, E.N.; Sadasivam, B.Y.; Reddy, K.R.; Spokas, K. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 2015, 36, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Yargicoglu, E.N.; Reddy, K.R. Characterization and Surface Analysis of Commercially Available Biochars for Geoenvironmental Applications. In Proceedings of the IFCEE2015, San Antonio, TX, USA, 17–21 March 2015.
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, Y.; Ryu, C.; Park, Y.K. Slow pyrolysis of rice straw: Analysis of products properties, carbon and energy yields. Bioresour. Technol. 2014, 155, 63–70. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fryda, L.; Visser, R. Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis. Agriculture 2015, 5, 1076-1115. https://doi.org/10.3390/agriculture5041076
Fryda L, Visser R. Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis. Agriculture. 2015; 5(4):1076-1115. https://doi.org/10.3390/agriculture5041076
Chicago/Turabian StyleFryda, Lydia, and Rianne Visser. 2015. "Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis" Agriculture 5, no. 4: 1076-1115. https://doi.org/10.3390/agriculture5041076
APA StyleFryda, L., & Visser, R. (2015). Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis. Agriculture, 5(4), 1076-1115. https://doi.org/10.3390/agriculture5041076