The Role of Bioenergy in Enhancing Energy, Food and Ecosystem Sustainability Based on Societal Perceptions and Preferences in Asia
Abstract
:1. Introduction
2. Bioenergy Policy in Asia
2.1. Philippines
- •
- Within three months from the effectivity of the Act, a minimum of one percent biodiesel was required to be blended into all diesel engine fuels sold in the member economy;
- •
- Within two years from the effectivity of the Act, the feasibility of mandating a minimum of two percent blend of biodiesel was assessed taking into account considerations including but not limited to domestic supply and availability of locally-sourced biodiesel component;
- •
- Within two years from the effectivity of the Act, at least five percent bioethanol was to comprise the annual total volume of gasoline fuel sold and distributed by all oil companies in the country;
- •
- Within four years from the effectivity of the Act, the feasibility of mandating a minimum of 10 percent blend of bioethanol into all gasoline fuel distributed and sold by all oil companies was also assessed; and
- •
- According to National Biofuels Plan 2013–2030, the blending requirements for both biodiesel and bioethanol are to be increased to 20 percent by 2030.
2.2. India
2.3. China
3. Methods and Materials
3.1. Conjoint Analysis and Framework
3.2. Survey Administration
3.3. Case study Areas for the CAPI Survey with Farmers
4. Results
4.1. Demographic Profile of Respondents
4.2. Knowledge and Perceptions on Sustainable Bioenergy
4.3. Preferences on Sustainable Bioenergy
5. Summary and Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bindraban, P.S.; Bulte, E.H.; Conijn, S.G. Can large-scale biofuels production be sustainable by 2020? Agric. Syst. 2009, 101, 197–199. [Google Scholar] [CrossRef]
- REN21. Renewables 2015 Global Status Report; REN21 Secretariat: Paris, France, 2015. [Google Scholar]
- Tilman, D.; Socolow, R.; Foley, J.A.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C.; Williams, R. Beneficial Biofuels: The Food, Energy, and Environment Trilemma. Science 2009, 325, 270–271. [Google Scholar] [CrossRef] [PubMed]
- Doornbosch, R.; Steenblik, R. Biofuels: Is the Cure Worse than the Disease; OECD: Paris, France, 2007. [Google Scholar]
- Eickhout, B.; van den Born, G.J.; Notenboom, J.; van Oorschot, M.; Ros, J.P.M.; van Vuuren, D.P.; Westhoek, H.J. Local and Global Consequences of the EU Renewable Directive for Biofuels; Netherlands Environmental Assessment Agency: Bilthoven, The Netherlands, 2008. [Google Scholar]
- Jumbe, C.B.L.; Msiska, F.B.M.; Madjera, M. Biofuels development in Sub-Saharan Africa: Are the policies conducive? Energy Policy 2009, 37, 4980–4986. [Google Scholar] [CrossRef]
- Lane, J. Biofuels Mandates Around the World: 2015. 2014. Available online: http://www.biofuelsdigest.com/bdigest/2014/12/31/biofuels-mandates-around-the-world-2015/ (accessed on 30 April 2015).
- Kaditi, E.A. Bio-energy policies in a global context. J. Clean. Prod. 2009, 17, S4–S8. [Google Scholar] [CrossRef]
- Hansson, J.; Berndes, G. Future bioenergy trade in the EU: Modelling trading options from a cost-effectiveness perspective. J. Clean. Prod. 2009, 17, S27–S36. [Google Scholar] [CrossRef]
- Zah, R.; Ruddy, T.F. International trade in biofuels: An introduction to the special issue. J. Clean. Prod. 2009, 17, S1–S3. [Google Scholar] [CrossRef]
- FAO. Regional Overview of Food Insecurity Asia and the Pacific, Towards A Food Secure Asia and the Pacific; FAO: Bangkok, Thailand, 2015. [Google Scholar]
- Clancy, J.S. Are biofuels pro-poor? Assessing the evidence. Eur. J. Dev. Res. 2008, 20, 416–431. [Google Scholar] [CrossRef]
- Headey, D.; Fan, S. Anatomy of a crisis : The causes and consequences of surging food prices. Agric. Econ. 2008, 39, 375–391. [Google Scholar] [CrossRef]
- Rosegrant, M. Biofuels and Grain Prices: Impacts and Policy; International Food Policy Research Institute: Washington, DC, USA, 2008. [Google Scholar]
- Ciaian, P.; Kancs, D. Food, energy and environment: Is bioenergy the missing link? Food Policy 2011, 36, 571–580. [Google Scholar] [CrossRef]
- Ciaian, P.; Kancs, D. Interdependencies in the energy–bioenergy–food price systems: A cointegration analysis. Resour. Energy Econ. 2011, 33, 326–348. [Google Scholar] [CrossRef]
- Kuchler, M.; Linnér, B. Challenging the food vs. fuel dilemma: Genealogical analysis of the biofuel discourse pursued by international organizations. Food Policy 2012, 37, 581–588. [Google Scholar] [CrossRef]
- IFAD. Rural Poverty Report 2011—New realities, new challenges: New opportunities for tomorrow’s generation; IFAD: Rome, Italy, 2010. [Google Scholar]
- Karp, A.; Richter, G.M. Botany Meeting the challenge of food and energy security. J. Exp. Bot. 2011, 62, 3263–3271. [Google Scholar] [CrossRef] [PubMed]
- WorldWatchInstitute. Biofuels for Transportation Global Potential and Implications For Sustainable Agriculture and Energy in the 21st Century; WorldWatchInstitute: Washington, DC, USA, 2006. [Google Scholar]
- UNEP, Oeke-Institut, IEA. The Bioenergy and Water Nexus; UNEP: Paris, France, 2011. [Google Scholar]
- WWAP. The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk; UNESCO: Paris, France, 2012. [Google Scholar]
- Coelho, S.T. Land and Water: Linkages to Bioenergy. In Global Energy Assessment Toward a Sustainable Future; GEA-Writing-Team, Ed.; Cambridge University Press: Cambridge, UK, 2012; pp. 1459–1526. [Google Scholar]
- Wakker, E. Greasy Palms—The Social and Ecological Impacts of Large-scale Oil Palm Plantation Development in Southeast Asia; Friends of the Earth: London, UK, 2005. [Google Scholar]
- Sheil, D.; Casson, A.; Meijaard, E.; van Noordwijk, M.; Gaskell, J.; Sunderland-Groves, J.; Wertz, K.; Kanninen, M. The Impacts and Opportunities of Oil Palm in Southeast Asia—What Do We Know and What Do We Need to Know? Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2009. [Google Scholar]
- Wilcove, D.S.; Giam, X.; Edwards, D.P.; Fisher, B.; Koh, L.P. Navjot’s nightmare revisited: Logging, agriculture, and biodiversity in Southeast Asia. Trends Ecol. Evol. 2013, 28, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Fitzherbert, E.B.; Struebig, M.J.; Morel, A.; Danielsen, F.; Brühl, C.A.; Donald, P.F.; Phalan, B. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 2008, 23, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Brühl, C.A.; Eltz, T. Fuelling the biodiversity crisis: Species loss of ground-dwelling forest ants in oil palm plantations in Sabah, Malaysia (Borneo). Biodivers. Conserv. 2009, 19, 519–529. [Google Scholar] [CrossRef]
- Hurford, A.P.; Harou, J.J. Balancing ecosystem services with energy and food security—Assessing trade-offs from reservoir operation and irrigation investments in Kenya’s Tana Basin. Hydrol. Earth Syst. Sci. 2014, 18, 3259–3277. [Google Scholar] [CrossRef]
- Karlberg, L.; Hoff, H.; Andersson, K.; Binnington, T.; Flores-lópez, F.; Gebrehiwot, S.G.; Johnson, O.; Osbeck, M.; Young, C. Tackling Complexity: Understanding the Food-Energy-Environment Nexus in Ethiopia’s Lake Tana Sub-basin. Water Altern. 2015, 8, 710–734. [Google Scholar]
- Aguilar, F.X.; Thompson, W. Charging into the Blend Wall: Conjoint Analysis of Consumer Willingness to Pay for Ethanol Blend Fuels. In Proceedings of the Agricultural and Applied Economics Association, 2010 Annual Meeting, Denver, CO, USA, 25–27 July 2010.
- Jensen, K.L.; Clark, C.D.; English, B.C.; Menard, R.J.; Skahan, D.K.; Marra, A.C. Willingness to pay for E85 from corn, switchgrass, and wood residues. Energy Econ. 2010, 32, 1253–1262. [Google Scholar] [CrossRef]
- Acosta, L.A.; Enano, N.H.; Magcale-Macandog, D.B.; Engay, K.G.; Herrera, M.N.Q.; Nicopior, O.B.S.; Sumilang, M.I.V.; Eugenio, J.M.A.; Lucht, W. How sustainable is bioenergy production in the Philippines? A conjoint analysis of knowledge and opinions of people with different typologies. Appl. Energy 2013, 102, 241–253. [Google Scholar] [CrossRef]
- Acosta, L.A.; Eugenio, E.A.; Enano, N.H.; Beatrice, P.; Macandog, M.; Mae, J.; Eugenio, A.; Lopez, M.A.; Salvacion, A.R.; Lucht, W. Sustainability trade-offs in bioenergy development in the Philippines: An application of conjoint analysis. Biomass Bioenergy 2014, 64, 20–41. [Google Scholar] [CrossRef]
- Cronshaw, I.; Grafton, Q. Reflections on Energy Security in the Asia Pacific. Asia Pacific Policy Stud. 2013, 1, 127–143. [Google Scholar] [CrossRef]
- Intriligator, M.D. Energy Security in the Asia-Pacific Region. Contemp. Econ. Policy 2014, 33, 221–227. [Google Scholar] [CrossRef]
- Asia-Society and IRRI. Never an Empty Bowl: Sustaining Food Security in Asia; Asia Society and International Rice Research Institute: Manila, Philippines, 2010. [Google Scholar]
- ADB. Food Security in Asia and the Pacific; Asian Development Bank (ADB): Manila, Philippines, 2013; p. 131. [Google Scholar]
- CISS. Food Security in Asia—A Report for Policymakers; CISS: Sydney, Australia, 2013. [Google Scholar]
- EIU. Food Security in Focus: Asia & Pacific 2014; EIU: London, UK, 2014. [Google Scholar]
- Acosta, L.A.; Eugenio, E.A.; Macandog, P.B.M.; Magcale-Macandog, D.B.; Lin, E.K.; Abucay, E.R.; Cura, A.L.; Primavera, M.G. Loss and damage from typhoon-induced floods and landslides in the Philippines: Community Perceptions on climate impacts and adaptation options. Int. J. Glob. Warm. 2016, 9, 33–65. [Google Scholar] [CrossRef]
- Republic-of-the-Philippines. Republic Act No. 9367—An Act to Direct the Use of Biofuels; Republic of the Philippines: Manila, Philippines, 2006.
- USDA. Philippines Biofuels Annual Philippine Biofuels Situation and Outlook; United States Department of Agriculture (USDA): Washington, DC, USA, 2016.
- Zhou, A.; Thomson, E. The development of biofuels in Asia. Appl. Energy 2009, 86, S11–S20. [Google Scholar] [CrossRef]
- Corpuz, P.G. Philippines BIOFUELS ANNUAL—Philippine Bio-fuel Industry Outlook; USDA: Washington, DC, USA, 2009.
- Pacini, H.; Sanches-Pereira, A.; Durleva, M.; Kane, M.; Bhutani, A. The State of the Market: Regulatory, Trade and Development Perspectives; UNCTAD: Geneva, Switzerland, 2013. [Google Scholar]
- USDA. India Biofuels Annual; United States Department of Agriculture (USDA): Washington, DC, USA, 2014; p. 21.
- USDA. India Biofuels Annual 2012; USDA: Washington, DC, USA, 2012.
- Chaliganti, R.; Müller, U. Policy Discourses and Environmental Rationalities Underpinning India’s Biofuel Programme. Environ. Policy Gov. 2016, 28, 16–28. [Google Scholar] [CrossRef]
- Flach, B.; Bendz, K.; Lieberz, S. EU-28 Biofuels Annual EU Biofuels Annual 2014; USDA: Washington, DC, USA, 2014.
- Barros, S. Brazil Biofuels Annual; USDA: Washington, DC, USA, 2014.
- Slette, J.; Aradhey, A. India Biofuels Annual; USDA: Washington, DC, USA, 2014.
- Corpuz, P. Philippines Biofuels Annual Philippine Biofuels Situation and Outlook; USDA: Washington, DC, USA, 2014.
- Wahab, A.G. Malaysia Biofuels Annual; USDA: Washington, DC, USA, 2014.
- Wright, R.T.; Wiyono, I.E. Indonesia Biofuels Annual; USDA: Washington, DC, USA, 2014.
- Anderson-Sprecher, A.; Junyang, J. China Peoples Republic of Biofuels Annual - China’s 2014 Fuel Ethanol Production is Forecast to Increase Six Percent; USDA: Washington, DC, USA, 2014.
- Preechajarn, S.; Prasertsri, P. Thailand Biofuels Annual; USDA: Washington, DC, USA, 2014.
- U.S. Bioenergy Statistics. Available online: http://www.ers.usda.gov/topics/farm-economy/bioenergy/biofuel-feedstock-coproduct-market-data.aspx (accessed on 3 May 2015).
- Singhal, R.; Sengupta, R. Energy Security and Biodiesel. Econ. Polit. Wkly. 2012, 47, 66–73. [Google Scholar]
- Basavaraj, G.; Rao, P.P.; Basu, K.; Reddy, C.R.; Kumar, A.A.; Rao, P.S.; Reddy, B.V.S. Assessing viability of bio-ethanol production from sweet sorghum in India. Energy Policy 2013, 56, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Reuters. India Doubles Ethanol Blending Target to Help Sugar Mills; The Economic Times: New Delhi, India, 2015. [Google Scholar]
- Raju, S.S.; Parappurathu, S.; Chand, R.; Joshi, P.K.; Kumar, P.; Msangi, S. Potential, Policy and Emerging; Policy Paper 27; National Centre for Agricultural Economics and Policy Research: New Delhi, India, 2012. [Google Scholar]
- Bandyopadhyay, K.R. Biofuel Promotion in India for Transport: Exploring the Grey Areas; The Energy and Resources Institute (TERI): New Delhi, India, 2015; p. 12. [Google Scholar]
- Qiu, H.; Huang, J.; Yang, J.; Rozelle, S.; Zhang, Y.; Zhang, Y.; Zhang, Y. Bioethanol development in China and the potential impacts on its agricultural economy. Appl. Energy 2010, 87, 76–83. [Google Scholar] [CrossRef]
- USDA. China—Peoples Republic of Biofuels Annual 2015; USDA: Washington, DC, USA, 2015; p. 14.
- Xu, J.; Yuan, Z. An overview of biomass energy policy in China 2015. Available online: http://www.besustainablemagazine.com/cms2/overview-of-biomass-energy-policy-in-china/ (accessed on 30 March 2016).
- USDA. China-Peoples Republic of, Biofuels Annual; USDA: Washington, DC, USA, 2013; p. 12.
- Sorda, G.; Banse, M.; Kemfert, C. An overview of biofuel policies across the world. Energy Policy 2010, 38, 6977–6988. [Google Scholar] [CrossRef]
- Fuqiang, T. Biofuel Development in China and Its Potential Impacts; International Commission on Irrigation and Drainage (ICID): New Delhi, India, 2014; p. 9. [Google Scholar]
- Huang, J.; Qiu, H.; Yang, J.; Zhang, Y.; Zhang, Y.; Zhang, Y. People’s Republic of China: Status and Potential for the Development of Biofuels and Rural Renewable Energy; Asian Development Bank (ADB): Manila, Philippines, 2009; p. 43. [Google Scholar]
- Lo, K. A critical review of China’s rapidly developing renewable energy and energy efficiency policies. Renew. Sustain. Energy Rev. 2014, 29, 508–516. [Google Scholar] [CrossRef]
- Koizumi, T. Biofuel and food security in China and Japan. Renew. Sustain. Energy Rev. 2013, 21, 102–109. [Google Scholar] [CrossRef]
- Acosta-Michlik, L.; Lucht, W.; Bondeau, A.; Beringer, T. Integrated assessment of sustainability trade-offs and pathways for global bioenergy production: Framing a novel hybrid approach. Renew. Sustain. Energy Rev. 2011, 15, 2791–2809. [Google Scholar] [CrossRef]
- Orme, B. SSI Web v7.0—Software for Web Interviewing and Conjoint Analysis; Sawtooth Software, Inc.: Sequim, WA, USA, 2010. [Google Scholar]
- Orme, B. The Sawtooth Software Market Simulator (A Supplement to the CBC v2.6 Manual); Sawtooth Software, Inc.: Sequim, WA, USA, 2006. [Google Scholar]
- Orme, B. CBC/HB v5—Software for Hierarchical Bayes Estimation for CBC Data; Sawtooth Software, Inc.: Sequim, WA, USA, 2009. [Google Scholar]
- Orme, B.; Howell, J. Sawtooth Software Application of Covariates Within Sawtooth Software’s Theory and Practical Example; Sawtooth Software, Inc.: Sequim, WA, USA, 2009. [Google Scholar]
- Lenk, P.J.; DeSarbo, W.S.; Green, P.E.; Young, M.R. Hierarchical Bayes conjoint analysis recovery of partworth heterogeneity from reduced experimental designs. Mark. Sci. 1996, 15, 173–191. [Google Scholar] [CrossRef]
- Orme, B. How to interpret the t-ratio? Sawtooth Software Forum, 2013. Available online: https://sawtoothsoftware.com/forum/4708/how-to-interpret-the-t-ratio (accessed on 30 March 2016).
- BAS. Regional Profile: CALABARZON, CountrySTAT Philippines, 2015. Available online: http://countrystat.bas.gov.ph/?cont=16&r=4 (accessed on 15 April 2015).
- NSO. The 2010 Census of Population and Housing Reveals the Philippine Population at 92.34 Million, Population and Housing, 2012. Available online: http://web0.psa.gov.ph/content/2010-census-population-and-housing-reveals-philippine-population-9234-million (accessed on 12 April 2015).
- McNally, C.A. Sichuan: Driving Capitalist Development Westward. China Q. 2004, 178, 426–447. [Google Scholar] [CrossRef]
Country | Bioethanol | Biodiesel | ||||||
---|---|---|---|---|---|---|---|---|
Feedstock | 2006 * | 2010 | 2014 | Feedstock | 2006 ** | 2010 | 2014 | |
ASIA | ||||||||
China | Corn, Wheat, Cassava | 1647 | 2179 | 2787 | Waste vegetable oil | 273 | 568 | 1133 |
India | Molasses | 1898 | 1522 | 2036 | Jatropha, Pongamia | - | 90 | 130 |
Indonesia | Molasses, Cassava | 163 | 175 | 220 | Palm oil | 65 | 740 | 3650 |
Thailand | Molasses, Cassava | 135 | 451 | 1100 | Palm oil, Waste cooking oil | 2 | 660 | 1200 |
Philippines | Sugarcane | 0 | 10 | 110 | Coconut oil | 0 | 124 | 112 |
Malaysia | None | - | - | - | Palm oil | 435 | 94 | 424 |
OTHERS | ||||||||
USA *** | Corn, Wheat | 18,512 | 50,399 | 54,347 | Soybean oil, Vegetable oil | 949 | 1302 | 4699 |
Brazil | Sugarcane, Corn | 27,140 | 27,965 | 25,605 | Soybean oil, Cotton seed oil | 1608 | 2386 | 3500 |
Europe | Wheat, Corn, Sugar beet | 2816 | 4268 | 5250 | Rapeseed oil, Palm oil, UCO | 9550 | 10,710 | 10,890 |
Attribute Levels | More Desirable | Less Desirable |
---|---|---|
Economic Stability | ||
A. Energy security | ||
1. Domestic energy demand | Low | High |
2. Domestic energy supply | High | Low |
3. Foreign energy trade | Low import | High export |
B. Technology progress | ||
1. R&D investment | High | Low |
2. Technology deployment | High | Low |
3. Energy efficiency | High | Low |
C. Market organization | ||
1. Market incentives | High | Low |
2. Market infrastructure | Good | Poor |
3. Trade constraints | Low | High |
Social equity | ||
A. Food security | ||
1. Food self-sufficiency | Increase | Decrease |
2. Purchasing power | Increase | Decrease |
3. Affordability of food | Increase | Decrease |
B. Social welfare | ||
1. Livelihood sources | Increase | Decrease |
2. Job opportunities | Increase | Decrease |
3. Household lifestyle | Improve | Worsen |
C. Social justice | ||
1. Equal property rights | Support | Hinder |
2. Home displacement | Prevent | Cause |
3. Land dispossession | Prevent | Cause |
Ecological balance | ||
Production potential | ||
1. Potential level | Very high | Low |
High | Very low | |
Moderate | No potential | |
2. Feedstock sources * | Crop/forest residues | Starch-rich crops |
Fast-growing trees | Sugar-rich crops | |
Perennial grasses | Oil-rich crops | |
Resource capacity | ||
1. Effects of population pressure | Production potential unaffected | Production potential affected |
2. Pressure on natural resources | Put less pressure | Put more pressure |
3. Effects landscape and species diversity | Improve diversity | Destroy diversity |
Land management | ||
1. Effects on nature conservation | Support | Conflict |
2. Compatibility with organic farming | Compatible | Incompatible |
3. Availability of good farming practices | Available | Not available |
Determinants (Attributes) | Indicators (Attribute levels) for Specific Type of Biomass | ||
---|---|---|---|
Sugar-rich Crops | Oil Crops | Fast-growing Trees | |
Economic Stability | |||
A. Energy security | Low domestic energy demand | High domestic energy demand | Low domestic energy supply |
B. Technology progress | High R&D investment | Low R&D investment | High technology deployment |
C. Market organization | High market incentives | Low market incentives | Good market infrastructure |
Choose one option: | |||
Social Equity | |||
A. Food security | Increase food self-sufficiency | Increase purchasing power | Increase affordability of food |
B. Social welfare | Increase livelihood sources | Increase job opportunities | Improve household lifestyle |
C. Social justice | Hinder equal property rights | Cause home displacement | Cause land dispossession |
Choose one option: | |||
Ecological Balance | |||
A. Ecosystem capacity | Potential affected by population pressure | Put more pressure on natural resources | Improve landscape and species diversity |
B. Production potential | Very high potential | Moderate potential | Very low potential |
C. Land management | Support nature conservation | Compatible with organic farming | Available good farming practices |
Choose one option: |
Demographic Characteristics | Philippines | India | China | |||
---|---|---|---|---|---|---|
AGRI | Non-AGRI | AGRI | Non-AGRI | AGRI | Non-AGRI | |
(n = 150) | (n = 100) | (n = 90) | (n = 70) | (n = 52) | (n = 116) | |
Age | ||||||
Less than 30 | 40.00 | 73.00 | 7.78 | 2.90 | 42.31 | 71.55 |
Between 31and 40 | 16.00 | 8.00 | 14.44 | 34.78 | 7.69 | 25.86 |
Between 41and 50 | 8.67 | 4.00 | 50.00 | 47.83 | 36.54 | 1.72 |
Between 51 and 60 | 20.00 | 10.00 | 18.89 | 13.04 | 9.62 | 0.86 |
Between 61 and 70 | 11.33 | 5.00 | 5.56 | 1.45 | 3.85 | 0.00 |
Greater than 71 | 4.00 | 0.00 | 3.33 | 0.00 | 0.00 | 0.00 |
Education | ||||||
Grade school | 12.00 | 4.00 | 20.00 | 1.45 | 55.77 | 0.00 |
Secondary school | 21.33 | 8.00 | 13.33 | 0.00 | 0.00 | 1.72 |
Undergraduate | 28.00 | 43.00 | 28.89 | 20.29 | 9.62 | 45.69 |
Graduate | 35.33 | 41.00 | 26.67 | 49.28 | 34.62 | 50.00 |
Technical, etc. | 0.67 | 0.00 | 7.78 | 28.99 | 0.00 | 0.86 |
Others | 2.67 | 4.00 | 3.33 | 0.00 | 0.00 | 1.72 |
Gender | ||||||
Male | 52.00 | 45.00 | 92.22 | 91.30 | 63.46 | 62.93 |
Female | 48.00 | 55.00 | 7.78 | 8.70 | 36.54 | 37.07 |
Domicile | ||||||
Urban area/city | 20.67 | 36.00 | 31.11 | 56.52 | 26.92 | 62.07 |
Suburban/close to city | 18.00 | 26.00 | 15.56 | 33.33 | 3.85 | 14.66 |
Industrial/commercial | 1.33 | 4.00 | 0.00 | 2.90 | 0.00 | 0.86 |
mountain/forest | 11.33 | 3.00 | 2.22 | 1.45 | 1.92 | 4.31 |
farm/agriculture | 43.33 | 23.00 | 51.11 | 5.80 | 63.46 | 12.07 |
River/coastal | 5.33 | 3.00 | 0.00 | 0.00 | 1.92 | 1.72 |
Others | 0.00 | 5.00 | 0.00 | 0.00 | 1.92 | 4.31 |
Place of work | ||||||
Public agency | 28.00 | 16.00 | 24.44 | 7.14 | 3.85 | 5.17 |
Private/NGO | 8.00 | 37.00 | 22.22 | 52.86 | 0.00 | 14.66 |
Field/Farm | 35.33 | 0.00 | 37.78 | 0.00 | 55.77 | 0.00 |
Academe/research | 17.33 | 13.00 | 13.33 | 37.14 | 38.46 | 68.10 |
Others | 11.33 | 34.00 | 2.22 | 2.86 | 1.92 | 12.07 |
Knowledge/ Information Sources | Philippines | India | China | |||
---|---|---|---|---|---|---|
AGRI | Non-AGRI | AGRI | Non-AGRI | AGRI | Non-AGRI | |
(n = 150) | (n = 100) | (n = 90) | (n = 70) | (n = 52) | (n = 116) | |
Knowledge of Bioenergy | ||||||
Familiar with the term bioenergy | 74.0 | 87.0 | 100.0 | 100.0 | 36.5 | 63.8 |
Work is related to bioenergy | 28.4 | 6.1 | 95.6 | 94.3 | 7.7 | 11.2 |
Bioenergy affects food security | 62.4 | 42.0 | 50.0 | 21.4 | 15.4 | 50.9 |
Bioenergy is good for the country | 94.7 | 95.0 | 98.9 | 100.0 | 98.1 | 92.2 |
Sources of information | ||||||
Media | 59.3 | 72.0 | 52.2 | 21.4 | 19.2 | 30.2 |
Internet | 40.7 | 51.0 | 27.8 | 38.6 | 21.2 | 42.2 |
Family | 26.7 | 23.0 | 8.9 | 5.7 | 50.0 | 13.8 |
Colleagues | 49.3 | 34.0 | 15.6 | 22.9 | 1.9 | 9.5 |
Neighbors | 16.7 | 12.0 | 8.9 | 5.7 | 1.9 | 4.3 |
Public officials | 51.3 | 51.0 | 30.0 | 17.1 | 11.5 | 10.3 |
Academe/Science | 76.7 | 85.0 | 36.7 | 58.6 | 32.7 | 62.9 |
Business partners | 22.7 | 22.0 | 18.9 | 45.7 | 7.7 | 11.2 |
Others | 11.6 | 7.1 | 25.6 | 20.0 | 1.9 | 2.6 |
Energy Sources | Types of Energy | AGRI | NON-AGRI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Low | Medium | High | Very High | Do not Know | Low | Medium | High | Very High | Do not Know | ||
Philippines | |||||||||||
All sources | Fossil | 8.7 | 27.3 | 37.3 | 24.7 | 2.0 | 10.0 | 18.0 | 39.0 | 28.0 | 5.0 |
Bioenergy | 2.7 | 18.0 | 47.3 | 30.0 | 2.0 | 4.0 | 14.0 | 43.0 | 35.0 | 4.0 | |
Other Renewables | 3.3 | 20.0 | 49.3 | 23.3 | 4.0 | 4.0 | 15.0 | 49.0 | 25.0 | 7.0 | |
Combined | 4.0 | 12.7 | 38.0 | 37.3 | 8.0 | 1.0 | 10.0 | 34.0 | 47.0 | 8.0 | |
First generation | Sugar-rich crops | 10.7 | 24.7 | 40.7 | 20.0 | 4.0 | 4.0 | 21.0 | 50.0 | 23.0 | 2.0 |
Starch-rich crops | 8.0 | 28.0 | 40.7 | 19.3 | 4.0 | 3.0 | 20.0 | 46.0 | 30.0 | 1.0 | |
Oil-rich crops | 8.7 | 16.7 | 42.0 | 30.7 | 2.0 | 3.0 | 10.0 | 48.0 | 37.0 | 2.0 | |
Second generation | farm/forest residues | 10.7 | 17.3 | 44.7 | 22.7 | 4.7 | 7.0 | 19.0 | 47.0 | 23.0 | 4.0 |
fast-growing trees | 12.0 | 24.0 | 36.0 | 24.0 | 4.0 | 6.0 | 24.0 | 36.0 | 30.0 | 4.0 | |
perennial grasses | 12.7 | 27.3 | 40.7 | 14.7 | 4.7 | 5.0 | 36.0 | 33.0 | 17.0 | 9.0 | |
India | |||||||||||
All sources | Fossil | 5.6 | 4.4 | 40.0 | 48.9 | 1.1 | 1.4 | 4.3 | 60.0 | 34.3 | 0.0 |
Bioenergy | 2.2 | 21.1 | 42.2 | 20.0 | 14.4 | 5.7 | 35.7 | 47.1 | 8.6 | 2.9 | |
Other Renewables | 1.1 | 26.7 | 40.0 | 15.6 | 16.7 | 7.1 | 62.9 | 21.4 | 5.7 | 2.9 | |
Combined | 1.1 | 3.3 | 34.4 | 44.4 | 16.7 | 2.9 | 5.7 | 47.1 | 38.6 | 5.7 | |
First generation | Sugar-rich crops | 17.8 | 31.1 | 21.1 | 8.9 | 21.1 | 12.9 | 54.3 | 27.1 | 1.4 | 4.3 |
Starch-rich crops | 32.2 | 28.9 | 3.3 | 2.2 | 33.3 | 52.9 | 37.1 | 1.4 | 1.4 | 7.1 | |
Oil-rich crops | 57.8 | 4.4 | 3.3 | 1.1 | 33.3 | 80.0 | 8.6 | 2.9 | 2.9 | 5.7 | |
Second generation | farm/forest residues | 11.1 | 32.2 | 16.7 | 5.6 | 34.4 | 5.7 | 45.7 | 38.6 | 5.7 | 4.3 |
fast-growing trees | 7.8 | 26.7 | 43.3 | 18.9 | 3.3 | 5.7 | 47.1 | 42.9 | 2.9 | 1.4 | |
perennial grasses | 52.2 | 7.8 | 2.2 | 4.4 | 33.3 | 77.1 | 11.4 | 2.9 | 2.9 | 5.7 | |
China | |||||||||||
All sources | Fossil | 0.0 | 13.5 | 61.5 | 23.1 | 1.9 | 3.4 | 15.5 | 26.7 | 52.6 | 1.7 |
Bioenergy | 3.8 | 67.3 | 15.4 | 9.6 | 3.8 | 7.8 | 30.2 | 28.4 | 19.8 | 13.8 | |
Other Renewables | 19.2 | 46.2 | 19.2 | 9.6 | 5.8 | 3.4 | 28.4 | 39.7 | 10.3 | 18.1 | |
Combined | 9.6 | 51.9 | 17.3 | 9.6 | 11.5 | 6.9 | 19.0 | 30.2 | 18.1 | 25.9 | |
First generation | Sugar-rich crops | 3.8 | 38.5 | 50.0 | 1.9 | 5.8 | 6.9 | 27.6 | 39.7 | 12.9 | 12.9 |
Starch-rich crops | 3.8 | 44.2 | 40.4 | 9.6 | 1.9 | 4.3 | 18.1 | 40.5 | 26.7 | 10.3 | |
Oil-rich crops | 5.8 | 65.4 | 19.2 | 3.8 | 5.8 | 6.0 | 18.1 | 48.3 | 17.2 | 10.3 | |
Second generation | farm/forest residues | 5.8 | 40.4 | 44.2 | 5.8 | 3.8 | 7.8 | 25.0 | 42.2 | 16.4 | 8.6 |
fast-growing trees | 5.8 | 44.2 | 42.3 | 5.8 | 1.9 | 7.8 | 23.3 | 51.7 | 8.6 | 8.6 | |
perennial grasses | 7.7 | 67.3 | 17.3 | 3.8 | 3.8 | 7.8 | 31.0 | 31.9 | 12.1 | 17.2 |
Attribute Levels | Philippines | India | China | |||
---|---|---|---|---|---|---|
Estimate (Xs) | t-ratio | Estimate (Xs) | t-ratio | Estimate (Xs) | t-ratio | |
Economic Stabilityy | ||||||
AGRI | ||||||
Sugar-rich crops | −0.12 | −1.08 | 1.04 *** | 7.04 | −0.21 | −1.11 |
Starch-rich crops | −0.08 | −0.70 | −0.65 *** | −3.51 | −0.11 | −0.58 |
Oil crops | −0.02 | −0.19 | −0.84 *** | −4.26 | 0.01 | 0.07 |
Agri/Forest residues | 0.38 *** | 3.64 | 0.59 *** | 3.87 | 0.27 * | 1.57 |
Fast-growing trees | 0.20 ** | 1.88 | 1.39 *** | 8.97 | 0.08 | 0.43 |
Perennial grasses | −0.35 *** | −3.06 | −1.54 *** | −6.19 | −0.04 | −0.23 |
Non-AGRI | ||||||
Sugar-rich crops | −0.01 | −0.10 | 0.46 *** | 2.81 | −0.10 | −0.80 |
Starch-rich crops | −0.06 | −0.42 | −0.64 *** | −3.08 | −0.06 | −0.45 |
Oil crops | −0.16 | −1.12 | −0.60 *** | −3.09 | −0.15 | −1.22 |
Agri/Forest residues | 0.48 *** | 3.65 | 0.93 *** | 5.65 | 0.37 *** | 3.18 |
Fast-growing trees | 0.16 | 1.19 | 0.56 *** | 3.39 | 0.21 ** | 1.75 |
Perennial grasses | −0.41 *** | −2.78 | −0.71 *** | −3.52 | −0.26 ** | −2.03 |
Social equity | ||||||
AGRI | ||||||
Sugar-rich crops | −0.25 | −2.05 | 1.06 *** | 7.02 | 0.06 | 0.30 |
Starch-rich crops | 0.03 | 0.26 | −0.87 *** | −4.51 | −0.04 | −0.24 |
Oil crops | 0.00 | −0.01 | −0.71 *** | −3.78 | −0.22 | −1.11 |
Agri/Forest residues | 0.13 | 1.11 | 0.43 *** | 2.85 | 0.27 * | 1.50 |
Fast-growing trees | 0.17 * | 1.49 | 1.26 *** | 7.98 | −0.09 | −0.50 |
Perennial grasses | −0.08 | −0.68 | −1.17 *** | −5.45 | 0.03 | 0.18 |
Non-AGRI | ||||||
Sugar-rich crops | 0.02 | 0.11 | 0.15 | 0.85 | −0.15 | −1.2 |
Starch-rich crops | −0.19 | −1.18 | −0.71 *** | −3.53 | 0.06 | 0.48 |
Oil crops | 0.32 ** | 2.07 | −0.47 *** | −2.52 | −0.28 ** | −2.11 |
Agri/Forest residues | 0.01 | 0.06 | 1.08 *** | 6.18 | 0.29 *** | 2.43 |
Fast-growing trees | 0.00 | 0.01 | 0.80 *** | 4.84 | 0.21 * | 1.74 |
Perennial grasses | −0.16 | −1.01 | −0.85 *** | −3.99 | −0.13 | −1.02 |
Ecological Balance | ||||||
AGRI | ||||||
Sugar-rich crops | −0.19* | −1.54 | 1.09 *** | 7.33 | 0.09 | 0.50 |
Starch-rich crops | −0.18 * | −1.48 | −0.57 *** | −3.12 | 0.01 | 0.05 |
Oil crops | 0.14 | 1.26 | −0.87 *** | −4.54 | −0.20 | −1.05 |
Agri/Forest residues | 0.14 | 1.24 | 0.52 *** | 3.47 | 0.26* | 1.48 |
Fast-growing trees | 0.40 *** | 3.43 | 1.33 *** | 8.50 | 0.22 | 1.22 |
Perennial grasses | −0.32 *** | −2.58 | −1.50 *** | −6.33 | −0.38 ** | −1.92 |
Non-AGRI | ||||||
Sugar-rich crops | −0.06 | −0.38 | 0.43 *** | 2.58 | −0.23 ** | −1.73 |
Starch-rich crops | −0.07 | −0.49 | −0.95 *** | −4.13 | 0.00 | −0.03 |
Oil crops | 0.22 * | 1.56 | −0.49 *** | −2.49 | −0.20 * | −1.50 |
Agri/Forest residues | −0.09 | −0.60 | 1.30 *** | 7.71 | 0.21 ** | 1.79 |
Fast-growing trees | 0.26 ** | 1.68 | 0.88 *** | 5.25 | 0.28 *** | 2.34 |
Perennial grasses | −0.26 ** | −1.69 | −1.17 *** | −4.81 | −0.06 | −0.51 |
Number of respondents | 250 | 160 | 168 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta, L.A.; Magcale-Macandog, D.B.; Kumar, K.S.K.; Cui, X.; Eugenio, E.A.; Macandog, P.B.M.; Salvacion, A.R.; Eugenio, J.M.A. The Role of Bioenergy in Enhancing Energy, Food and Ecosystem Sustainability Based on Societal Perceptions and Preferences in Asia. Agriculture 2016, 6, 19. https://doi.org/10.3390/agriculture6020019
Acosta LA, Magcale-Macandog DB, Kumar KSK, Cui X, Eugenio EA, Macandog PBM, Salvacion AR, Eugenio JMA. The Role of Bioenergy in Enhancing Energy, Food and Ecosystem Sustainability Based on Societal Perceptions and Preferences in Asia. Agriculture. 2016; 6(2):19. https://doi.org/10.3390/agriculture6020019
Chicago/Turabian StyleAcosta, Lilibeth A., Damasa B. Magcale-Macandog, K. S. Kavi Kumar, Xuefeng Cui, Elena A. Eugenio, Paula Beatrice M. Macandog, Arnold R. Salvacion, and Jemimah Mae A. Eugenio. 2016. "The Role of Bioenergy in Enhancing Energy, Food and Ecosystem Sustainability Based on Societal Perceptions and Preferences in Asia" Agriculture 6, no. 2: 19. https://doi.org/10.3390/agriculture6020019
APA StyleAcosta, L. A., Magcale-Macandog, D. B., Kumar, K. S. K., Cui, X., Eugenio, E. A., Macandog, P. B. M., Salvacion, A. R., & Eugenio, J. M. A. (2016). The Role of Bioenergy in Enhancing Energy, Food and Ecosystem Sustainability Based on Societal Perceptions and Preferences in Asia. Agriculture, 6(2), 19. https://doi.org/10.3390/agriculture6020019