Analyzing the Environmental Impact of Chemically-Produced Protein Hydrolysate from Leather Waste vs. Enzymatically-Produced Protein Hydrolysate from Legume Grains
Abstract
:1. Introduction
2. Materials and Methods
LCA Method
3. Results and Discussions
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Lotter, D.W. Organic agriculture. J. Sustain. Agric. 2003, 21, 37–51. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Montalba, R. Technological Approaches to Sustainable Agriculture at a Crossroads: An Agroecological Perspective. Sustainability 2017, 9, 349. [Google Scholar] [CrossRef]
- Electron Beam Induced Current (EBIC). European Biostimulants Industry Council. 2013. Available online: http://www.biostimulants.eu/2013/04/2013-overview-of-the-european-biostimulants-market (accessed on 5 April 2013).
- Ghosh, A.; Anand, K.V.; Seth, A. Life cycle impact assessment of seaweed based biostimulant production from onshore cultivated Kappaphycus alvarezii (Doty) Doty ex Silva—Is it environmentally sustainable? Algal Res. 2015, 12, 513–521. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y. Biostimulants in horticulture. Sci. Hort. 2015, 196. [Google Scholar] [CrossRef]
- Electron Beam Induced Current (EBIC). Promoting the Biostimulant Industry and the Role of Plant Biostimulants in Making Agriculture More Sustainable. Available online: http://www.biostimulants.eu/ (accessed on 5 April 2013).
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef] [PubMed]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Canaguier, R.; Kumar, P.; Colla, G. The effect of a plant-derived protein hydrolysate on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hort. 2015, 182, 124–133. [Google Scholar] [CrossRef]
- Kauffman, G.L.; Kneival, D.P.; Watschke, T.L. Effects of biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polphenol production of perennial ryegrass. Crop. Sci. 2007, 47, 261–267. [Google Scholar] [CrossRef]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant Nutr. Soil Sci. 2009, 17, 237–244. [Google Scholar] [CrossRef]
- Ertani, A.; Pizzeghelio, D.; Altissimo, A.; Nardi, S. Use of meat hydrolyzate derived from tanning residues as plant biostimulant for hydroponically grown maize. J. Plant Nutr. Soil Sci. 2013, 176, 287–296. [Google Scholar] [CrossRef]
- Grabowsk, A.; Kunicki, E.; Sekara, A.; Kalisz, A.; Wojciechowska, R. The effect of cultivar and biostimulant treatment on the carrot yield and its quality. Veg. Crops Res. Bull. 2013, 77, 37–48. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2017, 196, 28–38. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Teixeira De Mattos, M.J. Environmental impacts of cultured meat production. Environ. Sci. Technol. 2011, 45, 6117–6123. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, R.K.; Khera, J.G.; Nielsen, P.H. The Combined Bioblasting Concept: Save Energy, Greenhouse Gases and Water. Int. Dyer Tech. Brief. 2013, 4, 36–38. [Google Scholar]
- Nielsen, P.H.; Oxenbøll, K.M.; Wenzel, H. Cradle-to-Gate Environmental Assessment of Enzyme Products Produced Industrially in Denmark by Novozymes A/S. Int. J. LCA 2007, 12, 432–438. [Google Scholar] [CrossRef]
- IPCC. IPCC Third Assessment Report—Climate Change; IPCC: Geneva, Switzerland, 2011. [Google Scholar]
- Blonk, H.; Ponsioen, T.; Kool, A.; Marinussen, M. The Agri-Footprint Method Methodological LCA Framework, Assumptions and Applied Data; Blonk Milieu Advies: Gouda, The Netherlands, 2011. [Google Scholar]
- EPD Coop; Coop Beef Meat. CPC Code 2111 and 2113 Meat of Mammals Fresh, Chilled or Frozen, Approval Date: 2013–10–30, Registration Number: S-P-00495; COOP: Milan, Italy, 2016. [Google Scholar]
- Notaricola, B.; Puig, R.; Raggi, A.; Tarabella, A.; Petti, L.; Rius, A.; Tassielli, G.; De Camillis, C.; Monelli, I. LCA of Italian and Spanish Bovine Leather Production Systems in an Industrial Ecology Perspective. In Proceedings of the ALCAS—5th Australian Life Cycle Assessment Conference, Melbourne, Australia, 22–24 November 2006. [Google Scholar]
- Amirkhani, M.; Netravali, A.N.; Huang, W.; Taylor, A.G. Investigation of Soy Protein Based Biostimulant Seed Coating for Broccoli Seedling and Plant Growth Enhancement. HortScience 2016, 51, 1121–1126. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Bonini, P.; Colla, G. Synergistic Action of a Microbial-based Biostimulant and a Plant-Derived Protein Hydrolysate Enhances Lettuce Tolerance to Alkalinity and Salinity. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Di Giacinto, S.; Colantoni, A.; Cecchini, M.; Monarca, D.; Moscetti, R.; Massantini, R. Dairy production in restricted environment and safety for the workers. Ind. Aliment. 2013, 51, 5–12. [Google Scholar]
- De Martino, G.; Massantini, R.; Botondi, R.; Mencarelli, F. Temperature affects impact injury on apricot fruit. Postharvest Biol. Technol. 2002, 25, 145–149. [Google Scholar] [CrossRef]
- Mencarelli, F.; Massantini, R.; Botondi, R. Physiological and textural response of truffles during low-temperature storage. J. Horticult. Sci. 1997, 72, 407–414. [Google Scholar] [CrossRef]
- Recchia, L.; Sarri, D.; Rimediotti, M.; Boncinelli, P.; Vieri, M.; Cini, E. Environmental benefits from the use of the residual biomass in nurseries. Resour. Conserv. Recycl. 2013, 81, 31–39. [Google Scholar] [CrossRef]
Up-Stream Production Chain | Source |
---|---|
N-fertilizer | Gemis 4.7—chem-inorgfertilizer-N-DE-2000 |
P2O5-fertilizer | Gemis 4.7—chem-inorgfertilizer-P-2000 |
K2O-fertilizer | Gemis 4.7—chem-inorgfertilizer-K-2000 |
Pesticides | Gemis 4.7—chem-inorgpesticides-2000 |
Agricultural diesel | Gemis 4.7—dieselmotor-EU-agriculture-2010 (end-energy) |
Grid electricity | Gemis 4.7—grid-el-IT-2010-local |
Phosphoric acid (H3PO4) | Gemis 4.7—chem-inorgphosphoric acid-DE-2000 |
Hydrochloric acid (HCl) | Gemis 4.7—chem-inorgchlorine (membrane)-DE-2010ù |
Protease enzyme | Nielsen et al., 2007; Nagaraju et al., 2013 |
Fresh water | Gemis 4.7—extra-drinking waterDE-2000 |
Heat (Natural gas boiler) | Gemis 4.7—gas-boiler-IT-2010 |
Waste-water treatment | Gemis 4.7—waste-water treatment-DE-2005 |
Output | Value | Unit |
---|---|---|
Yield | 2.7 | t/ha |
Inputs | ||
Seeds | 0.040 | kg/kglupine |
Fertilizer-P2O5 | 45 | kg/ha |
Fertilizer-K2O | 80 | kg/ha |
Diesel | 84 | kg/ha |
Electricity | 15 | kWh/ha |
Key System Inventory Characteristics | Unit | Value |
---|---|---|
Phase 1 (Dry Milling) | ||
Electricity | W·h | 33 |
Phase 2 (Water Extraction) | ||
Chemical inputs (mineral acid, H2SO4 or H3PO4) | g | 40 |
Water | 0.7 | |
Natural gas | W·h | 320 |
Electricity | W·h | 15 |
Phase 3 (Centrifugation) | ||
Electricity | W·h | 35 |
Phase 4 (Enzymatic Hydrolysis at 60 °C for 6 h) | ||
Chemical inputs (protease) | G | 11 |
Water | L | 5 |
Natural gas | W·h | 590 |
Electricity | W·h | 55 |
Phase 5 (Centrifugation) | ||
Electricity | W·h | 35 |
Phase 6 (Concentration) | ||
Electricity | W·h | 300 |
Key System Inventory Characteristics | Unit | Value |
---|---|---|
Phase 1 (Cutting) | ||
Electricity | W·h | 16 |
Phase 2 (Water Extraction) | ||
Chemical inputs | G | 115 |
Water | 32 | |
Natural gas (to keep the temperature at 90 °C for 1 h) | W·h | 377 |
Electricity | W·h | 15 |
Phase 3 (Centrifugation) | ||
Electricity | W·h | 35 |
Phase 4 (Acid Hydrolysis at 130 °C for 4 h, and High Pressure 262 kPa) | ||
Chemical inputs | G | 920 |
Natural gas | W·h | 544.3 |
Electricity | W·h | 70 |
Phase 5 (Centrifugation) | ||
Electricity | W·h | 35 |
Phase 6 (Concentration) | ||
Electricity | W·h | 300 |
Production phase | CO2eq Emissions (g/kg) | Fossil Energy (MJ/kg) | Water (kg/kg) |
---|---|---|---|
Agricultural phase | |||
Seeds | 6.011 | 13.974 | 0.071 |
Fertilizer-P2O5 | 18.984 | 0.278 | 0.132 |
Fertilizer-K2O | 32.275 | 0.516 | 1.640 |
Diesel | 96.601 | 1.286 | 0.006 |
Electricity | 2.419 | 0.033 | 0.005 |
Total (Agricultural phase) | 156.3 | 16.1 | 1.9 |
Industrial phase | |||
Dry milling | 14.182 | 0.194 | 0.026 |
Electricity | 14.182 | 0.194 | 0.026 |
Water extraction | 197.865 | 2.524 | 10.627 |
Phosphoric acid (H3PO4) | 110.675 | 1.043 | 6.252 |
Water | 0.254 | 0.004 | 0.638 |
Heat (Natural gas boiler) | 80.490 | 1.389 | 3.725 |
Electricity | 6.446 | 0.088 | 0.012 |
Centrifugation (protein separation) | 15.041 | 0.205 | 0.028 |
Electricity | 15.041 | 0.205 | 0.028 |
Enzymatic hydrolysis | 215.852 | 3.561 | 11.666 |
Protease enzyme | 42.000 | 0.650 | 0.200 |
Water | 1.812 | 0.027 | 4.555 |
Heat (Natural gas boiler) | 148.404 | 2.562 | 6.867 |
Electricity | 23.636 | 0.323 | 0.044 |
Centrifugation (hydrolysate separation) | 15.041 | 0.205 | 0.028 |
Electricity | 15.041 | 0.205 | 0.028 |
Concentration (water removal) | 128.924 | 1.760 | 0.241 |
Electricity | 128.924 | 1.760 | 0.241 |
Total (Industrial phase) | 586.9 | 8.4 | 22.6 |
Total (Agricultural phase + Industrial phase) | 743.2 | 24.5 | 24.5 |
Production phase | CO2eq Emissions (g/kg) | Fossil Energy (MJ/kg) | Water (kg/kg) |
---|---|---|---|
Industrial phase | |||
Cutting in pieces of 10–15 cm | 7.564 | 0.103 | 0.014 |
Electricity | 7.564 | 0.103 | 0.014 |
Water extraction | 474.166 | 5.382 | 56.679 |
Phosphoric acid (H3PO4) | 350.010 | 3.297 | 19.773 |
Water | 12.755 | 0.187 | 32.066 |
Heat (Natural gas boiler) | 104.311 | 1.801 | 4.827 |
Electricity | 7.091 | 0.097 | 0.013 |
Centrifugation (protein separation) | 16.545 | 0.226 | 0.031 |
Electricity | 16.545 | 0.226 | 0.031 |
Acid hydrolysis | 874.513 | 17.247 | 59.719 |
Hydrochloric acid (HCl) | 690.828 | 14.196 | 52.688 |
Heat (Natural gas boiler) | 150.595 | 2.600 | 6.968 |
Electricity | 33.091 | 0.452 | 0.062 |
Centrifugation | 16.545 | 0.226 | 0.031 |
Electricity | 16.545 | 0.226 | 0.031 |
Concentration (hydrolysate separation) | 141.817 | 1.936 | 0.265 |
Electricity | 141.817 | 1.936 | 0.265 |
Waste-water treatment | 1.097 | 0.020 | 0.028 |
Total (Industrial phase) | 1532.2 | 25.1 | 116.8 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colantoni, A.; Recchia, L.; Bernabei, G.; Cardarelli, M.; Rouphael, Y.; Colla, G. Analyzing the Environmental Impact of Chemically-Produced Protein Hydrolysate from Leather Waste vs. Enzymatically-Produced Protein Hydrolysate from Legume Grains. Agriculture 2017, 7, 62. https://doi.org/10.3390/agriculture7080062
Colantoni A, Recchia L, Bernabei G, Cardarelli M, Rouphael Y, Colla G. Analyzing the Environmental Impact of Chemically-Produced Protein Hydrolysate from Leather Waste vs. Enzymatically-Produced Protein Hydrolysate from Legume Grains. Agriculture. 2017; 7(8):62. https://doi.org/10.3390/agriculture7080062
Chicago/Turabian StyleColantoni, Andrea, Lucia Recchia, Guido Bernabei, Mariateresa Cardarelli, Youssef Rouphael, and Giuseppe Colla. 2017. "Analyzing the Environmental Impact of Chemically-Produced Protein Hydrolysate from Leather Waste vs. Enzymatically-Produced Protein Hydrolysate from Legume Grains" Agriculture 7, no. 8: 62. https://doi.org/10.3390/agriculture7080062
APA StyleColantoni, A., Recchia, L., Bernabei, G., Cardarelli, M., Rouphael, Y., & Colla, G. (2017). Analyzing the Environmental Impact of Chemically-Produced Protein Hydrolysate from Leather Waste vs. Enzymatically-Produced Protein Hydrolysate from Legume Grains. Agriculture, 7(8), 62. https://doi.org/10.3390/agriculture7080062