Investigating the Influence of Biochar Particle Size and Depth of Placement on Nitrous Oxide (N2O) Emissions from Simulated Urine Patches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar
2.2. Soil
2.3. Glasshouse Experiment
2.4. Nitrous Oxide Emissions Measurement
2.5. Leachate Collection
2.6. End-of-Trial Sampling
2.7. Other Measurements
2.8. Statistical Analysis
3. Results
3.1. Dry Matter (DM) Yield, N Concentrations in Plant and N Plant Uptake
3.2. N2O Emissions Fluxes
3.3. Cumulative N2O Emissions
3.4. Leachate Volume and Soil Water Holding Capacity
3.5. Nitrogen Mass Balance
4. Discussion
4.1. Dry Matter Yield (DM), N Concentrations in Plant and N Plant Uptake
4.2. N2O Emissions
4.2.1. N2O Emissions during the Summer Trial
4.2.2. N2O Emissions during the Autumn Trial
4.2.3. Effect of Biochar Particle-Size and Soil Inversion on Soil Moisture: Implications on N2O Emissions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van der Weerden, T.J.; Cox, N.; Luo, J.; Di, H.J.; Podolyan, A.; Phillips, R.L.; Saggar, S.; de Klein, C.A.M.; Ettema, P.; Rys, G. Refining the New Zealand nitrous oxide emission factor for urea fertiliser and farm dairy effluent. Agric. Ecosyst. Environ. 2016, 222, 133–137. [Google Scholar] [CrossRef]
- Ministry for the Environment. New Zealand’s Greenhouse Gas Inventory 1990–2016. Available online: http://www.mfe.govt.nz/sites/default/files/media/Climate%20Change/National%20GHG%20Inventory%20Report%201990-2016-final.pdf (accessed on 30 September 2018).
- About New Zealand’s Emissions Reduction Targets. Available online: https://www.mfe.govt.nz/climate-change/what-government-doing/emissions-reduction-targets/about-our-emissions-reduction (accessed on 30 September 2018).
- De Klein, C.A.M.; Sherlock, R.R.; Cameron, K.C. Nitrous oxide emissions from agricultural soils in New Zealand—A review of current knowledge and directions for future research. J. R. Soc. New Zeal. 2001, 31, 37–41. [Google Scholar] [CrossRef]
- Wrage, N.; Velthof, G.L.; Van Beusichem, M.L.; Oenema, O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 2001, 33, 1723–1732. [Google Scholar] [CrossRef]
- Tiedje, J.M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In Biology of Anaerobic Microorganisms; John Wiley and Sons: New York, NY, USA, 1988; pp. 179–244. ISBN 0471882267. [Google Scholar]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science, Technology and Implementation; Routledge: Abingdon, UK, 2015. [Google Scholar]
- Van Zwieten, L.; Kammen, C.; Cayuela, M.L.; Singh, B.P.; Joseph, S.; Kimber, S.; Donne, S.; Clough, T.J.; Spokas, K.A. Biochar effects on nitrous oxide and methane emissions from soil. In Biochar for Environmental Management: Science and Technology, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: Abingdon, UK, 2015; pp. 489–520. ISBN 1134489536, 9781134489534. [Google Scholar]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Downie, A.; Berger, E.; Rust, J.; Scheer, C. Influence of biochars on flux of N2O and CO2 from Ferrosol. Aust. J. Soil Res. 2010, 48, 555–568. [Google Scholar] [CrossRef]
- Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Whitaker, J. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil—The role of soil aeration. Soil Biol. Biochem. 2012, 51, 125–134. [Google Scholar] [CrossRef]
- Nelissen, V.; Saha, B.K.; Ruysschaert, G.; Boeckx, P. Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol. Biochem. 2014, 70, 244–255. [Google Scholar] [CrossRef]
- Thomazini, A.; Spokas, K.; Hall, K.; Ippolito, J.; Lentz, R.; Novak, J. GHG impacts of biochar: Predictability for the same biochar. Agric. Ecosyst. Environ. 2015, 207, 183–191. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Sanchez-Monedero, M.A.; Roig, A.; Hanley, K.; Enders, A.; Lehmann, J. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Sci. Rep. 2013, 3, 1732. [Google Scholar] [CrossRef] [PubMed]
- Angst, T.E.; Six, J.; Reay, D.S.; Sohi, S.P. Impact of pine chip biochar on trace greenhouse gas emissions and soil nutrient dynamics in an annual ryegrass system in California. Agric. Ecosyst. Environ. 2014, 191, 17–26. [Google Scholar] [CrossRef]
- Mukome, F.N.D.; Six, J.; Parikh, S.J. The effects of walnut shell and wood feedstock biochar amendments on greenhouse gas emissions from a fertile soil. Geoderma 2013, 200–201, 90–98. [Google Scholar] [CrossRef]
- Verhoeven, E.; Six, J. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: An assessment across two years. Agric. Ecosyst. Environ. 2014, 191, 27–38. [Google Scholar] [CrossRef]
- Spokas, K.A.; Reicosky, D.C. Impacts of sixteen different biochars on soil greenhouse gas production. Ann. Environ. Sci. 2009, 3, 179–193. [Google Scholar]
- Bruun, E.W.; Müller-Stöver, D.; Ambus, P.; Hauggaard-Nielsen, H. Application of biochar to soil and N2O emissions: Potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry. Eur. J. Soil Sci. 2011, 62, 581–589. [Google Scholar] [CrossRef]
- Schimmelpfennig, S.; Müller, C.; Grünhage, L.; Koch, C.; Kammann, C. Biochar, hydrochar and uncarbonized feedstock application to permanent grassland-Effects on greenhouse gas emissions and plant growth. Agric. Ecosyst. Environ. 2014, 191, 39–52. [Google Scholar] [CrossRef]
- Yanai, Y.; Toyota, K.; Okazaki, M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments: Original article. Soil Sci. Plant Nutr. 2007, 53, 181–188. [Google Scholar] [CrossRef]
- Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of Biochars on Nitrous Oxide Emission and Nitrogen Leaching from Two Contrasting Soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar] [CrossRef] [PubMed]
- Saarnio, S.; Heimonen, K.; Kettunen, R. Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake. Soil Biol. Biochem. 2013, 58, 99–106. [Google Scholar] [CrossRef]
- Rose, T.J.; Keen, B.; Morris, S.G.; Quin, P.; Rust, J.; Kearney, L.; Kimber, S.; Van Zwieten, L. Application of woody biochar and woody mulch to mitigate nitrous oxide emissions from a poultry litter-amended soil in the subtropics. Agric. Ecosyst. Environ. 2016, 228, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kammann, C.; Ratering, S.; Eckhard, C.; Muller, C. Biochar and Hydrochar Effects on Greenhouse Gas (Carbon Dioxide, Nitrous Oxide, and Methane) Fluxes from Soils. J. Environ. Qual. 2012, 41, 1052–1066. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Stewart, C.E.; Cotrufo, M.F. Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J. Environ. Qual. 2012, 41, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Kim, H.; Yoo, G. Effects of biochar addition on CO2 and N2O emissions following fertilizer application to a cultivated grassland soil. PLoS ONE 2015, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Clough, T.J.; Bertram, J.E.; Ray, J.L.; Condron, L.M.; O’Callaghan, M.; Sherlock, R.R.; Wells, N.S. Unweathered Wood Biochar Impact on Nitrous Oxide Emissions from a Bovine-Urine-Amended Pasture Soil. Soil Sci. Soc. Am. J. 2010, 74, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh-Toosi, A.; Clough, T.J.; Condron, L.M.; Sherlock, R.R.; Anderson, C.R.; Craigie, R.A. Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J. Environ. Qual. 2011, 40, 468. [Google Scholar] [CrossRef] [PubMed]
- Clough, T.J.; Lincoln University, Lincoln, New Zealand. Personal communication, 2018.
- Cayuela, M.L.; van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sanchez-Monedero, M.A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Calvelo Pereira, R.; Wisnubroto, E.; Hedley, M.J.; Camps Arbestain, M.; Green, S.; Saggar, S. Can a deep application of biochar mitigate a pulse of greenhouse gas emissions after a fertilizer application to mature pastures? Unpublished work.
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Rayment, G.E.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata Press Pty Ltd.: Melbourne, Australia, 1992; ISBN 0909605688. [Google Scholar]
- Calvelo Pereira, R.; Kaal, J.; Camps Arbestain, M.; Pardo Lorenzo, R.; Aitkenhead, W.; Hedley, M.; Macías, F.; Hindmarsh, J.; Maciá-Agulló, J.A. Contribution to characterisation of biochar to estimate the labile fraction of carbon. Org. Geochem. 2011, 42, 1331–1342. [Google Scholar] [CrossRef] [Green Version]
- Enders, A.; Lehmann, J. Comparison of Wet-Digestion and Dry-Ashing Methods for Total Elemental Analysis of Biochar. Commun. Soil Sci. Plant Anal. 2012, 43, 1042–1052. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Camps-Arbestain, M.; Hedley, M.; Bishop, P. Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 2012, 357, 173–187. [Google Scholar] [CrossRef]
- Wang, T.; Camps Arbestain, M.; Hedley, M.; Bishop, P. Chemical and bioassay characterisation of nitrogen availability in biochar produced from dairy manure and biosolids. Org. Geochem. 2012, 51, 45–54. [Google Scholar] [CrossRef]
- Calvelo Pereira, R.; Arbestain, M.C.; Sueiro, M.V.; Macia-Agullo, J.A. Assessment of the surface chemistry of wood-derived biochars using wet chemistry, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Soil Res. 2015, 53, 753–762. [Google Scholar] [CrossRef]
- Wang, T.; Camps-Arbestain, M.; Hedley, M. Predicting C aromaticity of biochars based on their elemental composition. Org. Geochem. 2013, 62, 1–6. [Google Scholar] [CrossRef]
- Camps-Arbestain, M.; Amonette, J.E.; Singh, B.; Wang, T.; Schmidt, H.P. A biochar classification system and associated test methods. In Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: Abingdon, UK, 2015; pp. 165–193. ISBN 1134489536, 9781134489534. [Google Scholar]
- Hewitt, A.; Dymond, J. Survey of New Zealand Soil Orders. In Ecosystem Services in New Zealand: Conditions and Trends; Dymond, J., Ed.; Manaaki Whenua Press: Lincoln, New Zealand, 2013; pp. 121–131. ISBN 9780478347364. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Deurer, M.; Clothier, B.E.; Green, S.R.; Gee, G. Infiltration rate, hydraulic conductivity, preferential flow. In Soil Science: Step-by-Step Field Analysis; Logsdon, S., Caly, D., Moore, D., Tsegaye, T., Eds.; SSSA: Madison, WI, USA, 2008; pp. 221–234. ISBN 9780891188568. [Google Scholar]
- Luo, J.; Lindsey, S.B.; Ledgard, S.F. Nitrous oxide emissions from application of urea on New Zealand pasture. Biol. Fertil. Soils 2008, 44, 463–470. [Google Scholar] [CrossRef]
- Jones, S.K.; Famulari, D.; Di Marco, C.F.; Nemitz, E.; Skiba, U.M.; Rees, R.M.; Sutton, M.A. Nitrous oxide emissions from managed grassland: A comparison of eddy covariance and static chamber measurements. Atmos. Meas. Tech. 2011, 4, 2179–2194. [Google Scholar] [CrossRef]
- Blakemore, L.C. Soil Bureau Laboratory Methods. A. Methods for chemical analysis of soils. NZ Soil Bur. Sci. Rep. 1987, 80, 44–45. [Google Scholar]
- Kusumo, B.H.; Hedley, M.J.; Hedley, C.B.; Hueni, A.; Arnold, G.C.; Tuohy, M.P. The use of Vis-NIR spectral reflectance for determining root density: Evaluation of ryegrass roots in a glasshouse trial. Eur. J. Soil Sci. 2009, 60, 22–32. [Google Scholar] [CrossRef]
- Dane, J.H.; Hopmans, J.H. Water retention and storage. In Methods of Soil Analysis. Part 4. SSSA Book Ser. 5; Dane, J.H., Topp, G.C., Eds.; SSSA: Madison, WI, USA, 2002; pp. 671–717. [Google Scholar]
- Charlton, J.F.L.; Stewart, A.V. Pasture species and cultivars used in New Zealand—A list. Proc. New Zeal. Grassl. Assoc. 1999, 61, 147–166. [Google Scholar]
- Selbie, D.R.; Buckthought, L.E.; Shepherd, M.A. The Challenge of the Urine Patch for Managing Nitrogen in Grazed Pasture Systems; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 129, ISBN 9780128021385. [Google Scholar]
- Baral, K.R.; Thomsen, A.G.; Olesen, J.E.; Petersen, S.O. Controls of nitrous oxide emission after simulated cattle urine deposition. Agric. Ecosyst. Environ. 2014, 188, 103–110. [Google Scholar] [CrossRef]
- Bateman, E.J.; Baggs, E.M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 2005, 41, 379–388. [Google Scholar] [CrossRef]
- Carter, M. Contribution of nitrification and denitrification to N2O emissions from urine patches. Soil Biol. Biochem. 2007, 39, 2091–2102. [Google Scholar] [CrossRef]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 2013, 5, 132–143. [Google Scholar] [CrossRef]
- Barnes, R.T.; Gallagher, M.E.; Masiello, C.A.; Liu, Z.; Dugan, B. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments. PLoS ONE 2014, 9, e0108340. [Google Scholar] [CrossRef] [PubMed]
- De Klein, C.A.; van Logtesjin, R.S.P. Denitrification and N2O emission from urine-affected grassland soil. Plant Soil 1994, 163, 235–241. [Google Scholar] [CrossRef]
- Hillel, D. Entry of Water into Soil. In Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations; Elsevier: Amsterdam, The Netherlands, 1998; p. 385. ISBN 0080544150. [Google Scholar]
- Si, B.; Dyck, M.; Parkin, G. Flow and Transport in Layered Soils. Can. J. Soil Sci. 2011, 91, 127–132. [Google Scholar] [CrossRef]
- Lim, T.J.; Spokas, K.A.; Feyereisen, G.; Novak, J.M. Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere 2016, 142, 136–144. [Google Scholar] [CrossRef] [PubMed]
Properties | Units | Biochar | |
---|---|---|---|
Small | Large | ||
Particle size | mm | <2 mm | >4 mm |
pH (H2O) | - | 7.3 | 6.8 |
Liming Equivalence | % CaCO3-eq | −2.2 | −1.9 |
Bulk Density (BD) | Mg m−3 | 0.20 | 0.17 |
Total C | g kg−1 | 821 | 826 |
Total N | g kg−1 | 2.9 | 2.5 |
Total H | g kg−1 | 30.8 | 34.5 |
Total O | g kg−1 | 146 | 137 |
C/N ratio | (w/w) | 285 | 330 |
H/Corg | Atomic ratio | 0.45 | 0.50 |
O/Corg | Atomic ratio | 0.13 | 0.12 |
Ash | % | 2.9 | 2.7 |
Volatile matter | % | 18.6 | 17.8 |
Fixed C | % | 74.6 | 76.5 |
CEC | cmolc kg−1 | 1.2 | 1.0 |
Total P | g kg−1 | 0.5 | 0.5 |
Total K | g kg−1 | 2.6 | 2.4 |
Total Mg | g kg−1 | 1.7 | 1.6 |
Total Ca | g kg−1 | 5.5 | 5.5 |
Available N | mg kg−1 | 36 | 40 |
Available P | mg kg−1 | 84 | 80 |
Properties | Units | 0–10 cm | 10–20 cm | 20–40 cm |
---|---|---|---|---|
pH (H2O) | - | 5.48 | 5.51 | 5.60 |
Bulk Density (BD) | Mg m−3 | 1.05 | 1.29 | 1.43 |
Total C | g kg−1 | 35.2 | 22.6 | 13.0 |
Total N | g kg−1 | 3.4 | 2.2 | 1.2 |
C/N ratio | (w/w) | 10.4 | 10.3 | 10.8 |
Cation Exchange Capacity (CEC) | cmolc kg−1 | 20.0 | 18.0 | 15.0 |
Summer Trial | ||||
Properties (Unit) | Soil Inversion | Treatments | ||
Control | Small-Particle Size Biochar | Large-Particle Size Biochar | ||
Dry Matter (DM) (g m−2) | Un-inverted | 374aA | 350aA | 351aA |
Inverted | 374aA | 401aA | 386aA | |
Plant N concentration (g N 100 g−1) | Un-inverted | 3.4aA | 3.4aA | 3.5aA |
Inverted | 3.6aA | 3.2aA | 3.3aA | |
Plant N uptake (g m−2) | Un-inverted | 12.7aB | 11.9aA | 12.3aA |
Inverted | 13.5aA | 12.8aA | 12.8aA | |
N taken up out of added N (354 kg N ha−1) (%) | Un-inverted | 36.0aB | 33.7aA | 34.7aA |
Inverted | 38.0aA | 36.3aA | 36.1aA | |
Autumn Trial | ||||
Properties (Unit) | Soil Inversion | Treatments | ||
Control | Small-Particle Size Biochar | Large-Particle Size Biochar | ||
DM (g m−2) | Un-inverted | 179aA | 137aA | 157aA |
Inverted | 172aA | 172aA | 155aA | |
Plant N concentration (g N 100 g−1) | Un-inverted | 5.1aA | 5.3aA | 5.4aA |
Inverted | 5.2aA | 5.2aA | 5.3aA | |
Plant N uptake (g m−2) | Un-inverted | 9.2aA | 7.3aA | 8.5aA |
Inverted | 8.9aA | 8.9aA | 8.2aA | |
N taken up out of added N (563 kg N ha−1) (%) | Un-inverted | 16.2aA | 13.0aA | 15.1aA |
Inverted | 15.9aA | 15.9aA | 14.6aA |
Leaching Event | Leaching Volume (mm) between Treatments | |||||||
---|---|---|---|---|---|---|---|---|
UC | US | UL | p-Value | IC | IS | IL | p-Value | |
1st | 41a | 17b | 23b | 0.017 | 27a | 10b | 13b | 0.062 |
2nd | 24a | 26a | 26a | 0.939 | 27a | 20ab | 14b | 0.060 |
3rd | 35a | 38a | 32a | 0.750 | 39a | 42a | 52a | 0.335 |
Cumulative | 101a | 81a | 80a | 0.109 | 92a | 71.4a | 80a | 0.378 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmud, A.F.; Camps-Arbestain, M.; Hedley, M. Investigating the Influence of Biochar Particle Size and Depth of Placement on Nitrous Oxide (N2O) Emissions from Simulated Urine Patches. Agriculture 2018, 8, 175. https://doi.org/10.3390/agriculture8110175
Mahmud AF, Camps-Arbestain M, Hedley M. Investigating the Influence of Biochar Particle Size and Depth of Placement on Nitrous Oxide (N2O) Emissions from Simulated Urine Patches. Agriculture. 2018; 8(11):175. https://doi.org/10.3390/agriculture8110175
Chicago/Turabian StyleMahmud, Ainul Faizah, Marta Camps-Arbestain, and Mike Hedley. 2018. "Investigating the Influence of Biochar Particle Size and Depth of Placement on Nitrous Oxide (N2O) Emissions from Simulated Urine Patches" Agriculture 8, no. 11: 175. https://doi.org/10.3390/agriculture8110175
APA StyleMahmud, A. F., Camps-Arbestain, M., & Hedley, M. (2018). Investigating the Influence of Biochar Particle Size and Depth of Placement on Nitrous Oxide (N2O) Emissions from Simulated Urine Patches. Agriculture, 8(11), 175. https://doi.org/10.3390/agriculture8110175