Hungry Plants—A Short Treatise on How to Feed Crops under Stress
Abstract
:1. Introduction
2. Balanced Nutrient Supply—Essential to Secure Productivity and Pivotal Barrier against Abiotic and Biotic Stress
3. Silicon—Multifunctional Mediator against Biotic, Drought, Salinity, and Heavy Metal Stress
4. Potassium and Sodium—Nutritional Associates against Drought
5. Seed Priming—Promoter for Improved Development at Early Stages Combats Salinity, Drought, and Nutrient Deficiency Stress
6. Significance of Fertiliser Practices against Abiotic Stress in Practice—a Critical Assessment
Acknowledgement
Author Contributions
Conflicts of Interest
References
- Matoyer, M.; Roudart, L. A History of World Agriculture. From the Neolithic Age to the Current Crisis; Earthscan: London, UK; Sterling, VA, USA, 2006; p. 525. [Google Scholar]
- Bergmann, H. Ernährungsstörungen bei Kulturpflanzen; Gustav Fischer Verlag: Stuttgart, Germany, 1983. [Google Scholar]
- Datnoff, L.; Rodrigues, F.A.; Seebold, K.W. Silicon and Plant Disease. In Mineral Nutrition and Plant Diseases; Datnoff, L., Elmer, W., Huber, D., Eds.; APS Press: St. Paul, MN, USA, 2007; pp. 233–246. [Google Scholar]
- Shanker, A.K.; Venkateswarlu, B. Abiotic Stress in Plants—Mechanisms and Adaptations; InTech: Rijeka, Croatia, 2011; p. 428. ISBN 978-953-307-394-1. [Google Scholar]
- Weiler, E.W.; Nover, L. Allgemeine und Molekulare Botanik; Georg Thieme Verlag KG: Stuttgart, Germany, 2008. [Google Scholar]
- Haneklaus, S.; Schnug, E. Impact of Agro-Technical Measures on the Strontium Uptake of Agricultural Crops. Landbauforschung Völkenrode 2001, 51, 77–86. [Google Scholar]
- Haneklaus, S.; Bloem, E.; Schnug, E.; De Kok, L.; Stulen, I. Sulphur. In Handbook of Plant Nutrition; Barker, A.V., Pilbeam, D.J., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 183–238. [Google Scholar]
- Ernst, W.H.O. Ecological aspects of sulphur metabolism. In Sulfur Nutrition and Sulphur Assimilation in Higher Plants—Fundamental, Environmental and Agricultural Aspects; Rennenberg, H., Brunold, C., De Kok, L.J., Stulen, I., Eds.; SPB Academic Publishing: Leiden, The Netherlands, 1989; pp. 131–144. [Google Scholar]
- Prapagar, K.; Premanandharajah, P.; Indraratne, S. Reclamation of Saline-Sodic Soils: Gypsum Amended Organic Materials; LAP LAMBERT Academic Publishing: Riga, Latvia, 2013; p. 112. [Google Scholar]
- Ondrasek, G.; Rengel, Z.; Veres, S. Soil Salinisation and Salt Stress in Crop Production. In Abiotic Stress in Plants—Mechanisms and Adaptations; Shanker, A.K., Venkateswarlu, B., Eds.; InTech: Rijeka, Croatia, 2011; pp. 171–190. [Google Scholar]
- Bloem, E.; Haneklaus, S.; Keinwächter, M.; Paulsen, J.; Schnug, E.; Selmar, D. Stress-induced changes of bioactive compounds in Tropaeolum majus L. Ind. Crops Prod. 2014, 60, 349–359. [Google Scholar] [CrossRef]
- Bloem, E.; Haneklaus, S.; Schnug, E.; Paulsen, J.; Kleinwächter, M.; Selmar, D. Steigerung der Produktqualität von Arznei- und Gewürzpflanzen durch induzierten leichten Stress—Möglichkeiten und Grenzen. Z. Arznei Gewürzpflanzen 2017, 22, 115–120. [Google Scholar]
- Selmar, D.; Kleinwächter, M. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind. Crops Prod. 2013, 42, 558–566. [Google Scholar] [CrossRef]
- Schnug, E.; Haneklaus, S. Evaluation of the Relative Significance of Sulfur and Other Essential Mineral Elements in Oilseed Rape, Cereals, and Sugar Beet Production. In Sulfur: A Missing Link Between Soils, Crops, and Nutrition; Crops, B., Sulfur, J.J., Eds.; CSSA-ASA-SSSA: Madison, WI, USA, 2008; pp. 219–233. [Google Scholar]
- Schnug, E.; Heym, J.; Achwan, F. Establishing critical values for soil and plant analysis by means of the boundary line development system (BOLIDES). Commun. Soil Sci. Plant Anal. 1996, 27, 2739–2748. [Google Scholar] [CrossRef]
- Evanylo, G.K.; Sumner, M.E. Utilization of the boundary line approach in the development of soil nutrient norms for soybean production. Commun. Soil Sci. Plant Anal. 1987, 18, 1355–1377. [Google Scholar] [CrossRef]
- Moeller-Nielsen, P.; Frijs-Nielsen, H. Evaluation and control of the nutritional status of cereals. II. Pure effects of a nutrient. Plant Soil 1976, 45, 339–351. [Google Scholar] [CrossRef]
- Walworth, J.L.; Letzsch, W.S.; Sumner, M.E. Use of boundary lines in establishing diagnostic norms. Soil Sci. Soc. Am. J. 1986, 50, 123–128. [Google Scholar] [CrossRef]
- Haneklaus, S.; Bloem, E.; Schnug, E. Sulfur and plant disease. In Mineral Nutrition and Plant Diseases; Datnoff, L., Elmer, W., Huber, D., Eds.; APS Press: St. Paul, MN, USA, 2007; pp. 101–118. [Google Scholar]
- Haneklaus, S.; Schnug, E.; Lottermoser, B.; Hu, Z. Lanthanides. In Handbook of Plant Nutrition; Barker, A.V., Pilbeam, D.J., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 625–649. [Google Scholar]
- Reuter, D.J.; Robinson, J.B. Plant Analysis—An Interpretation Manual; CSIRO Publishing: Collingwood, Australia, 1997. [Google Scholar]
- Smith, F.W.; Loneragan, J.F. Interpretation of plant analysis: Concepts and principles. In Plant Analysis—An Interpretation Manual; Reuter, D.J., Robinson, J.B., Eds.; CSIRO Publishing: Collingwood, Australia, 1997; pp. 3–26. [Google Scholar]
- Vielemeyer, H.-P.; Neubert, P.; Hundt, I.; Vanselow, G.; Weissert, P. Ein neues Verfahren zur Ableitung von Pflanzenanalyse-Grenzwerten fuer die Einschaetzung des Ernaehrungszustandes landwirtschaftlicher Kulturpflanzen. Arch. Acker Pflanzenbau Bodenkde 1983, 27, 445–453. [Google Scholar]
- Haneklaus, S.; Schnug, E. Site-specific nutrient management—Objectives, current status and future research needs. In Precision Farming—A Global Perspective; Srinivasan, A., Ed.; Marcel Dekker: New York, NY, USA, 2006; pp. 91–151. [Google Scholar]
- McGinnity, P. Silicon and Its Role in Crop Production—A Review. 2015. Available online: http://planttuff.com/wp-content/uploads/2015/12/silicon-agriculture-iiterature-rvw-1.pdf (accessed on 13 January 2018).
- Tubana, B.S.; Heckman, J.R. Silicon in soils and plants. In Silicon and Plant Diseases; Rodrigues, F.A., Datnoff, L.E., Eds.; Springer: Cham, Switzerland, 2015; pp. 7–51. [Google Scholar]
- Schnug, E.; von Franck, E. Bedeutung nützlicher Silizium-Effekte für intensiv angebaute landwirtschaftliche Kulturpflanzen. Mitt. Dt. Bodenkd. Ges. 1984, 39, 47–52. [Google Scholar]
- Debona, D.; Rodrigues, F.A.; Datnoff, L.E. Silicon’s role in abiotic and biotic plant stresses. Annu. Rev. Phytopathol. 2017, 55, 85–107. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Nikolic, M.; Bélanger, R.; Gong, H.; Song, A. Silicon in Agriculture—From Theory to Practice; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Meharg, C.; Meharg, A.A. Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality in rice? Environ. Exp. Bot. 2015, 120, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Rodgers-Gray, B.S.; Shaw, M.W. Substantial reductions in winter wheat diseases caused by addition of straw but not manure to soil. Plant Pathol. 2000, 49, 590–599. [Google Scholar] [CrossRef]
- Rodrigues, F.A.; McNally, D.J.; Datnoff, L.E.; Jones, J.B.; Labbé, C.; Benhamou, N.; Bélanger, R.R. Silicon enhances the accumulation of diterpenoid phytoalexins in rice: A potential mechanism for blast resistance. Phytopathology 2004, 94, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Carver, T.L.W.; Robbins, M.P.; Thomas, B.J.; Raistrick, N.; Zeyen, R.J. Silicon deprivation enhances localized autofluorescent responses and phenylalanine ammonia-lyase activity in oat attacked by Blumeria graminis. Physiol. Mol. Plant Pathol. 1998, 52, 245–257. [Google Scholar] [CrossRef]
- Haneklaus, S.; Bloem, E.; Funder, U.; Schnug, E. Effect of foliar-applied elemental sulphur on Fusarium infections in barley. Landbauforschung Völkenrode 2007, 57, 213–217. [Google Scholar]
- Tavvakkoli, E.; Lyons, G.; English, P.; Guppy, C.N. Silicon nutrition of rice is affected by soil pH, weathering and silicon fertilization. J. Plant Nutr. Soil Sci. 2011, 174, 437–446. [Google Scholar] [CrossRef]
- Iwasaki, K.; Maier, P.; Fecht, M.; Horst, W.J. Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). J. Plant Physiol. 2002, 159, 167–173. [Google Scholar] [CrossRef]
- Cocker, K.M.; Evans, D.E.; Hodson, M.J. The amelioration of aluminium toxicity by silicon in wheat (Triticum aestivum L.): Malate exudation as evidence for an in planta mechanism. Planta 1998, 204, 318–323. [Google Scholar] [CrossRef]
- Shen, X.; Li, X.; Li, Z.; Li, J.; Duan, L.; Eneji, A.E. Growth, Physiological Attributes and Antioxidant Enzyme Activities in Soybean Seedlings Treated With or Without Silicon Under UV-B Radiation. Stress J. Agron. Crop Sci. 2010, 196, 431–439. [Google Scholar] [CrossRef]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2002; pp. 1–584. [Google Scholar]
- Solymosi, K.; Bertrand, M. Soil metals, chloroplast, and secure crop production: A review. Agron. Sustain. Dev. 2010, 32, 245–272. [Google Scholar] [CrossRef]
- Cayuela, E.; Perez-Alfocea, F.; Caro, M.; Bolarin, M.C. Priming of seeds with NaCl induces physiological changes in tomato plants grown under salt stress. Physiol. Plant. 1996, 96, 231–236. [Google Scholar] [CrossRef]
- Kuroyanagi, M.; Arakaya, Y.; Mikami, K.; Yoshida, N.; Kawahar, T.; Hayashi, H.; Ishimaru, H. Phytoalexins from hairy root culture of Hyoscyamus albus treated with methyl jasmonate. J. Nat. Prod. 1998, 61, 1516–1519. [Google Scholar] [CrossRef] [PubMed]
- Osterhuis, D.M.; Loka, D.A.; Raper, T.B. Potassium and stress alleviation: Physiological functions and management of cotton. J. Plant Nutr. Soil Sci. 2013, 176, 331–343. [Google Scholar] [CrossRef]
- Sewelam, N.; Kazan, K.; Schenk, P.M. Global plant stress signalling: Reactive oxygen species at the cross-road. Front. Plant Sci. 2016, 7, 187. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003, 5, 441–445. [Google Scholar] [CrossRef]
- Whitehead, I.M.; Threlfall, D.R. Production of phytoalexins by plant tissue cultures. J. Biotechnol. 1992, 26, 63–81. [Google Scholar] [CrossRef]
- Luz, J.M.Q.; Rodrigues, C.R.; Goncalves, M.V.; Coelho, L. The effect of silicate on potatoes in Minas Gerais, Brazil. In Proceedings of the 4th International Conference on Silicon in Agriculture Port Edward, South Africa, 31 October 2008; Universidade Federal de Uberlandia: Amazonas 4C 127 Uberlandia, Brazil, 2008; p. 67. [Google Scholar]
- Kingston, G. Silicon Fertilisers—Requirements and field experiences. In Proceedings of the 4th International Conference on Silicon in Agriculture, Port Edward, South Africa, 31 October 2008; p. 52. [Google Scholar]
- Eneji, A.E.; Inanaga, S.; Muranaka, S.; Li, J.; Hattori, T.; An, P.; Tsuji, W. Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. J. Plant Nut. 2008, 31, 355–365. [Google Scholar] [CrossRef]
- Nolla, A.; de Faria, R.J.; Korndörfer, G.H.; da Silva, T.R.B. Effect of silicon on drought tolerance of upland rice. J. Food Agric. Environ. 2012, 10, 269–272. [Google Scholar]
- Lynch, M. Silicates in contemporary Australian farming: A 20 year review. In Proceedings of the 4th International Conference on Silicon in Agriculture, Port Edward, South Africa, 31 October 2008; North Coast Testing Services: Bellingen, NSW, Australia; p. 49. [Google Scholar]
- Harmer, P.M.; Benne, E.J. Sodium as a crop nutrient. Soil Sci. 1945, 60, 137–148. [Google Scholar] [CrossRef]
- Truog, E.; Berger, K.C.; Attoe, O.J. Response of nine economic plants to fertilization with sodium. Soil Sci. 1953, 76, 41–50. [Google Scholar] [CrossRef]
- Finck, A. Pflanzenernährung in Stichworten; Hirt Verlag: Kiel, Germany, 1978; p. 200. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1986; p. 341. [Google Scholar]
- Broadley, M.; Brown, P.; Cakmak, I.; Ma, J.F.; Rengel, Z.; Zhao, F. Beneficial elements. In Mineral Nutrition of Higher Plants; Marschner, H., Ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2012; pp. 249–269. [Google Scholar]
- Stauß, R.; Bleiholder, H.; Van der Boom, T.; Buhr, L.; Hack, H.; Hess, M.; Klose, R.; Meier, U.; Weber, E. Einheitliche Codierung der phänologischen Entwicklungsstadien mono- und Dikotyler Pflanzen; Ciba Geigy AG: Basel, Switzerland, 1994. [Google Scholar]
- Haneklaus, S.; Knudsen, L.; Schnug, E. Minimum factors in the mineral nutrition of field grown sugar beets in northern Germany and eastern Denmark. Asp. Appl. Biol. 1998, 52, 57–64. [Google Scholar]
- Shabala, S.; Cuin, T.A. Potassium transport and plant salt tolerance. Phyiol. Plant. 2007, 133, 651–669. [Google Scholar] [CrossRef]
- Zörb, C.; Senbayaram, M.; Peiter, E. Potassium in agriculture—Status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, L. SEGES, Skejby, Denmark. Personal communication, 2018. [Google Scholar]
- Haneklaus, S.; Knudsen, L.; Schnug, E. Relationship between potassium and sodium in sugar beet. Commun. Soil Sci. Plant Anal. 1998, 29, 1793–1798. [Google Scholar] [CrossRef]
- Lutts, S.; Benincasa, P.; Wojtyla, L.; Kubala, S.S.; Pace, R.; Lechowska, K.; Quinet, M.; Garnczarska, M. Seed Priming: New Comprehensive Approaches for an Old Empirical Technique. In New Challenges in Seed Biology—Basic and Translational Research Driving Seed Technology; InTech: Rijeka, Croatia, 2016; pp. 1–47. [Google Scholar] [CrossRef]
- Taylor, A.G.; Harman, G.E. Concepts and technologies of selected seed treatments. Annu. Rev. Phytopathol. 1990, 28, 321–339. [Google Scholar] [CrossRef]
- Farooq, M.; Aziz, T.; Rehman, H.; Rehman, A.; Cheema, S.A.; Aziz, T. Evaluating surface drying and re-drying for wheat seed priming with polyamines: Effects of emergence, early seedling growth and starch metabolism. Acta Physiol. Plant. 2011, 33, 1707–1713. [Google Scholar] [CrossRef]
- Varier, A.; Vari, A.K.; Dadlani, M. The subcellular basis of seed priming. Curr. Sci. 2010, 99, 450–456. [Google Scholar]
- Lee, S.S.; Song, K. Total sugars, alpha-amylase activity, and germination after priming of normal and aged rice seeds. Korean J. Crop Sci. 2000, 45, 108–111. [Google Scholar]
- Hussain, S.; Khan, F.; Hussain, H.A.; Nie, L. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front. Plant Sci. 2016, 7, 116. [Google Scholar] [CrossRef] [PubMed]
- Harris, D. Development and testing of “on-farm” seed priming Adv. Agron. 2006, 90, 129–178. [Google Scholar]
- Wilkinson, A.E. Soaking seeds before planting. Mark. Grow. J. 1918, 6, 22–26. [Google Scholar]
- Hegarty, T.W. The physiology of seed hydration and dehydration, and the relation between water stress and the control of germination: A review. Plant Cell Environ. 1978, 1, 101–119. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Pre-sowing seed treatment: A shotgun approach to improve germination, plant growth and crop yield under saline and non-saline conditions. Adv. Agron. 2006, 88, 223–271. [Google Scholar]
- Johnson, S.E.; Lauren, J.G.; Welch, R.M.; Duxbury, J.M. A comparison of the effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens culinaris), rice (Oryza sativa) and wheat (Triticum aestivum) in Nepal. Exp. Agric. 2005, 41, 427–448. [Google Scholar] [CrossRef]
- Afzal, I.; Rauf, S.; Basra, S.M.A.; Murtaza, G. Halopriming improves vigor, metabolism of reserves and ionic contents in wheat seedlings under salt stress. Plant Soil Environ. 2008, 54, 382–388. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kadambot Siddique, H.M. Micronutrient application through seed treatments—A review. J. Soil Sci. Plant Nutr. 2012, 12, 125–142. [Google Scholar] [CrossRef]
- Fageria, N.K.; Barbosa, M.P.; Moreira, A.; Guimaraes, C.M. Foliar Fertilization of Crop Plants. J. Plant Nutr. 2009, 32, 1044–1064. [Google Scholar] [CrossRef]
- Dhingra, K.K.; Gill, G.S.; Kaul, J.N. Agronomic studies on the late-sown wheat. J. Res. 1978, 11, 262–268. [Google Scholar]
Nutrient | Cereals | Oilseed Rape | Sugar Beet |
---|---|---|---|
(mg/g d.w.) | |||
N | 35 | 40 | 46 |
P | 4 | 4.2 | 4.5 |
S | 4 | 6.5 | 3.5 |
K | 35 | 35 | 42 |
Ca | 4 | 22.5 | 4.2 |
Mg | 1.1 | 1.5 | 1.8 |
Na | - | - | 2.0 |
(µg/g d.w.) | |||
Fe | 60 | 100 | 100 |
Mn | 28 | 30 | 30 |
Zn | 25 | 33 | 50 |
Cu | 4 | 4.5 | 15 |
Cl | 100 | 100 | - |
B | 3 | 25 | 30 |
Mo | 0.2 | 0.3 | - |
Physiological Action | Essential Nutrient/Pollutant | Interaction | Stimulating (+) Repressive (−) Si Effect |
---|---|---|---|
Antagonistic uptake | As, Sb, Mn, Na, Al, Cr | − | |
Transpirational bypass flow change | Na, Cl | − | |
Biological silicification—heavy metals bound in in cell walls and phytoliths | Cd, Zn | + | |
Stimulation of phytoalexin synthesis | CuSO4 | + | |
Osmotic adjustment | K, Na, Cl | + | |
Membrane stability (physical barrier) | Ca | + | |
Ion homeostasis | K/Na balance (salt stress) | + | |
Signalling oxidative stress | K, SO4-S, Ca | + | |
For references see [19,30,39,41,42,43,44,45,46] |
Element | Crop | Yield Increase (%) |
---|---|---|
Zn | rice | 6.8–29.6 |
wheat | 14.0–34.9 | |
chickpea | 17.7–36.0 | |
B | oats | 8.4 |
cowpea | 37.3 | |
Mo | chickpea | 20.0 |
French bean | 34.8 | |
Mn | wheat | 12.8 |
Mo | common bean | 11.6–53.7 |
Co. | common bean | 5.0–52.5 2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haneklaus, S.H.; Bloem, E.; Schnug, E. Hungry Plants—A Short Treatise on How to Feed Crops under Stress. Agriculture 2018, 8, 43. https://doi.org/10.3390/agriculture8030043
Haneklaus SH, Bloem E, Schnug E. Hungry Plants—A Short Treatise on How to Feed Crops under Stress. Agriculture. 2018; 8(3):43. https://doi.org/10.3390/agriculture8030043
Chicago/Turabian StyleHaneklaus, Silvia H., Elke Bloem, and Ewald Schnug. 2018. "Hungry Plants—A Short Treatise on How to Feed Crops under Stress" Agriculture 8, no. 3: 43. https://doi.org/10.3390/agriculture8030043
APA StyleHaneklaus, S. H., Bloem, E., & Schnug, E. (2018). Hungry Plants—A Short Treatise on How to Feed Crops under Stress. Agriculture, 8(3), 43. https://doi.org/10.3390/agriculture8030043