Issues and Prospects for the Sustainable Use and Conservation of Cultivated Vegetable Diversity for More Nutrition-Sensitive Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Characterization
2.2. Indicators of Neglect
2.3. Relating Indicators of Neglect to Use, Growth Form and Region of Origin
3. Results
3.1. Uses
3.2. Growth Forms
3.3. Centre of Origin
3.4. Research
3.5. Ex Situ Conservation
3.6. Production Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.R. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef] [PubMed]
- Herforth, A. Access to adequate nutritious food: New indicators to track progress and inform action. In The Fight against Hunger and Malnutrition; Sahn, D.E., Ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- World Health Organization. Healthy Diet. 2015. Available online: http://www.who.int/mediacentre/factsheets/fs394/en/ (accessed on 31 May 2018).
- Hall, J.N.; Moore, S.; Harper, S.B.; Lynch, J.W. Global variability in fruit and vegetable consumption. Am. J. Prev. Med. 2009, 36, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Ezzati, M. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions. 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Murray, C.J.; Abraham, J.; Ali, M.K.; Alvarado, M. The state of US health. 1990–2010: Burden of diseases, injuries, and risk factors. JAMA 2013, 310, 591–608. [Google Scholar] [CrossRef] [PubMed]
- Pingali, P.L. Green Revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadiyala, S.; Harris, J.; Headey, D.; Yosef, S.; Gillespie, S. Agriculture and nutrition in India: Mapping evidence to pathways. Ann. N. Y. Acad. Sci. 2014, 1331, 43–56. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Production, Food Balance, and Land Use Data. Available online: http://www.fao.org/faostat/en/?#home (accessed on 18 May 2018).
- Schreinemachers, P.; Simmons, E.B.; Wopereis, M.C.S. Tapping the economic and nutritional power of vegetables. Glob. Food Secur. 2018, 16, 36–45. [Google Scholar] [CrossRef]
- Siegel, K.R.; Ali, M.K.; Srinivasiah, A.; Nugent, R.A.; Narayan, K.M.V. Do we produce enough fruits and vegetables to meet global health need? PLoS ONE 2014, 9, e104059. [Google Scholar] [CrossRef] [PubMed]
- Chagomoka, T.; Afari-Sefa, V.; Pitoro, R. Value chain analysis of traditional vegetables from Malawi and Mozambique. Int. Food Agribus. Manag. Rev. 2014, 17, 59–86. [Google Scholar] [CrossRef]
- Plazibat, I.; Ćejvanović, F.; Vasilijevic, Z. Analysis of fruit and vegetable value chains. Bus. Excell. 2016, 10, 169–189. [Google Scholar]
- Bandula, A.; Jayaweera, C.; De Silva, A.; Oreiley, P.; Karunarathne, A.; Malkanthi, S.H.P. Role of underutilized crop value chains in rural food and income security in Sri Lanka. Procedia Food Sci. 2016, 6, 267–270. [Google Scholar] [CrossRef]
- Negi, S.; Anand, N. Issues and challenges in the supply chain of fruits and vegetables sector in India: A review. Int. J. Manag. Value Supply Chains 2015, 6, 47–62. [Google Scholar] [CrossRef]
- Popkin, B.M. Nutrition transition and the global diabetes epidemic. Curr. Diabetes Rep. 2015, 15, 64. [Google Scholar] [CrossRef] [PubMed]
- Lee, A. Affordability of fruits and vegetables and dietary quality worldwide. Lancet Glob. Health 2016, 4, 664–665. [Google Scholar] [CrossRef]
- Miller, V.; Yusuf, S.; Chow, C.K.; Dehghan, M.; Corsi, D.J.; Lock, K.; Popkin, B.; Rangarajan, S.; Khatib, R.; Lear, S.A.; et al. Availability, affordability, and consumption of fruits and vegetables in 18 countries across income levels: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet Glob. Health 2016, 4, e695–e703. [Google Scholar] [CrossRef]
- Hawkes, C.; Harris, J.; Gillespie, S. Urbanization and the nutrition transition. Glob. Food Policy Rep. 2017, 4, 34–41. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Fresh Fruit and Vegetable Program: A Handbook for Schools; U.S. Department of Agriculture: Washington, DC, USA, 2010. Available online: https://fns-prod.azureedge.net/sites/default/files/handbook.pdf (accessed on 15 March 2018).
- Carney, P.A.; Hamada, J.L.; Rdesinski, R.; Sprager, L.; Nichols, K.R.; Liu, B.Y.; Pelayo, J.; Sanchez, M.A.; Shannon, J. Impact of a community gardening project on vegetable intake, food security and family relationships: A community-based participatory research study. J. Commun. Health 2012, 37, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Galhena, D.H.; Freed, R.; Maredia, K.M. Home gardens: A promising approach to enhance household food security and wellbeing. Agric. Food Secur. 2013, 2, 8. [Google Scholar] [CrossRef]
- Virchow, D.; Husmann, C.; Keatinge, J.D.H. Possibilities and constraints of horticulture for development (H4D)—An overview. Acta Hortic. 2016, 1128, 291–298. [Google Scholar] [CrossRef]
- Warren, E.; Hawkesworth, S.; Knai, C. Investigating the association between urban agriculture and food security. Dietary diversity, and nutritional status: A systematic literature review. Food Policy 2015, 53, 54–66. [Google Scholar] [CrossRef]
- Chagomoka, T.; Drescher, A.; Glaser, R.; Marschner, B.; Schlesinger, J.; Nyandoro, G. Contribution of urban and periurban agriculture to household food and nutrition security along the urban-rural continuum in Ouagadougou, Burkina Faso. Renew. Agric. Food Syst. 2017, 32, 5–20. [Google Scholar] [CrossRef]
- Kpéra, G.N.; Segnon, A.C.; Saïdou, A.; Mensah, G.A.; Aarts, N.; van der Zijpp, A.J. Towards sustainable vegetable production around agro-pastoral dams in Northern Benin: Current situation, challenges and research avenues for sustainable production and integrated dam management. Agric. Food Secur. 2017, 6, 67. [Google Scholar] [CrossRef]
- Singh, B.; Dwivedi, S.K. Horticulture-based Agroforestry Systems for Improved Environmental Quality and Nutritional Security in Indian Temperate Region, Agroforestry; Dagar, J., Tewari, V., Eds.; Springer: Singapore, 2017; pp. 245–261. ISBN 978-981-10-7650-3. [Google Scholar]
- Weinberger, K.; Lumpkin, T.A. Diversification into horticulture and poverty reduction: A research agenda. World Dev. 2007, 35, 1464–1480. [Google Scholar] [CrossRef]
- Springmann, M.; Mason-D’Croz, D.; Robinson, S.; Garnett, T.; Godfray, H.C.J.; Gollin, D.; Rayner, M.; Ballon, P.; Scarborough, P. Global and regional health effects of future food production under climate change: A modelling study. Lancet 2016, 387, 1937–1946. [Google Scholar] [CrossRef]
- Tripathi, A.; Tripathi, D.K.; Chauhan, D.K.; Kumar, N.; Singh, G.S. Paradigms of climate change impacts on some major food sources of the world: A review on current knowledge and future prospects. Agric. Ecosyst. Environ. 2016, 216, 356–373. [Google Scholar] [CrossRef]
- Snyder, R.L. Climate change impacts on water use in horticulture. Horticulturae 2017, 3, 27. [Google Scholar] [CrossRef]
- Malholtra, S.K. Horticultural crops and climate change: A review. Indian J. Agric. Sci. 2017, 87, 12–22. [Google Scholar]
- McDowell, J.Z.; Hess, J.J. Accessing adaptation: Multiple stressors on livelihoods in the Bolivian highlands under a changing climate. Glob. Environ. Chang. 2012, 22, 342–352. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Castroca, A.J.; Castroa, H.; García-Llorente, M. Impacts of land use change on ecosystem services and implications for human well-being in Spanish drylands. Land Use Policy 2016, 54, 534–548. [Google Scholar] [CrossRef]
- Dinham, B. Growing vegetables in developing countries for local urban populations and export markets: Problems confronting small-scale producers. Pest. Manag. Sci. 2003, 59, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, A. Export-oriented horticultural production in Laikipia, Kenya: Assessing the implications for rural livelihoods. Sustainability 2014, 6, 336–347. [Google Scholar] [CrossRef]
- Hoi, P.V.; Mol, A.P.J.; Oosterveer, P.J.M.; van den Brink, P.J. Pesticide use in Vietnamese vegetable production: A 10-year study. Int. J. Agric. Sustain. 2016, 14, 325–338. [Google Scholar] [CrossRef]
- Haddad, L.; Hawkes, C.; Webb, P.; Thomas, S.; Beddington, J.; Waage, J.; Flynn, D. A new global research agenda for food. Nature 2016, 540, 30–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebert, A.W. Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. Sustainability 2014, 6, 319–335. [Google Scholar] [CrossRef]
- Chivenge, P.; Mabhaudhi, T.; Modi, A.T.; Mafongoya, P. The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2015, 12, 5685–5711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldermann, S.; Blagojević, L.; Frede, K.; Klopsch, R.; Neugart, S.; Neumann, A.; Ngwene, B.; Norkeweit, J.; Schröter, D.; Schröter, A.; et al. Are neglected plants the food for the future? Crit. Rev. Plant Sci. 2016, 35, 106–119. [Google Scholar] [CrossRef]
- Sogbohossou, E.O.D.; Achigan-Dako, E.G.; Maundu, P.; Solberg, S.; Deguenon, E.M.S.; Mumm, R.H.; Hale, I.; Van Deynze, A.; Schranz, M.E. A roadmap for breeding orphan leafy vegetable species: A case study of Gynandropsis gynandra (Cleomaceae). Hortic. Res. 2018, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Keatinge, J.D.H.; Yang, R.Y.; Hughes, J.D.A.; Easdown, W.J.; Holmer, R. The importance of vegetables in ensuring both food and nutritional security in attainment of the millennium development goals. Food Secur. 2011, 3, 491–501. [Google Scholar] [CrossRef]
- Nyadanu, D.; Lowor, S.T. Promoting competitiveness of neglected and underutilized crop species: Comparative analysis of nutritional composition of indigenous and exotic leafy and fruit vegetables in Ghana. Genet. Resour. Crop Evol. 2015, 62, 131–140. [Google Scholar] [CrossRef]
- Van Jaarsveld, P.; Faber, M.; Van Heerden, I.; Wenhold, F.; van Rensburg, W.J.; Van Averbeke, W. Nutrient content of eight African leafy vegetables and their potential contribution to dietary reference intakes. J. Food Compos. Anal. 2014, 33, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Uusiku, N.P.; Oelofse, A.; Duodu, K.G.; Bester, M.J.; Faber, M. Nutritional value of leafy vegetables of sub-Saharan Africa and their potential contribution to human health: A review. J. Food Compos. Anal. 2010, 23, 499–509. [Google Scholar] [CrossRef]
- Khoo, H.E.; Prasad, K.N.; Kong, K.W.; Jiang, Y.; Ismail, A. Carotenoids and their isomers: Color pigments in fruits and vegetables. Molecules 2011, 16, 1710–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toledo, A.; Burlingame, B. Biodiversity and nutrition: A common path toward global food security and sustainable development. J. Food Compos. Anal. 2006, 19, 477–483. [Google Scholar] [CrossRef]
- Maseko, I.; Mabhaudhi, T.; Tesfaym, S.; Araya, H.T.; Fezzehazion, M.; Du Plooy, C.P. African leafy vegetables: A review of status, production and utilization in South Africa. Sustainability 2018, 10, 16. [Google Scholar] [CrossRef]
- Markus, V.; Abbey, P.A.; Yahaya, J.; Zakka, J.; Yatai, K.B.; Oladeji, M. An underexploited tropical plant with promising economic value and the window of opportunities for researchers: Cnidoscolus aconitifolius. Am. J. Food Sci. Nutr. Res. 2016, 29, 177. [Google Scholar]
- Kuti, J.O.; Torres, E.S. Potential nutritional and health benefits of tree spinach. Prog. New Crop. 1996, 13, 516–520. [Google Scholar]
- Davis, D.R.; Epp, M.D.; Riordan, H.D. Changes in USDA food composition data for 43 garden crops, 1950 to 1999. J. Am. Coll. Nutr. 2004, 23, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.R. Declining fruit and vegetable nutrient composition: What is the evidence? HortScience 2009, 44, 15–19. [Google Scholar]
- Weinberger, K.; Msuya, J. Indigenous Vegetables in Tanzania—Significance and Prospects; World Vegetable Center: Tainan, Taiwan, 2004; Volume 31, ISBN 92-9058-136-0. [Google Scholar]
- Rubaihayo, E.B. Uganda—The Contribution Of Indigenous Vegetables to Household Food Security. Available online: https://openknowledge.worldbank.org/handle/10986/10794 (accessed on 16 May 2018).
- Yang, R.Y.; Keding, G.B. Nutritional Contributions of Important African Indigenous Vegetables. In African Indigenous Vegetables in Urban Agriculture; Shackleton, C.M., Pasquini, M.W., Descher, A.W., Eds.; Earthscan: London, UK, 2009. [Google Scholar]
- Hughes, J.D.A.; Ebert, A.W. Research and development of underutilized plant species: The role of vegetables in assuring food and nutritional security. Acta Hortic. 2011, 979, 79–92. [Google Scholar] [CrossRef]
- Legwaila, G.M.; Mojeremane, W.; Madisa, M.E.; Mmolotsi, R.M.; Rampart, M. Potential of traditional food plants in rural household food security in Botswana. J. Hortic. For. 2011, 3, 171–177. [Google Scholar]
- Luoh, J.; Begg, C.; Symonds, R.; Ledesma, D.; Yang, R. Nutritional yield of African indigenous vegetables in water-deficient and water-sufficient conditions. Food Nutr. Sci. 2014, 5, 812–822. [Google Scholar] [CrossRef]
- Schiattone, M.I.; Viggiani, R.; Di Venere, D.; Sergio, L.; Cantore, V.; Todorovic, M.; Perniola, M.; Canadido, V. Impact of irrigation regime and nitrogen rate on yield, quality and water use efficiency of wild rocket under greenhouse conditions. Sci. Hortic. 2018, 229, 182–192. [Google Scholar] [CrossRef]
- Galluzzi, G.; Lopez Noriega, I. Conservation and use of genetic resources of underutilized crops in the Americas–A continental analysis. Sustainability 2014, 6, 980–1017. [Google Scholar] [CrossRef]
- Keller, G.B.; Mndiga, H.; Maass, B.L. Diversity and genetic erosion of traditional vegetables in Tanzania from the farmer’s point of view. Plant Genet. Resour. 2006, 3, 400–413. [Google Scholar] [CrossRef]
- Meldrum, G.; Padulosi, S. Neglected No More: Leveraging underutilized crops to address global challenges. In Routledge Handbook of Agricultural Biodiversity; Hunter, D., Guarino, L., Spillane, C., McKeown, P.C., Eds.; Routledge: London, UK, 2017; ISBN 9780415746922. [Google Scholar]
- Ebert, A.W. Ex situ conservation of plant genetic resources of major vegetables. In Conservation of Tropical Plant Species; Normah, M.N., Chin, H.F., Reed, B.M., Eds.; Springer: New York, NY, USA, 2012; pp. 373–417. ISBN 978-1-4614-3775-8. [Google Scholar]
- Hanelt, P.; Institute of Plant Genetics and Crop Plant Research. Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops (Except Ornamentals), 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2001; Volumes 1–6, ISBN 3540410171. [Google Scholar]
- Watson, J.W. Home Gardens and In Situ Conservation of Plant Genetic Resources in Farming Systems; Bioversity International: Rome, Italy, 2002; pp. 28–29. [Google Scholar]
- Khoshbakht, K.; Hammer, K. How many plant species are cultivated? Genet. Resour. Crop Evol. 2008, 55, 925–928. [Google Scholar] [CrossRef]
- Khoshbakht, K.; Hammer, K. Species richness in relation to the presence of crop plants in families of higher plants. J. Agric. R. Dev. Trop. Subtrop. 2008, 109, 181–190. [Google Scholar]
- Kayes, S.J.; Dias, J.C. Common names of commercially cultivated vegetables of the world in 15 languages. Econ. Bot. 1995, 49, 115–152. [Google Scholar] [CrossRef]
- Rubatzky, V.E.; Yamaguchi, M. World Vegetables: Principles, Production and Nutritive Values, 2nd ed.; Chapman & Hall: New York, NY, USA, 1997; ISBN 978-1-4615-6015-9. [Google Scholar]
- Radovich, J.K. Biology and Classification of Vegetables, Handbook of Vegetables and Vegetable Processing, 2nd ed.; Sinha, N., Hui, Y.H., Evranuz, E., Siddiq, M., Ahmed, J., Eds.; Wiley: Delhi, India, 2011; pp. 3–22. ISBN 9780470958346. [Google Scholar]
- Kalwij, J.M. Review of ‘The Plant List, a working list of all plant species’. J. Veg. Sci. 2012, 23, 998–1002. [Google Scholar] [CrossRef]
- Cayuela, L.; Granzow-de la Cerda, Í.; Albuquerque, F.S.; Golicher, D.J. Taxonstand: An R package for species names standardisation in vegetation databases. Methods Ecol. Evol. 2012, 3, 1078–1083. [Google Scholar] [CrossRef]
- Zeven, A.C.; Zhukovsky, P.M. Dictionary of Cultivated Plants and Their Centres of Diversity, Excluding Ornamentals, Forest Trees and Lower Plants; Center for Agricultural Publishing and Documentation: Wageningen, The Netherlands, 1975; pp. 1–219. ISBN 978-9022005491. [Google Scholar]
- Raunkiaer, C. The Life Forms of Plants and Statistical Plant Geography; The Clarendon Press: Oxford, UK, 1934; ISBN 978-9333393362. [Google Scholar]
- Govaerts, R.; Frodin, D.G.; Radcliffe-Smith, A. World Checklist and Bibliography of Euphorbiaceae (with Pandanaceae); The Royal Botanic Gardens: Kew, UK, 2000; Volume 1, ISBN 9781900347839. [Google Scholar]
- De Meneses Costa, A.C.; Moro, M.F.; Martins, F.R. Raunkiaerian life-forms in the Atlantic forest and comparisons of life-form spectra among Brazilian main biomes. Braz. J. Bot. 2016, 39, 833–844. [Google Scholar] [CrossRef]
- Gour, P.G.; Sarker, A.K.; Faruq, M.O. The life-form characteristics of medicinal plants in the selected areas of Natore district, Bangladesh. Plant Environ. Dev. 2017, 6, 24–30. [Google Scholar]
- Harzing, A.-W.; Alakangas, S. Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics 2016, 106, 787–804. [Google Scholar] [CrossRef]
- Shultz, M. Comparing test searches in PubMed and Google Scholar. J. Med. Libr. Assoc. 2007, 95, 442–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halevi, G.; Moed, H.; Bar-Ilan, J. Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the literature. J. Informetr. 2017, 11, 823–834. [Google Scholar] [CrossRef]
- Arendt, J. Imperfect tools: Google Scholar vs. Traditional commercial library databases. Against Grain 2008, 17, 20–26. [Google Scholar] [CrossRef]
- Ramankutty, N. Croplands in West Africa: A geographically explicit dataset for use in models. Earth Interact. 2004, 8, 1–22. [Google Scholar] [CrossRef]
- Anderson, W.; You, L.; Wood, S.; Wood-Sichra, U.; Wu, W. An analysis of methodological and spatial differences in global cropping systems models and maps. Glob. Ecol. Biogeogr. 2015, 24, 180–191. [Google Scholar] [CrossRef]
- Kolahdooz, F.; Spearing, K.; Corriveau, A.; Sharma, S. Dietary adequacy and alcohol consumption of Inuvialuit women of child-bearing age in the Northwest Territories, Canada. J. Hum. Nutr. Diet. 2013, 26, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Järvelä-Reijonen, E.; Karhunen, L.; Sairanen, E.; Rantala, S.; Laitinen, J.; Puttonen, S.; Peuhkuri, K.; Hallikainen, M.; Juvonen, K.; Myllymäki, T.; et al. High perceived stress is associated with unfavorable eating behavior in overweight and obese Finns of working age. Appetite 2016, 103, 249–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Games, P.A.; Howell, J.F. Pairwise multiple comparison procedures with unequal ns and or variances: A Monte Carlo study. J. Educ. Stat. 1976, 1, 113–125. [Google Scholar] [CrossRef]
- Day, R.W.; Quinn, G.P. Comparisons of treatments after an analysis of variance in ecology. Ecol. Monogr. 1989, 59, 433–463. [Google Scholar] [CrossRef]
- Mamboleo, T.F. Nutrients and Antinutritional Factors at Different Maturity Stages of Selected Indigenous African Green Leafy Vegetables. Ph.D. Thesis, Sokoine University of Agriculture, Morogoro, Tanzania, 2015. [Google Scholar]
- Mnzava, N.A. Vegetable crop diversification and the place of traditional species in the tropics, traditional African vegetables. In Promoting the Conservation and Use of Underutilized and Neglected Crops; Guarino, L., Ed.; Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute: Rome, Italy, 1997. [Google Scholar]
- Hotz, C.; Loechl, C.; de Brauw, A.; Eozenou, P.; Gilligan, D.; Moursi, M.; Munhaua, B.; van Jaarsveld, P.; Carriquiry, A.; Meenakshi, J.V. A large-scale intervention to introduce orange sweet potato in rural Mozambique increases vitamin A intakes among children and women. Br. J. Nutr. 2012, 108, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Devaux, A.; Kromann, P.; Ortiz, O. Potatoes for sustainable global food security. Potato Res. 2014, 57, 185–199. [Google Scholar] [CrossRef]
- Ferraro, V.; Piccirillo, C.; Tomlins, K.; Pintado, M.E. Cassava (Manihot esculenta Crantz) and yam (Dioscorea spp.) crops and their derived foodstuffs: safety, security and nutritional value. Crit. Rev. Food Sci. Nutr. 2015, 56, 2714–2727. [Google Scholar] [CrossRef] [PubMed]
- Flores, H.E.; Walker, T.S.; Guimarães, R.L.; Bais, H.P.; Vivanco, J.M. Andean root and tuber crops: Underground rainbows. HortScience 2003, 38, 161–167. [Google Scholar]
- Chongtham, N.; Bisht, M.S.; Haorongbam, S. Nutritional properties of bamboo shoots: Potential and prospects for utilization as a health food. Compr. Rev. Food Sci. Food Saf. 2011, 10, 153–168. [Google Scholar] [CrossRef]
- Rop, O.; Mlcek, J.; Jurikova, T.; Neugebauerova, J.; Vabkova, J. Edible flowers—A promising source of mineral elements in human nutrition. Molecules 2012, 17, 6672–6683. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Cruz, C.A.; González-Arnao, M.T.; Engelmann, F. Biotechnology and conservation of plant biodiversity. Resources 2013, 2, 73–95. [Google Scholar] [CrossRef]
- Dulloo, M.E.; Hunter, D.; Borelli, T. Ex situ and in situ conservation of agricultural biodiversity: Major advances and research needs. Not. Bot. Hort. Agrobot. Cluj Napoca 2010, 38, 123–135. [Google Scholar] [CrossRef]
- McKey, D.; Elias, M.; Pujol, B.; Duputié, A. The evolutionary ecology of clonally propagated domesticated plants. New Phytol. 2010, 186, 318–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tweddle, J.C.; Dickie, J.B.; Baskin, C.C.; Baskin, J.M. Ecological aspects of seed desiccation sensitivity. J. Ecol. 2003, 91, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Dawson, I.K.; Guariguata, M.R.; Loo, J.; Weber, J.C.; Lengkeek, A.; Bush, D.; Cornelius, J.; Guarino, L.; Kindt, R.; Orwa, C.; et al. What is the relevance of smallholders’ agroforestry systems for conserving tropical tree species and genetic diversity in circa situm, in situ and ex situ settings? Biodivers. Conserv. 2013, 22, 301–324. [Google Scholar] [CrossRef]
- Walters, C.; Berjak, P.; Pammenter, N.; Kennedy, K.; Raven, P. Preservation of recalcitrant seeds. Science 2013, 339, 915–916. [Google Scholar] [CrossRef] [PubMed]
- Fowler, C.; Hodgkin, T. Plant genetic resources for food and agriculture: assessing global availability. Annu. Rev. Environ. Resour. 2004, 29, 143–179. [Google Scholar] [CrossRef]
- Chorol, S.; Angchok, D.; Angmo, P.; Tamchos, T.; Singh, R.K. Traditional knowledge and heirloom root vegetables: Food security in trans-Himalayan Ladakh, India. Indian J. Tradit. Knowl. 2018, 17, 191–197. [Google Scholar]
- Evenson, R.E.; Gollin, D. Assessing the impact of the green revolution, 1960 to 2000. Science 2003, 300, 758–762. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Lost Crops of Africa: Vegetables; The National Academies Press: Washington, DC, USA, 2006; Volume 2, ISBN 978-0-309-16454-2. [Google Scholar]
- Arora, R.K. Diversity in Underutilized Plant Species: An Asia-Pacific Perspective; Bioversity International: New Delhi, India, 2014; ISBN 78-92-9255-007-3. [Google Scholar]
- Heady, D.; Hoddinott, J. Agriculture, nutrition and the green revolution in Bangladesh. Agric. Syst. 2016, 149, 122–131. [Google Scholar] [CrossRef]
- Kamga, R.T.; Kouamé, C.; Atangana, A.R.; Chagomoka, T.; Ndango, R. Nutritional evaluation of five African indigenous vegetables. J. Hortic. Res. 2013, 21, 99–106. [Google Scholar] [CrossRef]
- Oluoch, M.O.; Pichop, G.N.; Silué, D.; Abukutsa-Onyango, M.O.; Diouf, M.; Shackleton, C.M. Production and Harvesting Systems for African INDIGENOUS VEGETABLES. In African Indigenous Vegetables in Urban Agriculture; Shackleton, C.M., Pasquini, M.W., Descher, A.W., Eds.; Earthscan: London, UK, 2009. [Google Scholar]
- Gotor, E.; Irungu, C. The impact of Bioversity International’s African Leafy Vegetables programme in Kenya. Impact Assess. Proj. Apprais. 2012, 28, 41–55. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Future Smart Food: Rediscovering Hidden Treasures of Neglected and Underutilized Species for Zero Hunger in Asia; Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 2018; Available online: http://www.fao.org/3/I8907EN/i8907en.pdf (accessed on 31 May 2018).
- World Vegetable Center. Vegetable Diversity and Improvement. Available online: https://avrdc.org/our-work/developing-new-varieties/ (accessed on 25 May 2018).
- African Orphan Crops Consortium. Meet the Crops. Available online: http://africanorphancrops.org/meet-the-crops/ (accessed on 25 May 2018).
- Perez, S.; Martínez, J.; Beintema, N.; Flaherty, K. Agricultural R&D Indicators Factsheet Guatemala. Available online: https://www.asti.cgiar.org/pdf/factsheets/Guatemala-Factsheet.pdf (accessed on 29 June 2018).
- Stads, G.J.; Sastry, K.; Kumar, G.; Kondisetty, T.; Gao, L. Agricultural R&D Indicators Factsheet India. Available online: https://www.asti.cgiar.org/sites/default/files/pdf/factsheets/India-Factsheet.pdf (accessed on 29 June 2018).
- Magne Domgho, L.V.; Traoré, O.; Stads, G.J. Agricultural R&D Indicators Factsheet Mali. Available online: https://www.asti.cgiar.org/sites/default/files/pdf/Mali-Factsheet-2017.pdf (accessed on 29 June 2018).
- Schönfeldt, H.C.; Pretorius, B. The nutrient content of five traditional South African dark green leafy vegetables—A preliminary study. J. Food Compos. Anal. 2011, 24, 1141–1146. [Google Scholar] [CrossRef] [Green Version]
- Guinand, Y.; Lemessa, D. Wild-food plants in Ethiopia: Reflections on the role of wild foods and famine foods at a time of drought. Potential Indig. Wild Foods 2001, 22, 39. [Google Scholar]
- Padulosi, S.; Amaya, K.; Jäger, M.; Gotor, E.; Rojas, W.; Valdivia, R. A Holistic approach to enhance the use of neglected and underutilized species: The case of Andean grains in Bolivia and Peru. Sustainability 2014, 6, 1283–1312. [Google Scholar] [CrossRef]
- Terangpi, R.; Ratan Basumatary, R.T. Nutritional consideration of three important emergency food plants studied among Karbi Tribe of North East India. J. Sci. Innov. Res. 2015, 4, 138–141. [Google Scholar]
- Getachew, A.; Asfaw, Z.; Singh, V.; Woldu, Z.; Baidu-Forson, J.J.; Bhattacharya, S. Dietary values of wild and semi-wild edible plants in Southern Ethiopia. Afr. J. Food Agric. Nutr. Dev. 2013, 13. Available online: https://www.ajol.info/index.php/ajfand/article/view/87478 (accessed on 31 May 2018).
- Meyer, R.S.; DuVal, A.E.; Jensen, H.R. Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. New Phytol. 2012, 196, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Verchot, L.V.; Van Noordwijk, M.; Kandji, S.; Tomich, T.; Ong, C.; Albrecht, A.; Bantilan, M.C.; Anupama, K.V.; Palm, C.J. Climate change: Linking adaptation and mitigation through agroforestry. Mitig. Adapt. Strat. Glob. Chang. 2007, 12, 901–918. [Google Scholar] [CrossRef]
- Mbow, C.; Smith, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Thorlakson, T.; Neufeldt, H. Reducing subsistence farmers’ vulnerability to climate change: Evaluating the potential contributions of agroforestry in western Kenya. Agric. Food Secur. 2012, 1, 15. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Sileshi, G.W.; Debusho, L.K.; Akinnifesi, F.K. Can integration of legume trees increase yield stability in rainfed maize cropping systems in Southern Africa? Agron. J. 2012, 104, 1392–1398. [Google Scholar] [CrossRef]
- Asbjornsen, H.; Hernandez-Santana, V.; Liebman, M.; Bayala, J.; Chen, J.; Helmers, M.; Schulte, L. Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services. Renew. Agric. Food Syst. 2014, 29, 101–125. [Google Scholar] [CrossRef]
- Elia, A.; Santamaria, P. Biodiversity in vegetable crops, a heritage to save: The case of Puglia region. Ital. J. Agron. 2013, 8, 4. [Google Scholar] [CrossRef]
- Hurtado, M.; Vilanova, S.; Plazas, M.; Gramazio, P.; Herraiz, F.J.; Andújar, I.; Prohens, J.; Castro, A. Enhancing conservation and use of local vegetable landraces: The Almagro eggplant (Solanum melongena L.) case study. Genet. Resour. Crop Evol. 2014, 61, 787–795. [Google Scholar] [CrossRef]
- Grivetti, L.E.; Ogle, B.M. Value of traditional foods in meeting macro- and micronutrient needs: The wild plant connection. Nutr. Res. Rev. 2000, 13, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Flyman, M.V.; Afolayan, A.J. The suitability of wild vegetables for alleviating human dietary deficiencies. S. Afr. J. Bot. 2006, 72, 492–497. [Google Scholar] [CrossRef] [Green Version]
- Bharucha, Z.; Pretty, J. The roles and values of wild foods in agricultural systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2913–2926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Mata, M.C.; Cabrera Loera, R.D.; Morales, P.; Fernández-Ruiz, V.; Cámara, M.; Díez Marqués, C.; Pardo-de-Santayana, M.; Tardío, J. Wild vegetables of the Mediterranean area as valuable sources of bioactive compounds. Genet. Resour. Crop Evol. 2012, 59, 431–443. [Google Scholar] [CrossRef]
- Salvi, J.; Katewa, S.S. A review: Underutilized wild edible plants as a potential source of alternative nutrition. Int. J. Bot. Stud. 2016, 1, 32–36. [Google Scholar]
- Afolayan, A.J.; Jimoh, F.O. Nutritional quality of some wild leafy vegetables in South Africa. Int. J. Food Sci. Nutr. 2009, 60, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Vorster, I.H.J.; van Rensburg, W.J.; Venter, S.L. The importance of traditional leafy vegetables in South Africa. Afr. J. Food Agric. Nutr. Dev. 2007, 7, 1–13. [Google Scholar]
Life Form | Characteristics |
---|---|
Phanerophytes | Persistent woody stems and buds that project 3 m or more above the soil. Includes trees and large shrubs, e.g., Moringa oleifera Lam. |
Nanophanerophytes | Woody, persistent stems, with buds located between 0.5 m and 3 m above ground level. Includes smaller shrubs, e.g., Cordyline fruticosa (L.) A. Chev. |
Herbaceous phanerophytes | Herbaceous stems projecting more than 0.5 m above ground level that persist for several years. Includes many tropical species, e.g., Musa acuminata Colla. |
Chamaephytes | Persistent stems that are herbaceous or woody with buds located above soil level, but never by more than 0.5 m. Includes dwarf shrubs and some perennial herbs, e.g., Aloe macrocarpa Tod. |
Hemicryptophytes | Herbaceous stems that often die-back during unfavourable seasons with surviving buds placed on (or just below) soil level. Includes many biennial and perennial herbs, including those in which buds grow from a basal rosette, e.g., Lactuca sativa L. |
Geophytes | Stems that die back during unfavourable seasons with the plant surviving as a bulb, rhizome, tuber or root bud, e.g., Daucus carota L. |
Therophytes | Complete their entire life-cycle during the favourable season and survive the unfavourable season as a seed. This group includes all annual herbs, e.g., Corchorus olitorius L. |
Epiphytes | Growing buds occur on another plant, e.g., Peperomia pereskiifolia (Jacq.) Kunth. |
Helophytes | Surviving buds are buried in water-saturated soil, or below water-level, but with flowers and leaves that are fully emergent during the growing season. Includes many marsh plants and emergent aquatic herbs, e.g., Typha latifolia L. |
Hydrophytes | Fully aquatic herbs in which surviving buds are submerged, or buried in soil beneath water. Stems and vegetative shoots grow entirely underwater and leaves can be submerged or floating, but only the flower-bearing parts may be emergent, e.g., Vallisneria natans (Lour.) H.Hara. |
Leafy Vegetables (n = 495) | Root Vegetables (n = 204) | Fruit/Seed Vegetables (n = 90) | Other Vegetables (Flower, Stem, Shoot) (n = 81) | Multiuse Vegetables (n = 227) | |
---|---|---|---|---|---|
Parts used as a vegetable | |||||
Leaves | 100% | 63% | |||
Shoots, sprouts | 14% | 46% | 25% | ||
Stems | 15% | 12% | |||
Bulb | 13% | 5% | |||
Corm | 9% | 2% | |||
Tuber | 52% | 12% | |||
Rhizome | 15% | 10% | |||
Roots | 12% | 11% | |||
Flowers, petals, inflorescences | 40% | 48% | |||
Fruit/pod | 77% | 18% | |||
Fresh seed | 30% | 7% | |||
Parts used for non-vegetable uses | |||||
Seed | 8% | 1% | 27% | 16% | |
Fruit | 12% | 2% | 20% | 25% |
Factor | # Google Scholar Records a | # Accessions a | Documented in FAOSTAT b |
---|---|---|---|
Growth form | F(7, 192.58) = 9.84 *** | F(7, 195.5) = 25.46 *** | Χ2(7) = 121.93 *** |
Region of origin | F(4, 417.14) = 20.94 *** | F(4, 399) = 17.40 *** | Χ2(4) = 12.88 * |
Vegetable use | F(4, 293.4) = 18.78 *** | F(4, 299.1) = 38.70 *** | Χ2(4) = 105.33 *** |
Non vegetable use | F(1, 50.19) = 50.19 *** | F(1, 299.1) = 23.53 *** | Χ2(1) = 7.26 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meldrum, G.; Padulosi, S.; Lochetti, G.; Robitaille, R.; Diulgheroff, S. Issues and Prospects for the Sustainable Use and Conservation of Cultivated Vegetable Diversity for More Nutrition-Sensitive Agriculture. Agriculture 2018, 8, 112. https://doi.org/10.3390/agriculture8070112
Meldrum G, Padulosi S, Lochetti G, Robitaille R, Diulgheroff S. Issues and Prospects for the Sustainable Use and Conservation of Cultivated Vegetable Diversity for More Nutrition-Sensitive Agriculture. Agriculture. 2018; 8(7):112. https://doi.org/10.3390/agriculture8070112
Chicago/Turabian StyleMeldrum, Gennifer, Stefano Padulosi, Gaia Lochetti, Rose Robitaille, and Stefano Diulgheroff. 2018. "Issues and Prospects for the Sustainable Use and Conservation of Cultivated Vegetable Diversity for More Nutrition-Sensitive Agriculture" Agriculture 8, no. 7: 112. https://doi.org/10.3390/agriculture8070112
APA StyleMeldrum, G., Padulosi, S., Lochetti, G., Robitaille, R., & Diulgheroff, S. (2018). Issues and Prospects for the Sustainable Use and Conservation of Cultivated Vegetable Diversity for More Nutrition-Sensitive Agriculture. Agriculture, 8(7), 112. https://doi.org/10.3390/agriculture8070112