Inherent Reflectance Variability of Vegetation
Abstract
:1. Introduction
2. Background
2.1. Plant Reflectance Analysis
- Leaf optical properties
- Canopy geometry
- Soil reflectance
- Solar illumination and view angles
- Atmospheric transmittance
2.2. Small Unmanned Aircraft System (sUAS)
2.3. Multispectral Sensing
2.4. Conversion to Radiance
2.5. Conversion to Reflectance
2.5.1. Empirical Line Method (ELM)
2.5.2. At-Altitude Radiance Ratio (AARR)
2.6. Reflectance Variation Importance
2.7. Normalized Difference Vegetation Index (NDVI)
3. Materials and Methods
- Capture sky image with Nikon Camera
- Collect first set of ground reference reflectance of conversion panels
- Collect 15 min of MicaSense RedEdge-3 Imagery ( 90 images captured between minutes 3 and 18 every hour)
- Collect second set of ground reference reflectance of conversion panels
- Collect reflectance from all three plant’s using an ASD FieldSpec at three various heights (15 cm, 30 cm and 60 cm)
3.1. Field Spectroradiometer and Leafclip Contact Probe Measurements
3.2. Multispectral Sensor Measurements
3.3. DIRSIG5
4. Results and Discussion
4.1. Field Spectroradiometer
4.2. Leafclip Contact Probe
4.3. DIRSIG
4.4. Multispectral Sensor
5. Future Work
5.1. Data Recollection
5.2. Entire Simulation Study
5.3. Reflectance Variability of Target X
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Robertson, M.; Carberry, P.; Brennan, L. The Economic Benefits of Precision Agriculture: Case Studies from Australian Grain Farms. Crop Pasture Sci. 2007, 60, 2012. [Google Scholar]
- Stafford, J.V. Implementing Precision Agriculture in the 21st Century. J. Agric. Eng. Res. 2000, 76, 267–275. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Moran, M.; Inoue, Y.; Barnes, E. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 1997, 61, 319–346. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Bradford, J.M. Comparison of QuickBird Satellite Imagery and Airborne Imagery for Mapping Grain Sorghum Yield Patterns. Precis. Agric. 2006, 7, 33–44. [Google Scholar] [CrossRef]
- McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future Directions of Precision Agriculture. Precis. Agric. 2005, 6, 7–23. [Google Scholar] [CrossRef]
- Bauer, M.E. Spectral inputs to crop identification and condition assessment. Proc. IEEE 1985, 73, 1071–1085. [Google Scholar] [CrossRef]
- Ollinger, S.V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef] [PubMed]
- Kollenkark, J.C.; Vanderbilt, V.C.; Daughtry, C.S.T.; Bauer, M.E. Influence of solar illumination angle on soybean canopy reflectance. Appl. Opt. 1982, 21, 1179–1184. [Google Scholar] [CrossRef] [PubMed]
- de Souza, E.G.; Scharf, P.C.; Sudduth, K.A. Sun position and cloud effects on reflectance and vegetation indices of corn. Agron. J. 2010, 102, 734–744. [Google Scholar] [CrossRef]
- Suits, G.H. The calculation of the directional reflectance of a vegetative canopy. Remote Sens. Environ. 1971, 2, 117–125. [Google Scholar] [CrossRef]
- Smith, J.; Berry, J.; Heimes, F. Signature Extension for Sun Angle; Colorado State University: Fort Collins, CO, USA, 1975; Volume 1. [Google Scholar]
- Granzier, J.J.; Valsecchi, M. Variations in daylight as a contextual cue for estimating season, time of day, and weather conditions. J. Vis. 2014, 14, 22. [Google Scholar] [CrossRef] [PubMed]
- Watts, A.; Ambrosia, V.; Hinkley, E.A. Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef]
- Unmanned Aircraft Systems. Available online: https://www.faa.gov/uas/ (accessed on 6 October 2018).
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- MicaSense Incorporated. Image Processing. Available online: https://github.com/micasense/imageprocessing (accessed on 13 December 2018).
- Mamaghani, B.; Salvaggio, C. Multispectral Sensor Calibration and Characterization for sUAS Remote Sensing. Sensors 2019, 19, 4453. [Google Scholar] [CrossRef] [PubMed]
- Padró, J.C.; Muñoz, F.J.; Ávila, L.; Pesquer, L.; Pons, X. Radiometric Correction of Landsat-8 and Sentinel-2A Scenes Using Drone Imagery in Synergy with Field Spectroradiometry. Remote Sens. 2018, 10, 1687. [Google Scholar] [CrossRef]
- Karpouzli, E.; Malthus, T. The empirical line method for the atmospheric correction of IKONOS imagery. Int. J. Remote Sens. 2003, 24, 1143–1150. [Google Scholar] [CrossRef]
- Kruse, F.; Kierein-Young, K.; Boardman, J. Mineral mapping at Cuprite, Nevada with a 63-channel imaging spectrometer. Photogramm. Eng. Remote Sens. 1990, 56, 83–92. [Google Scholar]
- Laliberte, A.S.; Goforth, M.A.; Steele, C.M.; Rango, A. Multispectral remote sensing from unmanned aircraft: Image processing workflows and applications for rangeland environments. Remote Sens. 2011, 3, 2529–2551. [Google Scholar] [CrossRef]
- Moran, M.S.; Bryant, R.; Thome, K.; Ni, W.; Nouvellon, Y.; Gonzalez-Dugo, M.; Qi, J.; Clarke, T. A refined empirical line approach for reflectance factor retrieval from Landsat-5 TM and Landsat-7 ETM+. Remote Sens. Environ. 2001, 78, 71–82. [Google Scholar] [CrossRef]
- Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- Mamaghani, B.; Salvaggio, C. Comparative study of panel and panelless-based reflectance conversion techniques for agricultural remote sensing. arXiv 2019, arXiv:1910.03734. [Google Scholar]
- Rouse, J., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. In NASA Goddard Space Flight Center 3d ERTS-1 Symposium, Proceedings of the Third Symposium on Significant Results Obtained from the First Earth, Washington, DC, USA, 10–14 December 1974; NASA: Washington, DC, USA, 1974. [Google Scholar]
- Doraiswamy, P.C.; Moulin, S.; Cook, P.W.; Stern, A. Crop Yield Assessment from Remote Sensing. Photogramm. Eng. Remote Sens. 2003, 69, 665–674. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Lyon, J.G. Hyperspectral Remote Sensing of Vegetation; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Wang, J.; Rich, P.M.; Price, K.P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens. 2003, 24, 2345–2364. [Google Scholar] [CrossRef]
- Goodenough, A.A.; Brown, S.D. DIRSIG5: Next-Generation Remote Sensing Data and Image Simulation Framework. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4818–4833. [Google Scholar] [CrossRef]
- Padró, J.C.; Carabassa, V.; Balagué, J.; Brotons, L.; Alcañiz, J.M.; Pons, X. Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Sci. Total Environ. 2019, 657, 1602–1614. [Google Scholar] [CrossRef]
Band Name | Wavelengths [nm] | FWHM [nm] |
---|---|---|
Blue | 475 | 20 |
Green | 560 | 20 |
Red | 668 | 10 |
Red Edge | 717 | 10 |
Near IR | 840 | 40 |
Cloudy Day | Sunny Day | ||||||
---|---|---|---|---|---|---|---|
Plant 1 | Plant 2 | Plant 3 | Plant 4 | Plant 5 | Plant 6 | ||
GSD | 2 cm | 0.227 | 0.331 | 0.552 | 0.009 | 0.707 | 0.063 |
4 cm | 0.216 | 0.159 | 0.927 | 0.529 | 0.958 | 0.176 | |
8 cm | 0.705 | 0.849 | 0.898 | 0.155 | 0.089 | 0.022 |
Cloudy Day | Sunny Day | |||||
---|---|---|---|---|---|---|
2-Point ELM | 1-Point ELM | AARR | 2-Point ELM | 1-Point ELM | AARR | |
Blue | 0.020 | 0.820 | 0.652 | 0.853 | 0.939 | 0.807 |
Green | 0.654 | 0.808 | 0.713 | 0.950 | 0.388 | 0.578 |
Red | 0.125 | 0.848 | 0.710 | 0.918 | 0.871 | 0.725 |
RE | 0.930 | 0.939 | 0.751 | 0.985 | 0.946 | 0.911 |
NIR | 0.935 | 0.949 | 0.903 | 0.686 | 0.810 | 0.813 |
08:00 a.m.-Sunny | 12:00 p.m.-Sunny | |||||||
---|---|---|---|---|---|---|---|---|
2-Point ELM | 1-Point ELM | AARR | DIRSIG | 2-Point ELM | 1-Point ELM | AARR | DIRSIG | |
Blue | 0.025 (0.039) | 0.032 (0.039) | 0.027 (0.033) | 0.039 (0.046) | −0.021 (0.026) | 0.035 (0.022) | 0.030 (0.019) | 0.037 (0.027) |
Green | 0.094 (0.110) | 0.096 (0.109) | 0.119 (0.134) | 0.054 (0.066) | 0.031 (0.055) | 0.085 (0.047) | 0.096 (0.053) | 0.046 (0.038) |
Red | 0.033 (0.057) | 0.034 (0.057) | 0.042 (0.070) | 0.078 (0.087) | −0.011 (0.035) | 0.046 (0.030) | 0.050 (0.033) | 0.070 (0.051) |
RE | 0.255 (0.260) | 0.257 (0.254) | 0.342 (0.339) | 0.169 (0.182) | 0.165 (0.118) | 0.200 (0.097) | 0.251 (0.122) | 0.144 (0.110) |
NIR | 0.534 (0.323) | 0.519 (0.302) | 0.694 (0.404) | 0.199 (0.209) | 0.459 (0.216) | 0.430 (0.168) | 0.507 (0.198) | 0.173 (0.129) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamaghani, B.; Saunders, M.G.; Salvaggio, C. Inherent Reflectance Variability of Vegetation. Agriculture 2019, 9, 246. https://doi.org/10.3390/agriculture9110246
Mamaghani B, Saunders MG, Salvaggio C. Inherent Reflectance Variability of Vegetation. Agriculture. 2019; 9(11):246. https://doi.org/10.3390/agriculture9110246
Chicago/Turabian StyleMamaghani, Baabak, M. Grady Saunders, and Carl Salvaggio. 2019. "Inherent Reflectance Variability of Vegetation" Agriculture 9, no. 11: 246. https://doi.org/10.3390/agriculture9110246
APA StyleMamaghani, B., Saunders, M. G., & Salvaggio, C. (2019). Inherent Reflectance Variability of Vegetation. Agriculture, 9(11), 246. https://doi.org/10.3390/agriculture9110246