Effect of Species, Fertilization and Harvest Date on Microbial Composition and Mycotoxin Content in Forage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Plot Maintenance
- Variant A: non-fertilized control
- Variant B (150 kg N/ha/year): Total amount of nitrogen was applied in three doses, therefore each application dose contained 1/3 of annual dose = 9.43 kg digestate per 10m2 (equal to 50 kg N/ha/application)
- Variant C (300 kg N/ha/year): Total amount of nitrogen was applied in three doses, therefore each application dose contained 1/3 of annual dose = 18.87 kg digestate per 10m2 (equal to 100 kg N/ha/application)
2.2. Microbial Analyses
- Total microbial count (TMC) on Plate Count Agar (Biokar Diagnostics, Pantin, France) at 30 °C for 72 h.
- Lactic acid bacteria (LAB) on De Man, Rogosa and Sharpe Agar (Biokar Diagnostics, Pantin, France) at 30 °C for 72 h.
- Enterococcus sp. on COMPASS Enterococcus agar (Biokar Diagnostics, Pantin, France) at 44 °C for 24 h.
- Enterobacteriaceae on Violet Red Bile Glucose Agar (Biokar Diagnostics, Pantin, France) at 37°C for 24 h.
- Micromycetes (yeasts and molds) on Chloramphenicol Glucose Agar (Biokar Diagnostics, Pantin, France) at 25 °C for 120 h.
2.3. Mycotoxin Analyses
2.4. Statistical Analyses
3. Results
3.1. Date of Sampling
3.2. Botanical Species
3.3. Fertilization
3.4. Mycotoxin Contamination of Fresh Feed
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Simeckova, J.; Jandak, J.; Masicek, T. Vliv Aplikace Digestátu na Vlastnosti Kambizemě; Mendelova Univerzita v Brně: Brno, Czech Republic, 2018; ISBN 978-80-7509-613-5. [Google Scholar]
- Agriculture in the Czech Republic. Embassy of the Czech Republic in Tel Aviv. Available online: https://www.mzv.cz/telaviv/en/economy_and_trade/agriculture_in_the_czech_republic/ (accessed on 17 April 2019).
- Thapa, S.; Prasanna, R.; Ranjan, K.; Velmourougane, K.; Ramakrishnan, B. Nutrients and host attributes modulate the abundance and functional traits of phyllosphere microbiome in rice. Microbiol. Res. 2017, 204, 55–64. [Google Scholar] [CrossRef]
- Legard, D.E.; McQuilken, M.P.; Whipps, J.M.; Fenlon, J.S.; Fermor, T.R.; Thompson, I.P.; Bailey, M.J.; Lynch, J.M. Studies of seasonal changes in the microbial populations on the phyllosphere of spring wheat as a prelude to the release of a genetically modified microorganism. Agric. Ecosyst. Environ. 1994, 50, 87–101. [Google Scholar] [CrossRef]
- Nugmanov, A.; Beishova, I.; Kokanov, S.; Lozowicka, B.; Kaczynski, P.; Konecki, R.; Snarska, K.; Wołejko, E.; Sarsembayeva, N.; Abdigaliyeva, T. Systems to reduce mycotoxin contamination of cereals in the agricultural region of Poland and Kazakhstan. Crop Prot. 2018, 106, 64–71. [Google Scholar] [CrossRef]
- Ravindran, V. Nutrition and pathology of non-ruminants. Anim. Feed Sci. Technol. 2012, 173, 1–2. [Google Scholar] [CrossRef]
- Nguyen, P.-A.; Strub, C.; Fontana, A.; Schorr-Galindo, S. Crop molds and mycotoxins: Alternative management using biocontrol. Biol. Control 2017, 104, 10–27. [Google Scholar] [CrossRef]
- Cheli, F.; Campagnoli, A.; Dell’Orto, V. Fungal populations and mycotoxins in silages: From occurrence to analysis. Anim. Feed Sci. Technol. 2013, 183, 1–16. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Jiang, Y.; Pech Cervantes, A.A.; Kim, D.H.; Oliveira, A.S.; Vyas, D.; Weinberg, Z.G.; Jeong, K.C.; Adesogan, A.T. Bacterial diversity and composition of alfalfa silage as analyzed by Illumina MiSeq sequencing: Effects of Escherichia coli O157:H7 and silage additives. J. Dairy Sci. 2018, 101, 2048–2059. [Google Scholar] [CrossRef] [PubMed]
- Bezerra da Rocha, M.E.; da Chagas Oliveira FreireFreire, F.; Maia, F.E.F.; Guedes, M.I.F.; Rondina, D. Mycotoxins and their effects on human and animal health. Food Control 2014, 36, 159–165. [Google Scholar] [CrossRef]
- Edwards, S.G. Influence of agricultural practices on fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicol. Lett. 2004, 153, 29–35. [Google Scholar] [CrossRef]
- Pitt, J.I. Mycotoxins: Mycotoxins—General. In Encyclopedia of Food Safety; Motarjemi, Y., Ed.; Academic Press: Waltham, MA, USA, 2014; pp. 283–288. ISBN 978-0-12-378613-5. [Google Scholar]
- Stein, R.A.; Bulboaca, A.E. Chapter 21—Mycotoxins. In Foodborne Diseases, 3rd ed.; Dodd, C.E.R., Aldsworth, T., Stein, R.A., Cliver, D.O., Riemann, H.P., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 407–446. ISBN 978-0-12-385007-2. [Google Scholar]
- Manizan, A.L.; Oplatowska-Stachowiak, M.; Piro-Metayer, I.; Campbell, K.; Koffi-Nevry, R.; Elliott, C.; Akaki, D.; Montet, D.; Brabet, C. Multi-mycotoxin determination in rice, maize and peanut products most consumed in Côte d’Ivoire by UHPLC-MS/MS. Food Control 2018, 87, 22–30. [Google Scholar] [CrossRef]
- Mateo, E.M.; Valle-Algarra, F.M.; Jimenez, M.; Magan, N. Impact of three sterol-biosynthesis inhibitors on growth of Fusarium langsethiae and on T-2 and HT-2 toxin production in oat grain under different ecological conditions. Food Control 2013, 34, 521–529. [Google Scholar] [CrossRef]
- Aldars-Garcia, L.; Berman, M.; Ortiz, J.; Ramos, A.J.; Marin, S. Probability models for growth and aflatoxin B1 production as affected by intraspecies variability in Aspergillus flavus. Food Microbiol. 2018, 72, 166–175. [Google Scholar] [CrossRef]
- Quattrini, M.; Bernardi, C.; Stuknytė, M.; Masotti, F.; Passera, A.; Ricci, G.; Vallone, L.; De Noni, I.; Brasca, M.; Fortina, M.G. Functional characterization of Lactobacillus plantarum ITEM 17215: A potential biocontrol agent of fungi with plant growth promoting traits, able to enhance the nutritional value of cereal products. Food Res. Int. 2018, 106, 936–944. [Google Scholar] [CrossRef]
- Luz, C.; Ferrer, J.; Mañes, J.; Meca, G. Toxicity reduction of ochratoxin A by lactic acid bacteria. Food Chem. Toxicol. 2018, 112, 60–66. [Google Scholar] [CrossRef]
- Skladanka, J.; Nedenik, J.; Adam, V.; Dolezal, P.; Moravcova, H.; Dohnal, V. Forage as a Primary Source of Mycotoxins in Animal Diets. Int. J. Environ. Res. Public Health 2010, 8, 37–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Turkington, T.K.; Lévesque, C.A.; Bamforth, J.M.; Patrick, S.K.; Lewis, C.T.; Chapados, J.T.; Gaba, D.; Tittlemier, S.A.; MacLeod, A.; et al. Geography and agronomical practices drive diversification of the epiphytic mycoflora associated with barley and its malt end product in western Canada. Agric. Ecosyst. Environ. 2016, 226, 43–55. [Google Scholar] [CrossRef]
- Maciorowski, K.G.; Herrera, P.; Jones, F.T.; Pillai, S.D.; Ricke, S.C. Effects on poultry and livestock of feed contamination with bacteria and fungi. Anim. Feed Sci. Technol. 2007, 133, 109–136. [Google Scholar] [CrossRef]
- Yadav, R.K.P.; Papatheodorou, E.M.; Karamanoli, K.; Constantinidou, H.-I.A.; Vokou, D. Abundance and diversity of the phyllosphere bacterial communities of Mediterranean perennial plants that differ in leaf chemistry. Chemoecology 2008, 18, 217–226. [Google Scholar] [CrossRef]
- Ma, B.; Cai, Y.; Bork, E.W.; Chang, S.X. Defoliation intensity and elevated precipitation effects on microbiome and interactome depend on site type in northern mixed-grass prairie. Soil Biol. Biochem. 2018, 122, 163–172. [Google Scholar] [CrossRef]
- Morcia, C.; Rattotti, E.; Stanca, A.M.; Tumino, G.; Rossi, V.; Ravaglia, S.; Germeier, C.U.; Herrmann, M.; Polisenska, I.; Terzi, V. Fusarium genetic traceability: Role for mycotoxin control in small grain cereals agro-food chains. J. Cereal Sci. 2013, 57, 175–182. [Google Scholar] [CrossRef]
- Kharazian, Z.A.; Salehi Jouzani, G.; Aghdasi, M.; Khorvash, M.; Zamani, M.; Mohammadzadeh, H. Biocontrol potential of Lactobacillus strains isolated from corn silages against some plant pathogenic fungi. Biol. Control 2017, 110, 33–43. [Google Scholar] [CrossRef]
- Heron, S.J.E.; Wilkinson, J.F.; Duffus, C.M. Enterobacteria associated with grass and silages. J. Appl. Bacteriol. 1993, 75, 13–17. [Google Scholar] [CrossRef]
- Kozlovska, S.; Zahradnicek, P. INFOMET | Informační web ČHMÚ | Český Hydrometeorologický Ústav | Meteorologie, Klimatologie, Hydrologie, Čistota Ovzduší, Předpověď Počasí. Available online: http://www.infomet.cz/index.php?id=read&idd=1503567031 (accessed on 6 March 2019).
- Karlsson, I.; Friberg, H.; Kolseth, A.; Steinberg, C.; Persson, P. Agricultural factors affecting Fusarium communities in wheat kernels. Int. J. Food Microbiol. 2017, 252, 53–60. [Google Scholar] [CrossRef]
- Giesler, L.J.; Yuen, G.Y.; Horst, G.L. The microclimate in tall fescue turf as affected by canopy density and its influence on brown patch disease. Plant Dis. 1996, 80, 389–394. [Google Scholar] [CrossRef]
- Opitz von Boberfeld, W.; Banzhaf, K. Yield and forage quality of different x Festulolium cultivars in winter. J. Agron. Crop Sci. 2006, 192, 239–247. [Google Scholar] [CrossRef]
- Behrendt, U.; Stauber, T.; Müller, T. Microbial communities in the phyllosphere of grasses on fenland at different intensities of management. Grass Forage Sci. 2004, 59, 169–179. [Google Scholar] [CrossRef]
- De Nijs, M.; Soentoro, P.; Delfgou-Van Asch, E.; Kamphuis, H.; Rombouts, F.M. Fungal infection and presence of deoxynivalenol and zearalenone in The Netherlands. J. Food Prot. 1996, 59, 772–777. [Google Scholar] [CrossRef]
- Engels, R.; Krämer, J. Incidence of fusaria and occurrence of selected Fusarium mycotoxins on Lolium ssp. in Germany. Mycotoxin Res. 1996, 12, 31–40. [Google Scholar] [CrossRef]
- Opitz von Boberfeld, W. Changes of the quality including mycotoxin problems of the primary growth of a hay meadow—Arrhenatherion elatioris. Agribiol. Res. 1996, 49, 52–62. [Google Scholar]
- Sobrova, P.; Adam, V.; Vasatkova, A.; Beklova, M.; Zeman, L.; Kizek, R. Deoxynivalenol and its toxicity. Interdiscip. Toxicol. 2010, 3, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Hughes, D.M.; Gahl, M.J.; Graham, C.H.; Grieb, S.L. Overt signs of toxicity to dogs and cats of dietary deoxynivalenol. J. Anim. Sci. 1999, 77, 693–700. [Google Scholar] [CrossRef]
- Wolf, D. On the Effect of Stand, Pre-Utilization and Date of Winter Harvest on Quality and Yield of Winter Pasture. Ph.D. Thesis, Justus Liebig University, Giessen, Germany, 2002. [Google Scholar]
- Marasas, W.F.O.; Van Rensburg, S.J.; Mirocha, C.J. Incidence of fusarium species and the mycotoxins, deoxynivalenol and zearalenone, in corn produced in esophageal cancer areas in Transkei. J. Agric. Food Chem. 1979, 27, 1108–1112. [Google Scholar] [CrossRef]
- Sutton, J.C.; Baliko, W.; Funnell, H.S. Relation of Weather Variables to Incidence of Zearalenone in Corn in Southern Ontario. Can. J. Plant Sci. 1980, 60, 149–155. [Google Scholar] [CrossRef]
- Skladanka, J.; Dohnal, V.; Dolezal, P.; Jezkova, A.; Zeman, L. Factors Affecting the content of Ergosterol and Zearalenone in Selected Grass Species at the End of the Growing season. Acta Vet. Brno 2009, 78, 353–360. [Google Scholar] [CrossRef]
- Peng, W.-X.; Marchal, J.L.M.; van der Poel, A.F.B. Strategies to prevent and reduce mycotoxins for compound feed manufacturing. Anim. Feed Sci. Technol. 2018, 237, 129–153. [Google Scholar] [CrossRef]
- Wiwart, M.; Suchowilska, E.; Kandler, W.; Sulyok, M.; Groenwald, P.; Krska, R. Can Polish wheat (Triticum polonicum L.) be an interesting gene source for breeding wheat cultivars with increased resistance to Fusarium head blight? Genet. Resour. Crop Evol. 2013, 60, 2359–2373. [Google Scholar] [CrossRef]
- Xu, L.; Tao, N.; Yang, W.; Jing, G. Cinnamaldehyde damaged the cell membrane of Alternaria alternata and induced the degradation of mycotoxins in vivo. Ind. Crops Prod. 2018, 112, 427–433. [Google Scholar] [CrossRef]
- Ma, Z.X.; Amaro, F.X.; Romero, J.J.; Pereira, O.G.; Jeong, K.C.; Adesogan, A.T. The capacity of silage inoculant bacteria to bind aflatoxin B1 in vitro and in artificially contaminated corn silage. J. Dairy Sci. 2017, 100, 7198–7210. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Gao, F.; Zhou, X.; Zhang, J.; Ding, Y. Using acid and alkaline electrolyzed water to reduce deoxynivalenol and mycological contaminations in wheat grains. Food Control 2018, 88, 98–104. [Google Scholar] [CrossRef]
Nutrient | Content (%) |
---|---|
Dry matter | 5.70 |
Total nitrogen | 0.49 |
Phosphorus | 0.06 |
Potassium | 0.42 |
Calcium | 0.13 |
Magnesium | 0.05 |
Date of Sampling | Microbial Group (CFU/g) | Mean Value | SE | p | H |
---|---|---|---|---|---|
17.5.2018 | Total microbial count | 4.39 × 105 | 1.95 × 108 | 0.2372 a | 1.3974 |
Lactic acid bacteria | 3.83 × 105 | 1.50 × 105 | 0.7874 a | 0.0727 | |
Enterococcus sp. | 5.96 × 105 | 2.22 × 105 | 0.5331 a | 0.3884 | |
Enterobacteriaceae | 4.44 × 105 | 1.65 × 105 | 0.0727 a | 0.7874 | |
Total micromycetes | 6.14 × 105 | 3.01 × 105 | 0.0712 a | 3.2562 | |
Yeasts | 6.00 × 105 | 3.00 × 105 | 0.7557 a | 0.0967 | |
Filamentous fungi | 1.27 × 104 | 3.29 × 103 | 0.0001b | 18.7958 | |
14.7.2018 | Total microbial count | 2.27 × 108 | 1.26 × 108 | 0.2372 a | 1.3974 |
Lactic acid bacteria | 3.20 × 103 | 8.81 × 102 | 0.7874 a | 0.0727 | |
Enterococcus sp. | 8.86 × 102 | 5.28 × 102 | 0.5331 a | 0.3884 | |
Enterobacteriaceae | 1.53 × 104 | 5.66 × 103 | 0.0727 a | 0.7874 | |
Total micromycetes | 1.60 × 106 | 9.00 × 105 | 0.0712 a | 3.2562 | |
Yeasts | 1.33 × 106 | 9.14 × 105 | 0.7557 a | 0.0967 | |
Filamentous fungi | 2.61 × 105 | 7.79 × 104 | 0.0001b | 18.7958 |
Fertilization Regime | Microbial Group (CFU/g) | Mean Value | SE | p | H |
---|---|---|---|---|---|
Variant A (0 kg N/ha) | Total microbial count | 3.50 × 108 | 2.41 × 108 | 0.0001 a | 20.4679 |
Lactic acid bacteria | 5.20 × 105 | 2.65 × 105 | 0.0040 a | 13.3123 | |
Enterococcus sp. | 6.86 × 105 | 3.60 × 105 | 0.0413 a | 8.2419 | |
Enterobacteriaceae | 5.05 × 105 | 2.71 × 105 | 0.0116 a | 11.0197 | |
Total micromycetes | 2.24 × 106 | 1.60 × 106 | 0.0005 a | 17.5514 | |
Yeasts | 2.18 × 106 | 1.59 × 106 | 0.0035 a | 13.5785 | |
Filamentous fungi | 6.27 × 104 | 1.62 × 104 | 0.0025 a | 14.3612 | |
Variant B (150 kg N/ha) | Total microbial count | 9.53 × 107 | 3.60 × 107 | 0.0001 a | 20.4679 |
Lactic acid bacteria | 2.62 × 103 | 9.51 × 102 | 0.0040 a | 13.3123 | |
Enterococcus sp. | 81.4 | 30.5 | 0.0413 a | 8.2419 | |
Enterobacteriaceae | 9.72 × 103 | 3.62 × 103 | 0.0116 a | 11.0197 | |
Total micromycetes | 3.54 × 105 | 1.62 × 105 | 0.0005 a | 17.5514 | |
Yeasts | 3.64 × 104 | 2.62 × 104 | 0.0035 a | 13.5785 | |
Filamentous fungi | 2.88 × 105 | 1.51 × 105 | 0.0025 a | 14.3612 | |
Variant C (300 kg N/ha) | Total microbial count | 8.34 × 108 | 3.04 × 108 | 0.0001 a | 20.4679 |
Lactic acid bacteria | 1.99 × 105 | 9.66 × 104 | 0.0040 a | 13.3123 | |
Enterococcus sp. | 4.32 × 105 | 2.37 × 105 | 0.0413 a | 8.2419 | |
Enterobacteriaceae | 3.47 × 105 | 1.69 × 105 | 0.0116 a | 11.0197 | |
Total micromycetes | 1.65 × 106 | 6.82 × 105 | 0.0005 a | 17.5514 | |
Yeasts | 1.39 × 106 | 7.33 × 105 | 0.0035 a | 13.5785 | |
Filamentous fungi | 2.60 × 105 | 1.22 × 105 | 0.0025 a | 14.3612 |
Fertilization Regime | Mycotoxin Concentration (ng/mL) | Mean Value | SE | p |
---|---|---|---|---|
Variant A (0 kg N/ha) | Deoxynivalenol | 5.0979 | 1.29 | 0.4437 a |
Zearalenon | 1.3984 | 0.23 | 0.5574 a | |
Variant B (150 kg N/ha) | Deoxynivalenol | 5.0317 | 1.86 | 0.4437 a |
Zearalenon | 1.1825 | 0.11 | 0.5574 a | |
Variant C (300 kg N/ha) | Deoxynivalenol | 5.3212 | 1.79 | 0.4437 a |
Zearalenon | 1.1820 | 0.10 | 0.5574 a |
Species | Mycotoxin Concentration (ng/mL) | Mean Value | SE | p |
---|---|---|---|---|
×Festulolium ‘Felina’ | Deoxynivalenol | 1.0520 | 0.52 | 0.0008 a |
Zearalenon | 0.9665 | 0.03 | 0.4437 b | |
Festuca arundinacea L. ‘Prosteva’ | Deoxynivalenol | 7.9331 | 0.91 | 0.0008 a |
Zearalenon | 1.2893 | 0.11 | 0.4437 b | |
Lolium perenne L. ‘Promed’ | Deoxynivalenol | 2.4330 | 1.43 | 0.0008 a |
Zearalenon | 1.3480 | 0.37 | 0.4437 b | |
Phleum pratense L. ‘Sobol’ | Deoxynivalenol | 7.6381 | 0.81 | 0.0008 a |
Zearalenon | 1.3209 | 0.06 | 0.4437 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baholet, D.; Kolackova, I.; Kalhotka, L.; Skladanka, J.; Haninec, P. Effect of Species, Fertilization and Harvest Date on Microbial Composition and Mycotoxin Content in Forage. Agriculture 2019, 9, 102. https://doi.org/10.3390/agriculture9050102
Baholet D, Kolackova I, Kalhotka L, Skladanka J, Haninec P. Effect of Species, Fertilization and Harvest Date on Microbial Composition and Mycotoxin Content in Forage. Agriculture. 2019; 9(5):102. https://doi.org/10.3390/agriculture9050102
Chicago/Turabian StyleBaholet, Daria, Ivana Kolackova, Libor Kalhotka, Jiri Skladanka, and Peter Haninec. 2019. "Effect of Species, Fertilization and Harvest Date on Microbial Composition and Mycotoxin Content in Forage" Agriculture 9, no. 5: 102. https://doi.org/10.3390/agriculture9050102
APA StyleBaholet, D., Kolackova, I., Kalhotka, L., Skladanka, J., & Haninec, P. (2019). Effect of Species, Fertilization and Harvest Date on Microbial Composition and Mycotoxin Content in Forage. Agriculture, 9(5), 102. https://doi.org/10.3390/agriculture9050102