The Influence of Chemical, Organic and Biological Fertilizers on Agrobiological and Antioxidant Properties of Syrian Cephalaria (Cephalaria Syriaca L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Measurement of Growth Parameters
2.3. Determination of Total Phenol and Flavonoid Contents and Anti-Oxidant Activity
2.4. Trace Elements Analysis
2.5. Statistical Analysis
3. Results
3.1. Agrobiological Properties
3.2. Antioxidant Properties and Trace Elements Concentrations
4. Discussion
4.1. Agrobiological Properties
4.2. Antioxidant Properties
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Göktürk, R.S.; Sümbül, H. A taxonomic revision of the genus Cephalaria (Caprifoliaceae) in Turkey. Turk. J. Bot. 2014, 38, 927–968. [Google Scholar] [CrossRef]
- Kirmizigul, S.; Sarikahya, N.B.; Sumbul, H.; Gokturk, R.S.; Yavasoglu, N.U.K.; Pekmez, M.; Arda, N. Fatty acid profile and biological data of four endemic Cephalaria species grown in Turkey. Rec. Nat. Prod. 2012, 6, 151–155. [Google Scholar]
- Baytop, T. Türkiye’de Bitkiler ile Tedavi, İstanbul; Bugün: Nobel Tıp Kitabevleri, Turkey, 1999. [Google Scholar]
- Gryndler, M.; Larsen, J.; Hrselova, H.; Rezacova, V.; Gryndlerova, H.; Kubat, J. Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza 2006, 16, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Jalilian, J.; Modarres-Sanavy, S.A.M.; Saberali, S.F.; Sadat-Asilan, K. Effects of the combination of beneficial microbes and nitrogen on sunflower seed yields and seed quality traits under different irrigation regimes. Field Crop. Res. 2012, 127, 26–34. [Google Scholar] [CrossRef]
- Habibzadeh, Y.; Jalilian, J.; Zardashti, M.R.; Pirzad, A.; Eini, O. Some morpho-physiological characteristics of Mung Bean mycorrhizal plant under different irrigation regimes in field condition. J. Plant Nutr. 2015, 38, 1754–1767. [Google Scholar] [CrossRef]
- Baum, C.; El-Tohamy, W.; Gruda, N. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Sci. Hortic. 2015, 187, 131–141. [Google Scholar] [CrossRef]
- Rapparini, F.; Penuelas, J. Mycorrhizal fungi to alleviate drought stress on plant growth. In Use of Microbes for the Alleviation of Soil Stresses, 1st ed.; Miransari, M., Ed.; Springer-Verlag: New York, NY, USA, 2013; Volume 1, pp. 21–42. [Google Scholar]
- Shahab, S.; Ahmed, N.; Khan, N.S. Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afr. J. Agric. Res. 2009, 4, 1312–1316. [Google Scholar]
- Yanga, L.; Zhaoa, F.; Changa, Q.; Li, T.; Li, F. Effects of vermicomposts on tomato yield and quality and soil fertility in greenhouse under different soil water regimes. Agric. Water Manage. 2015, 160, 98–105. [Google Scholar] [CrossRef]
- Fernandez-Bayo, J.D.; Nogales, R.; Romero, E. Assessment of three vermicomposts as organic amendments used to enhance diuron sorption in soils with low organic carbon content. Eur. J. Soil Sci. 2009, 60, 935–944. [Google Scholar] [CrossRef]
- Adak, T.; Singha, A.; Kumar, K.; Shukla, S.K.; Singh, A.; Kumar Singh, V. Soil organic carbon, dehydrogenase activity, nutrient availability and leaf nutrient content as affected by organic and inorganic source of nutrient in mango orchard soil. J. Soil. Sci. Plant Nutr. 2014, 2, 394–406. [Google Scholar] [CrossRef]
- Padmavathiamma, P.K.; Li, L.Y.; Kumari, U.R. An experimental study of vermin-biowaste composting for agriculture soil improvement. Bioresource Technol. 2008, 99, 1672–1681. [Google Scholar] [CrossRef] [PubMed]
- Blaize, D.; Singh, J.V.; Bonde, A.N.; Tekale, K.V.; Mayee, C.D. Effects of farmyard manure and fertilizers on yield, fiber quality and nutrient balance of rainfield cotton (Gossypium hirsutum). Bioresource Technol. 2005, 96, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K.; Wellburn, A.R. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of the Association of Official Analytical Chemists, 14th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1984. [Google Scholar]
- Zhisen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.A.; Navai, S.F.; Dehpour, A.A. Antioxidant activity of hydroalcholic extract of ferulagummosa Boiss roots: US National Library of Medicinal National Institutes of Health. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 658–664. [Google Scholar] [PubMed]
- Perkin, E. Analytical Methods for Atomic Absorption Spectrophotometry; PerkinElmer: Waltham, MA, USA, 1982. [Google Scholar]
- Waling, I.; Van Vark, W.; Houba, V.J.G.; Van der Lee, J.J. Soil and Plant Analysis; a series of syllabi, Part 7, Plant Analysis Procedures; Wageningen Agriculture University: Wageningen, The Netherlands, 1989. [Google Scholar]
- Tahami, M.K.; Jahan, M.; Khalilzadeh, H.; Mehdizadeh, M. Plant growth promoting rhizobacteria in an ecological cropping system: A study on basil (Ocimum basilicum L.) essential oil production. Ind. Crop. Prod. 2017, 107, 97–104. [Google Scholar] [CrossRef]
- Sceffer, M.S.C.; Ronzelli Junio, P.R.; Koehler, H.S. Influence of organic fertilization on the biomass, yield and yield composition of the essential oil of Achillea millefolium L. Acta Hortic. 2013, 331, 109–114. [Google Scholar]
- Alami-Milani, M.; Amini, R.; Bande-Hagh, A. Effect of bio-fertilizers and combination with chemical fertilizers on grain yield and yield components of pinto bean (Phaseolus vulgaris L.). J. Agric. Sci. Sustain. Produc. 2015, 24, 15–29. [Google Scholar]
- Awad, N.M.; Turky, A.S.; Mazhar, A.A. Effects of bio-and chemical nitrogenous fertilizers on yield of anise Pimpinella anisum and biological activities of soil irrigated with agricultural drainage water. EJSS 2005, 45, 265–278. [Google Scholar]
- Darzi, M.T.; Seyedhadi, M.H.; Rejali, F. Effects of the application of vermicompost and phosphate solubilizing bacterium on the morphological traits and seed yield of anise (Pimpinella anisum L.). J. Med. Plants. Res. 2012, 6, 215–219. [Google Scholar]
- Eghball, B.; Weinhold, B.J.; Gilley, J.E.; Eigenberg, R.A. Mineralization of manure nutrients. J. Soil. Water. Conserv. 2002, 56, 470–478. [Google Scholar]
- Annamalai, A.; Lakshmi, P.T.V.; Lalithakumari, D.; Murugesan, K. Optimization of biofertilizers on growth, biomass and seed yield of Phyllanthus amarus (Bhumyamalaki) in sandy loam soil. JMAPS 2004, 26, 717–720. [Google Scholar]
- Singh, M.; Ramesh, S. Effect of irrigation and nitrogen on herbage, oil yield and water-use efficiency in rosemary grown under semi-arid tropical conditions. JMAPS 2000, 22, 659–662. [Google Scholar]
- Gryndler, M.; Sudova, R.; Rydlova, J. Cultivation of high-biomass crops on mine spoil banks: Can microbial inoculation compensate for high doses of organic matter? Bioresource Technol. 2008, 99, 6391–6399. [Google Scholar] [CrossRef]
- Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003, 255, 571–586. [Google Scholar] [CrossRef]
- Silim, S.V.; Saxena, M.C. Adaptation of spring-sown chickpea to the Mediterranean basin. II. Factors influencing yield under drought. Field Crop. Res. 1993, 34, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.E. Components of resource competition in plant communities. In Perspectives on Plant Competition; Grace, J.B., Tilman, D., Eds.; Academic Press: Cambridge, MA, USA, 1990; pp. 27–49. [Google Scholar]
- Yasari, E.; Patwardhan, A.M. Effects of (Azotobacter and Azospirillum) inoculants and chemical fertilizers on growth and productivity of canola (Brassica napus L.). Asian J. Plant. Sci. 2007, 6, 77–82. [Google Scholar]
- El Kramany, M.F.; Bahr, A.A.; Mohamed, M.F.; Kabesh, M.O. Utilization of bio-fertilizers in field crops production 16-groundnut yield, its components and seeds content as affected by partial replacement of chemical fertilizers by bio-organic fertilizers. TJASR 2007, 3, 25–29. [Google Scholar]
- Nasarudin, N.A.; Mohamad, J.; Ismail, S.; Mispan, M.S. Effect of nitrogen, phosphorus and potassium (NPK) and bacterial bio-fertilizer on the antioxidant activity and chlorophyll content of aerobic rice. Molecules 2018, 23, 55. [Google Scholar] [CrossRef]
- Khan, M.S.; Zaidi, A.; Wani, P.A.; Oves, M. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ. Chem. Lett. 2009, 7, 1–19. [Google Scholar] [CrossRef]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Salama, Z.A.; El Baz, F.K.; Gaafar, A.A.; Zaki, M.F. Antioxidant activities of phenolics, flavonoids and vitamin C in two cultivars of fennel (Foeniculum vulgare Mill.) in responses to organic and bio-organic fertilizers. J. Saudi Soc. Agric. Sci. 2015, 14, 91–99. [Google Scholar] [CrossRef]
- Muller, V.; Lankes, C.; Zimmermann, B.F.; Noga, G.; Hunsche, M. Centelloside accumulation in leaves of Centella asiatica is determined by resource partitioning between primary and secondary metabolism while influenced by supply levels of either nitrogen, phosphorus or potassium. J. Plant Physiol. 2013, 170, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.M.; Kwee, E.M.; Niemeyer, E.D. Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chem. 2010, 123, 1235–1241. [Google Scholar] [CrossRef]
- Kalinova, J.; Vrchotova, N. The influence of organic and conventional crop management, variety and year on the yield and flavonoid level in common buckwheat groats. Food Chem. 2011, 127, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Naguib, A.E.M.M.; El-Baz, F.K.; Salama, Z.A.; Hanaa, H.A.E.B.; Ali, H.F.; Gaafar, A.A. Enhancement of phenolics, flavonoids and glucosinolates of Broccoli (Brassica oleracea, var. Italica) as antioxidants in response to organic and bioorganic fertilizers. J. Saudi Soc. Agric. Sci. 2012, 11, 135–142. [Google Scholar]
- Sousa, C.; Pereira, D.M.; Pereira, J.A.; Bento, A.; Rodrigues, M.A.; Dopico-García, S.; Valentão, P.; Lopes, G.; Ferreres, F.; Seabra, R.M.; et al. Multivariate analysis of tronchuda cabbage (Brassica oleracea L. var. costata DC) phenolics: Influence of fertilizers. J. Agric. Food Chem. 2008, 56, 2231–2239. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.L.; Prasad, A.; Ram, M.; Kumar, S. Effect of the vesicular-arbuscular mycorrhizal fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresource Technol. 2002, 81, 77–79. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Emmerling, C. Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J. Plant Nutr. Soil. Sci. 2007, 169, 295–309. [Google Scholar] [CrossRef]
- Caris, C.; Hordt, W.; Hawkins, H.J.; Romhel, V.; Eckhard, G. Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 1998, 8, 35–39. [Google Scholar] [CrossRef]
- Atiyeh, R.M.; Arancon, N.; Edwards, C.A.; Metzger, J.D. The influence of pig manure on the growth earthworm-processed and productivity of marigolds. Bioresource Technol. 2001, 81, 103–108. [Google Scholar] [CrossRef]
- Amaya-Carpio, L.; Davies, F.T.; Fox, T.; He, C. Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea ssp. Fistulosa. Photosynthetica 2009, 47, 1–10. [Google Scholar] [CrossRef]
- Behera, B.C.; Singdevsachan, S.K.; Mishra, R.R.; Dutta, S.K.; Thatoi, H.N. Diversity, mechanism and biotechnology of phosphate solubilizing microorganism in mangrove—A review. Biocatal. Agric. Biotechnol. 2014, 3, 97–110. [Google Scholar] [CrossRef]
EC | pH | Texture | Clay | Silt | Sand | Calcium Carbon Equivalent | SP 1 | |||||
% | ||||||||||||
1.37 | 7.81 | Clay loam | 43 | 35 | 22 | 15.83 | 55 | |||||
N | Organic Carbon | Mn | B | Zn | Fe | K | P | |||||
% | mg kg−1 | |||||||||||
0.06 | 1.18 | 11.5 | 0.3 | 1.0 | 9.1 | 297 | 9.1 |
K (%) | P (%) | N (%) | OM 1 (%) | EC2 (dSm−1) | pH | |
---|---|---|---|---|---|---|
Manure | 1.1 | 1.14 | 1.69 | 63 | 8.94 | 7.57 |
Vermicompost | 3.4 | 1.64 | 1.57 | 52 | 6.41 | 8.11 |
Month | Year | Average Relative Humidity (%) | Average Monthly Temperature (°C) | Monthly Precipitation (mm) |
---|---|---|---|---|
January | 2017 | 45.7 | −4.4 | 4.4 |
February | 2017 | 65.4 | −4.2 | 39 |
March | 2017 | 54.8 | 6.3 | 20.4 |
April | 2017 | 56 | 11.6 | 59.9 |
May | 2017 | 52 | 17.6 | 11.9 |
June | 2017 | 47.3 | 22.7 | 0 |
July | 2017 | 40.7 | 26.3 | 0.1 |
August | 2017 | 52.4 | 25.2 | 0.6 |
September | 2017 | 63 | 21.1 | 0 |
October | 2017 | 69.4 | 12.6 | 1.8 |
November | 2017 | 73.0 | 6.3 | 38.4 |
December | 2017 | 48.3 | 1.7 | 6.8 |
Treatments | 1000-Seed Weight (g) | Biological Yield (g plant−1) | Seed Yield (g plant−1) | Harvest Index | Oil Percentage | Oil Yield (g plant−1) | Chlorophyll a (mg g−1 FW) | Chlorophyll b (mg g−1 FW) | Total Chlorophyll (mg g−1 FW) | Carotenoid (mg g−1 FW) |
---|---|---|---|---|---|---|---|---|---|---|
Mycorrhiza + vermicompost | 15.79 ± 0.89 a,1 | 26.98 ± 2.68 a | 12.07 ± 1.25 a | 44.75 ± 0.86 a | 25.15 ± 0.16 a | 2.99 ± 0.33 a | 2.09 ± 0.22 a | 1.97 ± 0.08 a | 4.06 ± 0.30 a | 15.13 ± 1.42 a |
Mycorrhiza + chemical fertilizer | 15.64 ± 0.40 a | 20.93 ± 1.87 ab | 9.86 ± 0.90 abc | 47.09 ± 0.30 a | 23.89 ± 0.46 a | 2.40 ± 0.24 ab | 1.85 ± 0.12 abc | 1.66 ± 0.08 b | 3.51 ± 0.04 b | 13.56 ± 1.37 ab |
Mycorrhiza + manure | 15.88 ± 0.57 a | 22.54 ± 3.50 ab | 10.55 ± 1.62 ab | 46.85 ± 2.86 a | 25.02 ± 1.52 a | 2.64 ± 0.45 ab | 2.01 ± 0.09 ab | 1.95 ± 0.12 a | 3.96 ± 0.21 a | 13.74 ± 0.32 ab |
Mycorrhiza + Azotobacter | 14.43 ± 0.24 b | 20.77 ± 2.79 ab | 8.98 ± 0.97 bc | 43.40 ± 3.29 a | 23.17 ± 1.76 a | 2.08 ± 0.26 bc | 1.95 ± 0.16 ab | 1.67 ± 0.03 b | 3.63 ± 0.13 b | 12.91 ± 1.43 bc |
Mycorrhiza | 12.21 ± 0.14 c | 17.59 ± 4.81 b | 7.59 ± 2.40 cd | 41.20 ± 1.41 ab | 22.00 ± 0.75 ab | 1.68 ± 0.60 cd | 1.80 ± 0.16 bc | 1.51 ± 0.09 b | 3.31 ± 0.08 bc | 11.35 ± 0.19 cd |
Control | 11.99 ± 0.80 c | 16.86 ± 2.09 b | 5.99 ± 0.80 d | 36.17 ± 8.33 b | 19.32 ± 4.45 b | 1.18 ± 0.39 d | 1.62 ± 0.11 c | 1.47 ± 0.17 b | 3.10 ± 0.28 c | 9.43 ± 0.92 d |
S.O.V. | df | 1000-Seed Weight | Biological Yield | Seed Yield | Harvest Index | Oil Percentage | Oil Yield | Chlorophyll a | Chlorophyll b | Total Chlorophyll | Carotenoid |
---|---|---|---|---|---|---|---|---|---|---|---|
Replication | 2 | 0.28 | 7.7 | 2.06 | 25.54 | 7.29 | 0.22 | 0.05 | 0.008 | 0.10 | 0.77 |
Treatment | 5 | 9.75 ** | 31.53 * | 14.07 ** | 50.57 * | 14.41 * | 1.23 ** | 0.08 * | 0.13 ** | 0.40 ** | 12.16 ** |
Experimental error | 10 | 0.34 | 9.73 | 2.05 | 13.12 | 3.74 | 0.14 | 0.01 | 0.01 | 0.02 | 1.22 |
C.V. (%) | 4.07 | 15.05 | 15.62 | 8.37 | 8.38 | 17.34 | 6.86 | 6.20 | 4.63 | 8.73 |
Treatments | TPC (mg GA g−1) | TFC (g quercetin g−1) | DPPH Free Radical Inhibition (%) | Fe (mg kg−1) | Cu (mg kg−1) | Zn (mg kg−1) |
---|---|---|---|---|---|---|
Mycorrhiza + vermicompost | 27.89 ± 0.26 a,1 | 0.54 ± 0.03 ab | 60.16 ± 0.59 a | 177.21 ± 1.98 a | 32.43 ± 0.21 a | 45.41 ± 0.30 a |
Mycorrhiza + chemical fertilizer | 26.55 ± 0.66 bc | 0.53 ± 0.09 b | 56.62 ± 0.14 b | 170.43 ± 0.92 c | 27.39 ± 0.02 b | 43.24 ± 0.03 ab |
Mycorrhiza + manure | 27.21 ± 0.14 ab | 0.56 ± 0.15 a | 57.07 ± 0.15 b | 173.57 ± 0.48 b | 31.58 ± 0.66 a | 44.22 ± 0.98 ab |
Mycorrhiza + Azotobacter | 25.54 ± 0.29 c | 0.53 ± 0.14 b | 51.13 ± 0.20 c | 172.06 ± 0.50 bc | 27.25 ± 0.16 b | 43.05 ± 0.28 b |
Mycorrhiza | 23.00 ± 1.21d | 0.51 ± 0.01 b | 50.04 ± 0.73 d | 166.82 ± 2.44 d | 26.71 ± 0.28 b | 42.28 ± 0.39 b |
Control | 21.08 ± 1.71 e | 0.45 ± 0.04 c | 47.10 ± 1.11 e | 153.69 ± 3.69 e | 22.98 ± 2.23 c | 37.07 ± 3.12 c |
S.O.V. | df | Total Phenol Content | Total Flavonoid Content | DPPH Free Radical Inhibition | Fe (mg kg−1) | Cu (mg kg−1) | Zn (mg kg−1) |
---|---|---|---|---|---|---|---|
Replication | 2 | 2.56 | 0.0005 | 0.99 | 11.11 | 1.97 | 3.88 |
Treatment | 5 | 21.02 ** | 0.003 ** | 75.03 ** | 203.37 ** | 36.19 ** | 25.07 ** |
Experimental error | 10 | 0.49 | 0.0002 | 0.23 | 2.65 | 0.71 | 1.39 |
C.V. (%) | 2.77 | 2.91 | 0.90 | 0.96 | 3.01 | 2.77 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahimi, A.; Siavash Moghaddam, S.; Ghiyasi, M.; Heydarzadeh, S.; Ghazizadeh, K.; Popović-Djordjević, J. The Influence of Chemical, Organic and Biological Fertilizers on Agrobiological and Antioxidant Properties of Syrian Cephalaria (Cephalaria Syriaca L.). Agriculture 2019, 9, 122. https://doi.org/10.3390/agriculture9060122
Rahimi A, Siavash Moghaddam S, Ghiyasi M, Heydarzadeh S, Ghazizadeh K, Popović-Djordjević J. The Influence of Chemical, Organic and Biological Fertilizers on Agrobiological and Antioxidant Properties of Syrian Cephalaria (Cephalaria Syriaca L.). Agriculture. 2019; 9(6):122. https://doi.org/10.3390/agriculture9060122
Chicago/Turabian StyleRahimi, Amir, Sina Siavash Moghaddam, Mahdi Ghiyasi, Saeid Heydarzadeh, Kosar Ghazizadeh, and Jelena Popović-Djordjević. 2019. "The Influence of Chemical, Organic and Biological Fertilizers on Agrobiological and Antioxidant Properties of Syrian Cephalaria (Cephalaria Syriaca L.)" Agriculture 9, no. 6: 122. https://doi.org/10.3390/agriculture9060122
APA StyleRahimi, A., Siavash Moghaddam, S., Ghiyasi, M., Heydarzadeh, S., Ghazizadeh, K., & Popović-Djordjević, J. (2019). The Influence of Chemical, Organic and Biological Fertilizers on Agrobiological and Antioxidant Properties of Syrian Cephalaria (Cephalaria Syriaca L.). Agriculture, 9(6), 122. https://doi.org/10.3390/agriculture9060122