Detection of Massive Oil Spills in Sun Glint Optical Imagery through Super-Pixel Segmentation
Abstract
:1. Introduction
2. Data
2.1. Study Area
2.2. Data and Preprocessing
3. Methods
3.1. Work Flow
3.2. Object Generation Based on Segmentation
3.3. Bright/Dark Object Recognition
3.4. Oil Spill Identification
3.5. Performance Evaluation
4. Results
4.1. Optical Characteristics of Oil Spill
4.2. Extracted Oil Slicks
4.3. Performance Evaluation
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beyer, J.; Trannum, H.C.; Bakke, T.; Hodson, P.V.; Collier, T.K. Environmental effects of the Deepwater Horizon oil spill: A review. Mar. Pollut. Bull. 2016, 110, 28–51. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, K.; Khanna, S.; Ustin, S.L. Vegetation Impact and Recovery from Oil-Induced Stress on Three Ecologically Distinct Wetland Sites in the Gulf of Mexico. J. Mar. Sci. Eng. 2016, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- Girard, F.; Fisher, C.R. Long-term impact of the Deepwater Horizon oil spill on deep-sea corals detected after seven years of monitoring. Biol. Conserv. 2018, 225, 117–127. [Google Scholar] [CrossRef]
- McClain, C.R.; Nunnally, C.; Benfield, M.C. Persistent and substantial impacts of the Deepwater Horizon oil spill on deep-sea megafauna. R. Soc. Open Sci. 2019, 6, 191164. [Google Scholar] [CrossRef] [Green Version]
- Asif, Z.; Chen, Z.; An, C.J.; Dong, J.X. Environmental Impacts and Challenges Associated with Oil Spills on Shorelines. J. Mar. Sci. Eng. 2022, 10, 762. [Google Scholar] [CrossRef]
- Hu, C.M.; Feng, L.; Holmes, J.; Swayze, G.A.; Leifer, I.; Melton, C.; Garcia, O.; MacDonald, I.; Hess, M.; Muller-Karger, F.; et al. Remote sensing estimation of surface oil volume during the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico: Scaling up AVIRIS observations with MODIS measurements. J. Appl. Remote Sens. 2018, 12, 026008. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.J.; Lu, Y.C.; Liu, Y.X.; Wang, M.Q.; Hu, C.M. Tracking an Oil Tanker Collision and Spilled Oils in the East China Sea Using Multisensor Day and Night Satellite Imagery. Geophys. Res. Lett. 2018, 45, 3212–3220. [Google Scholar] [CrossRef]
- Hebbar, A.A.; Dharmasiri, I.G. Management of marine oil spills: A case study of the Wakashio oil spill in Mauritius using a lens-actor-focus conceptual framework. Ocean Coast. Manag. 2022, 221, 106103. [Google Scholar] [CrossRef]
- Rajendran, S.; Vethamony, P.; Sadooni, F.N.; Al-Kuwari, H.A.; Al-Khayat, J.A.; Seegobin, V.O.; Govil, H.; Nasir, S. Detection of Wakashio oil spill off Mauritius using Sentinel-1 and 2 data: Capability of sensors, image transformation methods and mapping. Environ. Pollut. 2021, 274, 116618. [Google Scholar] [CrossRef]
- Guo, G.; Liu, B.X.; Liu, C.Y. Thermal Infrared Spectral Characteristics of Bunker Fuel Oil to Determine Oil-Film Thickness and API. J. Mar. Sci. Eng. 2020, 8, 135. [Google Scholar] [CrossRef]
- Alpers, W.; Holt, B.; Zeng, K. Oil spill detection by imaging radars: Challenges and pitfalls. Remote Sens. Environ. 2017, 201, 133–147. [Google Scholar] [CrossRef]
- Garcia-Pineda, O.; Staples, G.; Jones, C.E.; Hu, C.M.; Holt, B.; Kourafalou, V.; Graettinger, G.; DiPinto, L.; Ramirez, E.; Streett, D.; et al. Classification of oil spill by thicknesses using multiple remote sensors. Remote Sens. Environ. 2020, 236, 111421. [Google Scholar] [CrossRef]
- Espeseth, M.M.; Jones, C.E.; Holt, B.; Brekke, C.; Skrunes, S. Oil-Spill-Response-Oriented Information Products Derived From a Rapid-Repeat Time Series of SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3448–3461. [Google Scholar] [CrossRef]
- Leifer, I.; Murray, J.; Streett, D.; Stough, T.; Ramirez, E.; Gallegos, S. The Federal Oil Spill Team for Emergency Response Remote Sensing, FOSTERRS: Enabling Remote Sensing Technology for Marine Disaster Response. In Time-Sensitive Remote Sensing; Lippitt, C.D., Stow, D.A., Coulter, L.L., Eds.; Springer: New York, NY, USA, 2015; pp. 91–111. [Google Scholar]
- Sun, S.J.; Hu, C.M. The Challenges of Interpreting Oil–Water Spatial and Spectral Contrasts for the Estimation of Oil Thickness: Examples From Satellite and Airborne Measurements of the Deepwater Horizon Oil Spill. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2643–2658. [Google Scholar] [CrossRef]
- Hu, C.; Lu, Y.; Sun, S.; Liu, Y. Optical Remote Sensing of Oil Spills in the Ocean: What Is Really Possible? J. Remote Sens. 2021, 2021, 9141902. [Google Scholar] [CrossRef]
- Jackson, C.R.; Alpers, W. The role of the critical angle in brightness reversals on sunglint images of the sea surface. J Geophys. Res.-Ocean. 2010, 115. [Google Scholar] [CrossRef]
- Sun, S.J.; Hu, C.M. Sun glint requirement for the remote detection of surface oil films. Geophys. Res. Lett. 2016, 43, 309–316. [Google Scholar] [CrossRef]
- Hu, C.M.; Feng, L.; Hardy, R.F.; Hochberg, E.J. Spectral and spatial requirements of remote measurements of pelagic Sargassum macroalgae. Remote Sens. Environ. 2015, 167, 229–246. [Google Scholar] [CrossRef]
- Sun, S.J.; Hu, C.M.; Tunnel, J.W. Surface oil footprint and trajectory of the Ixtoc-I oil spill determined from Landsat/MSS and CZCS observations. Mar. Pollut. Bull. 2015, 101, 632–641. [Google Scholar] [CrossRef]
- Lu, Y.C.; Shi, J.; Hu, C.M.; Zhang, M.W.; Sun, S.J.; Liu, Y.X. Optical interpretation of oil emulsions in the ocean—Part II: Applications to multi-band coarse-resolution imagery. Remote Sens. Environ. 2020, 242, 111778. [Google Scholar] [CrossRef]
- Fingas, M. Visual Appearance of Oil on the Sea. J. Mar. Sci. Eng. 2021, 9, 97. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Leifer, I.; Livo, K.E.; Kokaly, R.; Hoefen, T.; Lundeen, S.; Eastwood, M.; Green, R.O.; Pearson, N. A method for quantitative mapping of thick oil spills using imaging spectroscopy. US Geol. Surv. Open-File Rep. 2010, 1167, 1–51. [Google Scholar]
- Svejkovsky, J.; Hess, M.; Muskat, J.; Nedwed, T.J.; McCall, J.; Garcia, O. Characterization of surface oil thickness distribution patterns observed during the Deepwater Horizon (MC-252) oil spill with aerial and satellite remote sensing. Mar. Pollut. Bull. 2016, 110, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.C.; Shi, J.; Wen, Y.S.; Hu, C.M.; Zhou, Y.; Sun, S.J.; Zhang, M.W.; Mao, Z.H.; Liu, Y.X. Optical interpretation of oil emulsions in the ocean—Part I: Laboratory measurements and proof-of-concept with AVIRIS observations. Remote Sens. Environ. 2019, 230, 111183. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Ma, Y.; Yang, J.F. Inversion of the Thickness of Crude Oil Film Based on an OG-CNN Model. J. Mar. Sci. Eng. 2020, 8, 653. [Google Scholar] [CrossRef]
- Karathanassi, V.; Topouzelis, K.; Pavlakis, P.; Rokos, D. An object-oriented methodology to detect oil spills. Int. J. Remote Sens. 2007, 27, 5235–5251. [Google Scholar] [CrossRef]
- Konik, M.; Bradtke, K. Object-oriented approach to oil spill detection using ENVISAT ASAR images. ISPRS J. Photogramm. Remote Sens. 2016, 118, 37–52. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, A.H.; Balzter, H.; Ren, P.; Zhou, H.Y. Oil Spill SAR Image Segmentation via Probability Distribution Modeling. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 533–554. [Google Scholar] [CrossRef]
- Garcia-Pineda, O.; MacDonald, I.R.; Li, X.F.; Jackson, C.R.; Pichel, W.G. Oil Spill Mapping and Measurement in the Gulf of Mexico With Textural Classifier Neural Network Algorithm (TCNNA). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2517–2525. [Google Scholar] [CrossRef]
- Ren, P.; Xu, M.; Yu, Y.H.; Chen, F.; Jiang, X.Y.; Yang, E.F. Energy Minimization With One Dot Fuzzy Initialization for Marine Oil Spill Segmentation. IEEE J. Ocean. Eng. 2019, 44, 1102–1115. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.W.; Liu, X.G.; Chen, Q.H.; Zhang, Z.J.; Xie, G.Q. Multi-Feature Based Ocean Oil Spill Detection for Polarimetric SAR Data Using Random Forest and the Self-Similarity Parameter. Remote Sens. 2019, 11, 451. [Google Scholar] [CrossRef]
- Hong, X.R.; Chen, L.S.; Sun, S.J.; Sun, Z.; Chen, Y.; Mei, Q.; Chen, Z.C. Detection of Oil Spills in the Northern South China Sea Using Landsat-8 OLI. Remote Sens. 2022, 14, 3966. [Google Scholar] [CrossRef]
- Bayramov, E.; Bayramov, R.; Aliyeva, S. Optical and Radar Remote Sensing and Contamination Probability Modelling for the Advanced Quantitative Risk Assessment of Marine Petroleum and Gas Industry. IFAC-Pap. 2018, 51, 31–33. [Google Scholar] [CrossRef]
- Sun, S.; Hu, C.; Garcia-Pineda, O.; Kourafalou, V.; Le Henaff, M.; Androulidakis, Y. Remote sensing assessment of oil spills near a damaged platform in the Gulf of Mexico. Mar. Pollut. Bull. 2018, 136, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Temimi, M.; Al Azhar, M.; Ghedira, H.; Marpu, P. Multi-Sensor Based Approach for Detection of Oil Pollution in the Arabian Gulf and the Sea of Oman. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar]
- Zhao, D.; Cheng, X.W.; Zhang, H.P.; Zhang, H.T. An Oil Slick Detection Index Based on Landsat8 Remote Sensing Images. In Proceedings of the International Workshop on Big Geospatial Data and Data Science (BGDDS), Wuhan, China, 22–23 September 2018. [Google Scholar]
- Rajendran, S.; Vethamony, P.; Sadooni, F.N.; Al-Kuwari, H.A.; Al-Khayat, J.A.; Govil, H.; Nasir, S. Sentinel-2 image transformation methods for mapping oil spill—A case study with Wakashio oil spill in the Indian Ocean, off Mauritius. MethodsX 2021, 8, 101327. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.X.; Zhang, Q.; Li, Y.; Chang, W.; Zhou, M.R. Spatial-Spectral Jointed Stacked Auto-Encoder-Based Deep Learning for Oil Slick Extraction from Hyperspectral Images. J. Indian Soc. Remote Sens. 2019, 47, 1989–1997. [Google Scholar] [CrossRef]
- Ozigis, M.S.; Kaduk, J.D.; Jarvis, C.H. Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: A case site within the Niger Delta region of Nigeria. Environ. Sci. Pollut. Res. 2019, 26, 3621–3635. [Google Scholar] [CrossRef] [Green Version]
- Taravat, A.; Del Frate, F. Development of band ratioing algorithms and neural networks to detection of oil spills using Landsat ETM plus data. EURASIP J. Adv. Signal Process. 2012, 2012, 1. [Google Scholar] [CrossRef]
- Kolokoussis, P.; Karathanassi, V. Oil Spill Detection and Mapping Using Sentinel 2 Imagery. J. Mar. Sci. Eng. 2018, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Lacava, T.; Ciancia, E.; Coviello, I.; Di Polito, C.; Grimaldi, C.S.L.; Pergola, N.; Satriano, V.; Temimi, M.; Zhao, J.; Tramutoli, V. A MODIS-Based Robust Satellite Technique (RST) for Timely Detection of Oil Spilled Areas. Remote Sens. 2017, 9, 128. [Google Scholar] [CrossRef] [Green Version]
- Satriano, V.; Ciancia, E.; Lacava, T.; Pergola, N.; Tramutoli, V. Improving the RST-OIL Algorithm for Oil Spill Detection under Severe Sun Glint Conditions. Remote Sens. 2019, 11, 2762. [Google Scholar] [CrossRef]
- Burns, K.A.; Jones, R. Assessment of sediment hydrocarbon contamination from the 2009 Montara oil blow out in the Timor Sea. Environ. Pollut. 2016, 211, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Spies, R.B.; Mukhtasor, M.; Burns, K.A. The Montara Oil Spill: A 2009 Well Blowout in the Timor Sea. Arch. Environ. Contam. Toxicol. 2017, 73, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Bailey, S.W. Correction of Sun glint Contamination on the SeaWiFS Ocean and Atmosphere Products. Appl. Opt. 2001, 40, 4790–4798. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, M.H. Evaluation of sun glint models using MODIS measurements. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 492–506. [Google Scholar] [CrossRef]
- Cox, C.S.; Munk, W.H. Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter. J. Opt. Soc. Am. 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Liu, Y.B. Why Ndwi threshold varies in delineating water body from multi-temporal images? In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 4375–4378. [Google Scholar]
- Wang, M.Q.; Hu, C.M. Extracting Oil Slick Features From VIIRS Nighttime Imagery Using a Gaussian Filter and Morphological Constraints. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2051–2055. [Google Scholar] [CrossRef]
- Wang, X.Z.; Liu, J.X.; Zhang, S.; Deng, Q.W.; Wang, Z.; Li, Y.H.; Fan, J.C. Detection of Oil Spill Using SAR Imagery Based on AlexNet Model. Comput. Intell. Neurosci. 2021, 2021, 4812979. [Google Scholar] [CrossRef]
- Yang, M.M.; Zhao, P.Y.; Feng, B.; Zhao, F. Water Surface Sun Glint Suppression Method Based on Polarization Filtering and Polynomial Fitting. Laser Optoelectron. Prog. 2021, 58. [Google Scholar] [CrossRef]
- Cui, X.; Xin, Y. An Effective Method in the Detection of Infrared Dim Target. Acta Photonica Sin. 2014, 43, 0210003. [Google Scholar]
- Zheng, Y.G.; Zhang, X.R.; Hou, B.; Liu, G.C. Using Combined Difference Image and k-Means Clustering for SAR Image Change Detection. IEEE Geosci. Remote Sens. Lett. 2014, 11, 691–695. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Susstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2281. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.N.; Pan, H.W.; Li, X.K.; Zhang, K.J.; Chen, W.P. CMSuG: Competitive mechanism-based superpixel generation method for image segmentation. J. Intell. Fuzzy Syst. 2022, 43, 4409–4430. [Google Scholar] [CrossRef]
- Fu, Z.L.; Sun, Y.J.; Fan, L.; Han, Y.T. Multiscale and Multifeature Segmentation of High-Spatial Resolution Remote Sensing Images Using Superpixels with Mutual Optimal Strategy. Remote Sens. 2018, 10, 1289. [Google Scholar] [CrossRef] [Green Version]
- Zhijie, C.; Baolong, G.; Cheng, L.; Hongyan, L. Review on Superpixel Generation Algorithms Based on Clustering. In Proceedings of the 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, 27–29 September 2020; pp. 532–537. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, H.; Luo, Q.L.; Li, Y.; Wei, J.J.; Li, J. Oil Spill Detection in Quad-Polarimetric SAR Images Using an Advanced Convolutional Neural Network Based on SuperPixel Model. Remote Sens. 2020, 12, 944. [Google Scholar] [CrossRef] [Green Version]
- Malik, R. Learning a classification model for segmentation. In Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; Volume 11, pp. 10–17. [Google Scholar]
- Csillik, O. Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels. Remote Sens. 2017, 9, 243. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.Z.; Liu, Y.X.; Hu, C.M.; MacDonald, I.R.; Lu, Y.C. Chronic oiling in global oceans. Science 2022, 376, 1300–1304. [Google Scholar] [CrossRef]
- Li, Y.; Lan, G.X.; Li, J.J.; Ma, L. Potential Analysis of Maritime Oil Spill Monitoring Based on MODIS Thermal Infrared Data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Balogun, A.; Yekeen, S.; Pradhan, B.; Althuwaynee, O. Spatio-Temporal Analysis of Oil Spill Impact and Recovery Pattern of Coastal Vegetation and Wetland Using Multispectral Satellite Landsat 8-OLI Imagery and Machine Learning Models. Remote Sens. 2020, 12, 1225. [Google Scholar] [CrossRef] [Green Version]
- Temitope Yekeen, S.; Balogun, A.L.; Wan Yusof, K.B. A novel deep learning instance segmentation model for automated marine oil spill detection. ISPRS J. Photogramm. Remote Sens. 2020, 167, 190–200. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, B.; Perrie, W.; Lu, Y.; Wang, C. A novel deep learning method for marine oil spill detection from satellite synthetic aperture radar imagery. Mar. Pollut. Bull. 2022, 179, 113666. [Google Scholar] [CrossRef]
Data preprocessing | SFIT function | Maximum degree of fit | 4 |
Median filter | Kernel size | 233 | |
Segmentation | SLIC | Segmentation number K | 200,000 |
Maximum color distance Nc | 10 | ||
Maximum iteration | 10 |
Serial Number | Date | Time (hh:mm) | Sensor | Area of the Oil Spill by the Approach (km2) | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|---|
a | 30 Aug 2009 | 05:20 | Aqua | 1468.44 | 0.969 | 0.861 | 0.912 |
b | 17 Sep 2009 | 02:15 | Terra | 3338.06 | 0.981 | 0.806 | 0.885 |
c | 24 Sep 2009 | 05:15 | Aqua | 5310.13 | 0.93 | 0.863 | 0.895 |
d | 24 Sep 2009 | 02:15 | Terra | 4055.06 | 0.939 | 0.873 | 0.905 |
e | 03 Oct 2009 | 02:15 | Terra | 3559.56 | 0.848 | 0.837 | 0.843 |
f | 10 Oct 2009 | 05:15 | Aqua | 4293.94 | 0.877 | 0.826 | 0.851 |
g | 17 Oct 2009 | 05:20 | Aqua | 1131.44 | 0.639 | 0.783 | 0.704 |
h | 19 Oct 2009 | 02:15 | Terra | 2521.19 | 0.448 | 0.809 | 0.576 |
i | 21 Oct 2009 | 02:05 | Terra | 2208.38 | 0.992 | 0.78 | 0.873 |
j | 30 Oct 2009 | 01:55 | Terra | 5255.06 | 0.423 | 0.879 | 0.571 |
Overall | / | / | / | / | 0.8 | 0.838 | 0.818 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Sun, S.; Zhao, J.; Ai, B.; Yang, Q. Detection of Massive Oil Spills in Sun Glint Optical Imagery through Super-Pixel Segmentation. J. Mar. Sci. Eng. 2022, 10, 1630. https://doi.org/10.3390/jmse10111630
Sun Z, Sun S, Zhao J, Ai B, Yang Q. Detection of Massive Oil Spills in Sun Glint Optical Imagery through Super-Pixel Segmentation. Journal of Marine Science and Engineering. 2022; 10(11):1630. https://doi.org/10.3390/jmse10111630
Chicago/Turabian StyleSun, Zhen, Shaojie Sun, Jun Zhao, Bin Ai, and Qingshu Yang. 2022. "Detection of Massive Oil Spills in Sun Glint Optical Imagery through Super-Pixel Segmentation" Journal of Marine Science and Engineering 10, no. 11: 1630. https://doi.org/10.3390/jmse10111630
APA StyleSun, Z., Sun, S., Zhao, J., Ai, B., & Yang, Q. (2022). Detection of Massive Oil Spills in Sun Glint Optical Imagery through Super-Pixel Segmentation. Journal of Marine Science and Engineering, 10(11), 1630. https://doi.org/10.3390/jmse10111630