Normalized Radar Scattering Section Simulation and Numerical Calculation of Freak Wave
Abstract
:1. Introduction
2. Wave Spectra Model and Numerical Simulation Model
2.1. Wave Spectrum Model
2.1.1. JONSWAP Spectrum
2.1.2. Wen’s Spectrum
2.1.3. PM Spectrum
2.2. Numerical Simulation Method of Freak Wave
2.3. Calculation Model of Electromagnetic Scattering of Freak Wave
3. Results and Discussion
3.1. Simulation and Analysis of Freak Wavel
3.2. Calculation and Analysis of Freak Wave Electromagnetic Scattering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Draper, L. Freak wave. Mar. Obs. 1965, 35, 193–195. [Google Scholar]
- Didenkulova, I.; Didenkulova, E.; Didenkulov, O. Freak wave accidents in 2019–2021. In Proceedings of the OCEANS 2022-Chennai, Chennai, India, 21–24 February 2022. [Google Scholar]
- Haver, S. Freak Waves: A Suggested Definition and Possible Consequences for Marine Structures, Rogue Waves: Brest, France, 20 October 2004.
- Residori, S.; Onorato, M.; Bortolozzo, U.; Arecchi, F. Rogue waves: A unique approach to multidisciplinary physics. Contemp. Phys. 2017, 58, 53–69. [Google Scholar] [CrossRef]
- Xu, P.; Du, Z.; Gong, S. Numerical Investigation into Freak Wave Effects on Deepwater Pipeline Installation. J. Mar. Sci. Eng. 2020, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Dysthe, K.; Krogstad, H.E.; Müller, P. Oceanic rogue waves. Annu. Rev. Fluid Mech. 2008, 40, 287–310. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, F.; Zhang, Z. Numerical Simulation of Inline Forces on a Bottom-Mounted Circular Cylinder Under the Action of a Specific Freak Wave. Front. Mar. Sci. 2020, 7, 1149. [Google Scholar] [CrossRef]
- Gao, J.; Ma, X.; Zang, J.; Dong, G.; Ma, X.; Zhu, Y.; Zhou, L. Numerical investigation of harbor oscillations induced by focused transient wave groups. Coast. Eng. 2020, 158, 103670. [Google Scholar] [CrossRef]
- Fedele, F.; Brennan, J.; Ponce de León, S.; Dudley, J.; Dias, F. Real world ocean rogue waves explained without the modulational instability. Sci. Rep. 2016, 6, 27715. [Google Scholar] [CrossRef]
- Amrutha, M.M.; Sanil Kumar, V.; Anoop, T.R.; Nair, B.; Nherakkol, A.; Jeyakumar, C. Waves off Gopalpur, northern Bay of Bengal during cyclone Phailin. Ann. Geophys. 2014, 32, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yuan, Y.; Tang, W.; Xue, H.; Liu, J.; Qin, H. Numerical analysis on three-dimensional green water events induced by freak waves. Ships Offshore Struct. 2021, 16 (Suppl. S1), 33–43. [Google Scholar] [CrossRef]
- Zeng, F.; Zhang, N.; Huang, G.; Gu, Q.; Pan, W. A novel method in generating freak wave and modulating wave profile. Mar. Struct. 2022, 82, 103148. [Google Scholar] [CrossRef]
- Doong, D.-J.; Chen, S.-T.; Chen, Y.-C.; Tsai, C.-H. Operational Probabilistic Forecasting of Coastal Freak Waves by Using an Artificial Neural Network. J. Mar. Sci. Eng. 2020, 8, 165. [Google Scholar] [CrossRef]
- Cui, C.; Zhang, N.; Kang, H.; Yu, Y. An experimental and numerical study of the freak wave speed. Acta Oceanol. Sin. 2013, 32, 51–56. [Google Scholar] [CrossRef]
- Slunyaev, A.; Didenkulova, I.; Pelinovsky, E. Rogue waters. Contemp. Phys. 2011, 52, 571–590. [Google Scholar] [CrossRef]
- Chabchoub, A.; Hoffmann, N.; Onorato, M.; Akhmediev, N. Super rogue waves: Observation of a higher-order breather in water waves. Phys. Rev. X 2012, 2, 011015. [Google Scholar] [CrossRef] [Green Version]
- Clauss, G.; Stutz, K.; Schmittner, C. Rogue wave impact on offshore structures. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 3–6 May 2004. [Google Scholar]
- Clauss, G.F.; Schmittner, C.E.; Hennig, J.; Guedes Soares, C.; Fonseca, N.; Pascoal, R. Bending Moments of an FPSO in Rogue Waves. In Proceedings of the ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, BC, Canada, 20–25 June 2004. [Google Scholar]
- Mansoori, A.; Desmond, D.; Stern, G.; Isleifson, D. Modeling Normalized Radar Cross-Section of Oil-contaminated Sea Ice with Small Perturbation Method. In Proceedings of the 2021 IEEE 19th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Winnipeg, MB, Canada, 8–11 August 2021; pp. 1–2. [Google Scholar]
- Wei, S.; Yang, S.; Xu, D. On accuracy of SAR wind speed retrieval in coastal area. Appl. Ocean Res. 2020, 95, 102012. [Google Scholar] [CrossRef]
- Schulz-Stellenfleth, J.; König, T.; Lehner, S. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. J. Geophys. Res. Ocean. 2007, 112, 1–13. [Google Scholar] [CrossRef]
- Hopkin, M. Sea snapshots will map frequency of freak waves. Nature 2004, 430, 492–493. [Google Scholar] [CrossRef] [Green Version]
- Van Groesen, E.; Turnip, P.; Kurnia, R. High waves in Draupner seas—Part 1: Numerical simulations and characterization of the seas. J. Ocean Eng. Mar. Energy 2017, 3, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Van Groesen, E.; Turnip, P.; Kurnia, R. High waves in Draupner seas—Part 2: Observation and prediction from synthetic radar images. J. Ocean Eng. Mar. Energy 2017, 3, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Law, Y.Z.; Santo, H.; Chua, K.H. Wave-field prediction based on radar snapshots taken on a moving vessel. J. Phys. 2022, 2311, 012022. [Google Scholar] [CrossRef]
- Wijaya, A.P.; Naaijen, P.; Van Groesen, E. Reconstruction and future prediction of the sea surface from radar observations. Ocean Eng. 2015, 106, 261–270. [Google Scholar] [CrossRef]
- Hasselmann, D.; Dunckel, M.; Ewing, J. Directional Wave Spectra Observed during JONSWAP 1973. J. Phys. Oceanogr. 1980, 10, 1264–1280. [Google Scholar] [CrossRef]
- Bouws, E.; Günther, H.; Rosenthal, W.; Vincent, C.L. Similarity of the wind wave spectrum in finite depth water: 1. Spectral form. J. Geophys. Res. Ocean. 1985, 90, 975–986. [Google Scholar] [CrossRef]
- Bouws, E.; Günther, H.; Rosenthal, W.; Vincent, C.L. Similarity of the wind wave spectrum in finite depth water part 2: Statistical relations between shape and growth stage parameters. Dtsch. Hydrogr. Z. 1987, 40, 1–24. [Google Scholar] [CrossRef]
- Wen, S.; Guan, C.; Sun, S.; Wu, K.; Zhang, D. Effect of water depth on wind-wave frequency spectrum I. Spectral form. Chin. J. Oceanol. Limnol. 1996, 14, 97–105. [Google Scholar]
- Pierson, W.; Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res. Atmos. 1964, 69, 5181–5190. [Google Scholar] [CrossRef]
- Longuet-Higgins, M. On the Statistical Distribution of the Heights of Sea Waves. J. Mar. Res. 1952, 11, 245–266. [Google Scholar]
- Wu, G.; Liang, Y.; Xu, S. Numerical computational modeling of random rough sea surface based on JONSWAP spectrum and Donelan directional function. Concurr. Comput. Pract. Exp. 2021, 33, 1–15. [Google Scholar] [CrossRef]
- Fung, A.; Lee, K. A semi-empirical sea-spectrum model for scattering coefficient estimation. IEEE J. Ocean. Eng. 1982, 7, 166–176. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Volume III—From Theory to Applications; Artech House Inc.: London, UK, 1986; Volume 22, pp. 1223–1227.
- Holliday, D. Resolution of a controversy surrounding the Kirchhoff approach and the small perturbation method in rough surface scattering theory. IEEE Trans. Antennas Propag. 1987, 35, 120–122. [Google Scholar] [CrossRef]
- Li, D. Research on Electromagnetic Scattering Characteristics of Nonlinear Sea Surface. Ph.D. Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2020. (In Chinese). [Google Scholar]
- Klinting, P.; Sand, S. Analysis of Prototype Freak Waves; ASCE: New York, NY, USA, 1987. [Google Scholar]
- Kim, D. On the Statistical Characteristics of Freak Wave Occurrence. J. Korean Soc. Mar. Environ. Eng. 2011, 14, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Andrade, D.; Stuhlmeier, R.; Stiassnie, M. Freak waves caused by reflection. Coast. Eng. 2021, 170, 104004. [Google Scholar] [CrossRef]
- Kim, D. Statistical Analysis of Draupner Wave Data. J. Ocean Eng. Technol. 2019, 3, 252–258. [Google Scholar] [CrossRef]
- Mori, N. Effects of wave breaking on wave statistics for deep-water random wave train. Ocean Eng. 2003, 30, 205–220. [Google Scholar] [CrossRef]
- Haver, S. A possible freak wave event measured at the Draupner Jacket 1 January 1995. Rogue Waves 2004, 2004, 1–8. [Google Scholar]
- Clauss, G.F.; Klein, M. The New Year Wave: Spatial Evolution of an Extreme Sea State. J. Offshore Mech. Arct. Eng. 2009, 131, 041001. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtsev, V.; Hauser, D.; Caudal, G.; Chapron, B. A semiempirical model of the normalized radar cross-section of the sea surface 1. Background model. J. Geophys. Res. Ocean. 2003, 108, FET 2-1-FET 2-24. [Google Scholar] [CrossRef]
- Wu, G.; Ji, G.; Ji, T.; Ren, H. Study of electromagnetic scattering from two-dimensional rough sea surface based on improved Wen’s spectrum. Acta Phys. Sin. 2014, 63, 134203. [Google Scholar]
M = 50 | M = 100 | M = 200 | M = 250 | |
---|---|---|---|---|
JONSWAP a1 | − | 27 | 56 | 66 |
JONSWAP a2 | − | 51 | 108 | − |
WEN a1 | 15 | 42 | 91 | 100 |
WEN a2 | − | 67 | 136 | − |
PM a1 | 10 | 38 | 82 | 100 |
PM a2 | − | 62 | 127 | − |
JONSWAP | WEN | PM | SUM | |
---|---|---|---|---|
(0–9) | 1078 | 1113 | 1089 | 3280 |
(10–19) | 1065 | 1090 | 1102 | 3257 |
(20–29) | 1085 | 1133 | 1092 | 3310 |
(30–39) | 1063 | 1095 | 1084 | 3242 |
(40–49) | 1080 | 1126 | 1110 | 3299 |
(50–59) | 899 | 1111 | 1099 | 3109 |
(60–69) | - | 1108 | 1080 | 2188 |
(70–79) | - | 1065 | 990 | 2055 |
(80–89) | - | 957 | - | 957 |
a1 | a2 | a3 | a4 | S | |
---|---|---|---|---|---|
JONSWAP | 2.8811 | 0.8729 | 6.1197 | 3.8265 | 0.0792 |
WEN | 3.2140 | 0.9107 | 6.0411 | 4.4050 | 0.0620 |
PM | 3.0242 | 0.9074 | 5.1363 | 4.0284 | 0.0445 |
The New Year Wave | Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4 | Experiment 5 | |
---|---|---|---|---|---|---|
a1 | 2.15 | 2.10 | 2.12 | 2.17 | 2.02 | 2.13 |
a2 | 0.72 | 0.73 | 0.80 | 0.70 | 0.79 | 0.79 |
a3 | 2.25 | 2.54 | 2.17 | 2.03 | 2.55 | 2.79 |
a4 | 3.99 | 3.99 | 4.18 | 4.09 | 3. 69 | 3.65 |
significant wave height | 11.92 | 11.98 | 11.36 | 12.08 | 12.37 | 12.33 |
maximum wave height | 25.60 | 25.20 | 24.14 | 26.27 | 25.08 | 26.22 |
wave crest height | 18.50 | 18.49 | 19.42 | 18.30 | 19.88 | 20.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Liu, B.; Han, L. Normalized Radar Scattering Section Simulation and Numerical Calculation of Freak Wave. J. Mar. Sci. Eng. 2022, 10, 1631. https://doi.org/10.3390/jmse10111631
Wu G, Liu B, Han L. Normalized Radar Scattering Section Simulation and Numerical Calculation of Freak Wave. Journal of Marine Science and Engineering. 2022; 10(11):1631. https://doi.org/10.3390/jmse10111631
Chicago/Turabian StyleWu, Gengkun, Bin Liu, and Lichen Han. 2022. "Normalized Radar Scattering Section Simulation and Numerical Calculation of Freak Wave" Journal of Marine Science and Engineering 10, no. 11: 1631. https://doi.org/10.3390/jmse10111631
APA StyleWu, G., Liu, B., & Han, L. (2022). Normalized Radar Scattering Section Simulation and Numerical Calculation of Freak Wave. Journal of Marine Science and Engineering, 10(11), 1631. https://doi.org/10.3390/jmse10111631