Water Circulation, Temperature, Salinity, and pCO2 Distribution in the Surface Layer of the East Kamchatka Current
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sea Surface Heights, Geostrophic Velocities, SST, and Chlorophyll Concentration Data
2.2. Underway pCO2, Salinity, Temperature Observations and Air–Sea CO2 Flux Estimation
2.3. Calculation of the Seawater pCO2 Depth Profiles
3. Results
3.1. Water Circulation in the Study Area
3.2. Distribution of Temperature, Salinity, and pCO2
3.2.1. East Kamchatka and North Kuril Areas
3.2.2. Central Kuril Island Area
3.3. pCO2 versus Salinity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Favorite, F. Flow into the Bering Sea through Aleutian Island passes. In Oceanography of the Bering Sea with Emphasis on Renewable Resources; University of Alaska: Fairbanks, AK, USA, 1974; pp. 3–37. [Google Scholar]
- Stabeno, P.J.; Reed, R.K. Circulation in the Bering Sea basin by satellite-tracked drifters. J. Phys. Oceanogr. 1994, 24, 848–854. [Google Scholar] [CrossRef]
- Prants, S.V.; Andreev, A.G.; Uleysky, M.Y.; Budyansky, M.V. Lagrangian study of temporal changes of a surface flow through the Kamchatka Strait. Ocean. Dyn. 2014, 64, 771–780. [Google Scholar] [CrossRef] [Green Version]
- Andreev, A.G.; Budyansky, M.V.; Khen, G.V.; Uleysky, M.Y. Water dynamics in the western Bering Sea and its impact on chlorophyll a concentration. Ocean. Dyn. 2020, 70, 593–602. [Google Scholar] [CrossRef]
- Verkhunov, A.V.; Tkachenko, Y.Y. Recent observations of variability in the western Bering Sea current system. J. Geophys. Res. 1992, 97, 14369–14376. [Google Scholar] [CrossRef]
- Prants, S.V.; Budyansky, M.V.; Lobanov, V.B.; Sergeev, A.F.; Uleysky, M.Y. Observation and Lagrangian analysis of quasi-stationary Kamchatka trench eddies. J. Geophys. Res. 2020, 125, e2020JC016187. [Google Scholar] [CrossRef]
- Prants, S.V.; Andreev, A.G.; Budyansky, M.V.; Uleysky, M.Y. Impact of the Alaskan Stream flow on surface water dynamics, temperature, ice extent, plankton biomass, and walleye pollock stocks in the eastern Okhotsk Sea. J. Mar. Syst. 2015, 151, 47–56. [Google Scholar] [CrossRef]
- Kusakabe, M.; Andreev, A.; Lobanov, V.; Zhabin, I.; Kumamoto, Y.; Murata, A. The effects of the anticyclonic eddies on the water masses, chemical parameters and chlorophyll distributions in the Oyashio Current region. J. Oceanogr. 2002, 58, 691–701. [Google Scholar] [CrossRef]
- Takahashi, T.; Sutherland, S.C.; Chipman, D.W.; Goddard, J.G.; Ho, C.; Newberger, T.; Sweeney, C.; Munro, D.R. Climatological Distributions of pH, pCO2, Total CO2, Alkalinity, and CaCO3 Saturation in the Global Surface Ocean; U.S. Department of Energy: Oak Ridge, TN, USA, 2014.
- Landschützer, P.; Gruber, N.; Bakker, D.C. Decadal variations and trends of the global ocean carbon sink. Glob. Biogeochem. Cycles 2016, 30, 1396–1417. [Google Scholar] [CrossRef] [Green Version]
- Landschützer, P.; Laruelle, G.G.; Roobaert, A.; Regnier, P. A uniform pCO2 climatology combining open and coastal oceans. Earth Syst. Sci. Data 2020, 12, 2537–2553. [Google Scholar] [CrossRef]
- Talley, L.D.; Nagata, Y. The Okhotsk Sea and Oyashio Region; North Pacific Marine Science Organization (PICES): Patricia Bay, BC, USA, 1995; p. 2. [Google Scholar]
- Ablain, M.; Cazenave, A.; Larnicol, G.; Balmaseda, M.; Cipollini, P.; Faugère, Y.; Fernandes, M.J.; Henry, O.; Johannessen, J.A.; Knudsen, P.; et al. Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean Sci. 2015, 11, 67–82. [Google Scholar] [CrossRef]
- Argo. Argo Float Data and Metadata from Global Data Assembly Centre (Argo GDAC); SEANOE, 2000; Available online: https://www.seanoe.org/data/00311/42182/ (accessed on 18 November 2022). [CrossRef]
- Nojiri, Y. Carbon Dioxide, Temperature, Salinity, and Other Variables Were Collected via Surface Underway Survey from Volunteer Observing Ship SKAUGRAN in the North Pacific Ocean and South Pacific Ocean from 1995-03-29 to 1999-09-25; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2011. [CrossRef]
- Nojiri, Y. Carbon Dioxide, Temperature, Salinity, and Other Variables Collected via Surface Underway Survey from Volunteer Observing Ship Alligator Hope in the North Pacific Ocean and South Pacific Ocean from 1999-11-12 to 2001-05-11; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2011. [CrossRef]
- Nojiri, Y. Partial Pressure (or Fugacity) of Carbon Dioxide, Salinity, and Other Variables Collected from Surface Underway Observations Using Carbon Dioxide (CO2) Gas Analyzer, Shower Head Chamber Equilibrator for Autonomous Carbon Dioxide (CO2) Measurement, and Other Instruments from Pyxis in the Bering Sea, the Caribbean Sea and Others from 2001-11-06 to 2013-04-25; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2011. [CrossRef]
- Nakaoka, S. Surface Underway Measurements of Partial Pressure of Carbon Dioxide (pCO2), Sea Surface Salinity, Temperature, and Other Parameters during the Ship of Opportunity (SOOP) M/S New Century 2 Cruises in the North Pacific Ocean, North Atlantic Ocean, and the Caribbean Sea in 2018; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2019. [CrossRef]
- Nakaoka, S. Surface Underway Measurements of Partial Pressure of Carbon Dioxide (pCO2), Sea Surface Salinity, Temperature, and Other Parameters during the Ship of Opportunity (SOOP) M/S New Century 2 Cruises in the North Pacific Ocean, North Atlantic Ocean, and the Caribbean Sea in 2020; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2021. [CrossRef]
- Dickson, A.G.; Sabine, C.L.; Christian, J.R. (Eds.) Guide to Best Practices for Ocean CO2 Measurements; PICES Special Publication: Sidney, BC, Canada, 2007; Volume 3, pp. 1–191. [Google Scholar]
- Weiss, R. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem. 1974, 2, 203–215. [Google Scholar] [CrossRef]
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys Res. 1992, 97, 7373–7383. [Google Scholar] [CrossRef]
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 2014, 12, 351–362. [Google Scholar] [CrossRef]
- Olsen, A.; Lange, N.; Key, R.; Tanhua, T.; Álvarez, M.; Becker, S.; Bittig, H.C.; Carter, B.R.; da Cunha, L.C.; Feely, R.A.; et al. GLODAPv2.2019-an update of GLODAPv2. Earth SystSci Data 2019, 11, 1437–1461. [Google Scholar] [CrossRef]
- Lewis, E.; Wallace, D.W.R. Program Developed for CO2 System Calculations; ORNL/CDIAC-105 1998; U.S. Department of Energy: Oak Ridge, TN, USA. [CrossRef] [Green Version]
- Mehrbach, C.; Culberson, C.H.; Hawley, J.E.; Pytkowicz, R.M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 1973, 18, 897–907. [Google Scholar] [CrossRef]
- Dickson, A.G.; Millero, F.J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. 1987, 34, 1733–1743. [Google Scholar] [CrossRef]
- Gordon, L.I.; Jones, L.B. The effect of temperature on carbon dioxide partial pressure in seawater. Mar. Chem. 1973, 1, 317–322. [Google Scholar] [CrossRef]
- Andreev, A.; Kusakabe, M.; Honda, M.; Saito, M.C. Vertical fluxes of nutrients and carbon through the halocline in the Western Subacrtic Gyre calculated by mass balance. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 5577–5593. [Google Scholar] [CrossRef]
- Brewer, P.G.; Goldman, J.C. Alkalinity changes generated by phytoplankton growth. Limn. Ocean. 1976, 21, 108–117. [Google Scholar] [CrossRef]
- Sarmiento, J.L.; Gruber, N. Ocean Biogeochemical Dynamics; Princeton University Press: Princeton, UK, 2006. [Google Scholar]
- Hydrometeorology and Hydrochemistry of the Seas. In Bering Sea; Hydrometeorological Conditions; Gidrometeoizdat: Saint Petersburg, Russia, 1999; pp. 1–299. (In Russian)
- Hydrometeorology and hydrochemistry of the seas. In Okhotsk Sea; Hydrometeorological Conditions; Gidrometeoizdat: Saint Petersburg, Russia, 1998; pp. 1–342. (In Russian)
- Smetanin, D.A. Hydrochemistry of the Kuril-Kamchatka deep-water basin. Hydrology and chemistry of the upper subarctic water in the Kuril-Kamchatka depression. Tr. Inst. Okeanol. 1959, 33, 43–86. (In Russian) [Google Scholar]
- Aguilar-Islas, A.M.; Hurst, M.P.; Buck, K.N.; Sohst, B.; Smith, G.J.; Lohan, M.; Bruland, K.W. Micro- and macronutrients in the southeastern Bering Sea. Insight into iron-replete and iron-deplete regimes. Prog. Oceanogr. 2007, 73, 99–126. [Google Scholar] [CrossRef]
- Cloern, J.E.; Grenz, C.; Vidergar-Lucas, L. An empirical model of the phytoplankton chlorophyll: Carbon ratio-the conversion factor between productivity and growth rate. Limnol. Oceanogr. 1995, 40, 1321–1326. [Google Scholar] [CrossRef] [Green Version]
- Andreev, A.G.; Chen, C.-T.A.; Sereda, N.A. The Distribution of the Carbonate Parameters in the Waters of Anadyr Bay of the Bering Sea and the Western Part of the Chukchi Sea. Oceanology 2010, 50, 39–50. [Google Scholar] [CrossRef]
- Chen, S.; Sutton, A.J.; Hu, C.; Chai, F. Quantifying the Atmospheric CO2 Forcing Effect on Surface Ocean pCO2 in the North Pacific Subtropical Gyre in the Past Two Decades. Front Mar. Sci. 2021, 8, 636881. [Google Scholar] [CrossRef]
- Andreev, A.G.; Baturina, V.I. Impacts of tides and atmospheric forcing variability on dissolved oxygen in the subarctic North Pacific. J. Geophys. Res. Ocean 2006, 111, C07S10. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreev, A.; Pipko, I. Water Circulation, Temperature, Salinity, and pCO2 Distribution in the Surface Layer of the East Kamchatka Current. J. Mar. Sci. Eng. 2022, 10, 1787. https://doi.org/10.3390/jmse10111787
Andreev A, Pipko I. Water Circulation, Temperature, Salinity, and pCO2 Distribution in the Surface Layer of the East Kamchatka Current. Journal of Marine Science and Engineering. 2022; 10(11):1787. https://doi.org/10.3390/jmse10111787
Chicago/Turabian StyleAndreev, Andrey, and Irina Pipko. 2022. "Water Circulation, Temperature, Salinity, and pCO2 Distribution in the Surface Layer of the East Kamchatka Current" Journal of Marine Science and Engineering 10, no. 11: 1787. https://doi.org/10.3390/jmse10111787
APA StyleAndreev, A., & Pipko, I. (2022). Water Circulation, Temperature, Salinity, and pCO2 Distribution in the Surface Layer of the East Kamchatka Current. Journal of Marine Science and Engineering, 10(11), 1787. https://doi.org/10.3390/jmse10111787