Position Correction and Trajectory Optimization of Underwater Long-Distance Navigation Inspired by Sea Turtle Migration
Abstract
:1. Introduction
2. Model
2.1. Earth Magnetic Field Geomagnetic Model
2.2. Geomagnetic Bi-Coordinate Inversion Localization Model
2.3. Trajectory Correction Model Based on Cantilever Beam
3. Experiment and Results
3.1. Physical Experiment
3.2. Semi-Physical Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, C.; Xu, C.; Wu, C.; Qu, D.; Liu, J.; Wang, Y.; Shao, G. A novel self-adapting filter based navigation algorithm for autonomous underwater vehicles. OcEng 2019, 187, 106–146. [Google Scholar] [CrossRef]
- He, B.; Ying, L.; Zhang, S.; Feng, X.; Yan, T.; Nian, R.; Shen, Y. Autonomous navigation based on unscented-FastSLAM using particle swarm optimization for autonomous underwater vehicles. Measurement 2015, 71, 89–101. [Google Scholar] [CrossRef]
- Svilicic, B.; Rudan, I.; Jugović, A.; Zec, D. A Study on Cyber Security Threats in a Shipboard Integrated Navigational System. J. Mar. Sci. Eng. 2019, 7, 364. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.Q.; Bian, H.Y.; Zielinski, A. Application of acoustic image processing in underwater terrain aided navigation. OcEng 2016, 121, 279–290. [Google Scholar] [CrossRef]
- Allotta, B.; Caiti, A.; Costanzi, R.; Fanelli, F.; Fenucci, D.; Meli, E.; Ridolfi, A. A new AUV navigation system exploiting unscented Kalman filter. OcEng 2016, 113, 121–132. [Google Scholar] [CrossRef]
- Fang, T.; Qian, D. Non-damping system reset schemes for underwater SINS based on intermittent calibration information. Measurement 2021, 182, 109741. [Google Scholar] [CrossRef]
- Klein, I.; Diamant, R. Dead Reckoning for Trajectory Estimation of Underwater Drifters under Water Currents. J. Mar. Sci. Eng. 2020, 8, 205. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.T.; Zhang, H.W.; Wang, Y.H.; Zhang, Y.P.; Xie, Y.G. Development status and analysis of navigation technology for autonomous underwater vehicles. J. Navig. Position 2020, 8, 1–7. [Google Scholar]
- Liu, P.; Wang, B.; Deng, Z.; Fu, M. INS/DVL/PS Tightly Coupled Underwater Navigation Method With Limited DVL Measurements. IEEE Sensors J. 2018, 18, 2994–3002. [Google Scholar] [CrossRef]
- Morgado, M.; Oliveira, P.; Silvestre, C. Tightly coupled ultrashort baseline and inertial navigation system for underwater vehicles: An experimental validation. J. Field Robot. 2013, 30, 142–170. [Google Scholar] [CrossRef]
- Goldenberg, F. Geomagnetic Navigation beyond the Magnetic Compass. In Proceedings of the 2006 IEEE/ION Position, Loca-tion, and Navigation Symposium, San Diego, CA, USA, 25–27 April 2006; pp. 684–694. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Ge, Z. Geomagnetic Matching Algorithm Based on the Probabilistic Neural Network. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2010, 225, 120–126. [Google Scholar] [CrossRef]
- Guo, C.; Cai, H.; van der Heijden, G. Feature Extraction and Geomagnetic Matching. J. Navig. 2013, 66, 799–811. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, M.P.; Hu, X.P.; Xie, H.W. Research on Geomagnetic Matching Method. In Proceedings of the IEEE Conference on Industrial Electronics and Applications (ICIEA), Harbin, China, 23–25 May 2007. [Google Scholar]
- Huang, Y.; Wu, L.-H.; Sun, F. Underwater Continuous Localization Based on Magnetic Dipole Target Using Magnetic Gradient Tensor and Draft Depth. IEEE Geosci. Remote Sens. Lett. 2013, 11, 178–180. [Google Scholar] [CrossRef]
- Liu, M.Y.; Li, H. Geomagnetic Navigation of AUV without A Priori. In Proceedings of the OCEANS 2014, Taipei, Taiwan, 7–10 April 2014. [Google Scholar]
- Zhao, Z.; Hu, T.; Cui, W.; Huangfu, J.; Li, C.; Ran, L. Long-Distance Geomagnetic Navigation: Imitations of Animal Migration Based on a New Assumption. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6715–6723. [Google Scholar] [CrossRef]
- Qi, X.K.; Ye, D.X.; Sun, Y.Z.; Li, C.Z.; Ran, L.X. Simulations to True Animals’ Long-Distance Geomagnetic Navigation. ITM 2016, 53, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Luo, M.; Yang, C. Bio-Inspired Approach for Long-Range Underwater Navigation Using Model Predictive Control. IEEE Trans. Cybern. 2019, 51, 4286–4297. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, J.; Zhu, W.; Xi, X. The Vector Matching Method in Geomagnetic Aiding Navigation. Sensors 2016, 16, 1120. [Google Scholar] [CrossRef]
- Liu, M.Y.; Liu, K.; Peng, X.; Li, H. Bio-inspired navigation based on geomagnetic for the autonomous underwater vehicle. In Proceedings of the OCEANS 2014, Taipei, Taiwan, 7–10 April 2014. [Google Scholar]
- Li, H.; Liu, M.; Zhang, F. Geomagnetic Navigation of Autonomous Underwater Vehicle Based on Multi-objective Evolutionary Algorithm. Front. Neurorobot. 2017, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, K.; Hester, J.; Lohmann, C. Long-distance navigation in sea turtles. Ethol. Ecol. Evol. 1999, 11, 1–23. [Google Scholar] [CrossRef]
- Wiltschko, R. Navigation. J. Comp. Physiol. A 2017, 203, 455–463. [Google Scholar] [CrossRef]
- Brothers, J.R.; Lohmann, K.J. Evidence that Magnetic Navigation and Geomagnetic Imprinting Shape Spatial Genetic Variation in Sea Turtles. Curr. Biol. 2018, 28, 1325–1329. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.F.; Tian, L.X. Progresses in the Mechanisms of Animal Geomagnetic Navigation. Chin. J. Zool. 2015, 50, 801–819. [Google Scholar]
- Chulliat, A.; Brown, W.; Alken, P.; Beggan, C.; Nair, M.; Cox, G.; Woods, A.; Macmillan, S.; Meyer, B.; Paniccia, M. The US/UK World Magnetic Model for 2020–2025: Technical Report, National Centers for Environmental Information; NOAA: New York, NY, USA, 2020.
- Glatzmaier, G.A.; Roberts, P.H. Rotation and Magnetism of Earth’s Inner Core. Science 1996, 274, 1887–1891. [Google Scholar] [CrossRef] [PubMed]
- Alken, P.; Maus, S.; Lühr, H.; Redmon, R.J.; Rich, F.; Bowman, B.; O’Malley, S.M. Geomagnetic main field modeling with DMSP. J. Geophys. Res. Space Phys. 2014, 119, 4010–4025. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, T.; Shin, H.-S.; Wang, J.; Zhang, C. Geomagnetic gradient-assisted evolutionary algorithm for long-range underwater navigation. IEEE. Trans. Instrum. Meas. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Kane, T.R.; Ryan, R.R.; Banerjeer, A.K. Dynamics of a cantilever beam attached to a moving base. J. Guid. Control Dyn. 1987, 10, 139–151. [Google Scholar] [CrossRef]
- Pang, H.; Li, J.; Chen, D.; Pan, M.; Luo, S.; Zhang, Q.; Luo, F. Calibration of three-axis fluxgate magnetometers with nonlinear least square method. Measurement 2013, 46, 1600–1606. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Yu, H.; Li, Y.; Shen, T.; Wang, C.; Cong, Z. Position Correction and Trajectory Optimization of Underwater Long-Distance Navigation Inspired by Sea Turtle Migration. J. Mar. Sci. Eng. 2022, 10, 163. https://doi.org/10.3390/jmse10020163
Li Z, Yu H, Li Y, Shen T, Wang C, Cong Z. Position Correction and Trajectory Optimization of Underwater Long-Distance Navigation Inspired by Sea Turtle Migration. Journal of Marine Science and Engineering. 2022; 10(2):163. https://doi.org/10.3390/jmse10020163
Chicago/Turabian StyleLi, Ziyuan, Huapeng Yu, Ye Li, Tongsheng Shen, Chongyang Wang, and Zheng Cong. 2022. "Position Correction and Trajectory Optimization of Underwater Long-Distance Navigation Inspired by Sea Turtle Migration" Journal of Marine Science and Engineering 10, no. 2: 163. https://doi.org/10.3390/jmse10020163
APA StyleLi, Z., Yu, H., Li, Y., Shen, T., Wang, C., & Cong, Z. (2022). Position Correction and Trajectory Optimization of Underwater Long-Distance Navigation Inspired by Sea Turtle Migration. Journal of Marine Science and Engineering, 10(2), 163. https://doi.org/10.3390/jmse10020163