On the Compression Instability during Static and Low-Cycle Fatigue Loadings of AA 5083 Welded Joints: Full-Field and Numerical Analyses
Abstract
:1. Introduction
2. Materials and Methods
Material Properties as a Funciotn of Hardness Measurements
3. Results from Initial Evaluations
4. Results from Low-Cycle Fatigue Evaluations
4.1. Low Cycle Fatigue Tests at Rd = 0
4.2. Low Cycle Fatigue Tests at Rd = −1
4.3. Finite Element Evaluation for LCF Analysis
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Mei, X.; Xiong, M. Effects of second-order hydrodynamics on the dynamic responses and fatigue damage of a 15 mw floating offshore wind turbine. J. Mar. Sci. Eng. 2021, 9, 1232. [Google Scholar] [CrossRef]
- Yang, Q.; Li, G.; Mu, W.; Liu, G.; Sun, H. Identification of crack length and angle at the center weld seam of offshore platforms using a neural network approach. J. Mar. Sci. Eng. 2020, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Hirdaris, S.E.; Bai, W.; Dessi, D.; Ergin, A.; Gu, X.; Hermundstad, O.A.; Huijsmans, R.; Iijima, K.; Nielsen, U.D.; Parunov, J.; et al. Loads for use in the design of ships and offshore structures. Ocean Eng. 2014, 78, 131–174. [Google Scholar] [CrossRef]
- Pinheiro, B.d.C.; Pasqualino, I.P. Fatigue analysis of damaged steel pipelines under cyclic internal pressure. Int. J. Fatigue 2009, 31, 962–973. [Google Scholar] [CrossRef]
- Erny, C.; Thevenet, D.; Cognard, J.Y.; Körner, M. Fatigue life prediction of welded ship details. Mar. Struct. 2012, 25, 13–32. [Google Scholar] [CrossRef]
- Feng, L.; Qian, X. Low cycle fatigue test and enhanced lifetime estimation of high-strength steel S550 under different strain ratios. Mar. Struct. 2018, 61, 343–360. [Google Scholar] [CrossRef]
- Syed Ahmad, S.Z.A.; Abu Husain, M.K.; Mohd Zaki, N.I.; Mukhlas, N.A.; Mat Soom, E.; Azman, N.U.; Najafian, G. Offshore Structural Reliability Assessment by Probabilistic Procedures—A Review. J. Mar. Sci. Eng. 2021, 9, 998. [Google Scholar] [CrossRef]
- ASM Handbook Volume 6: Welding, Brazing, and Soldering—ASM International. Available online: https://www.asminternational.org/search/-/journal_content/56/10192/06480G/PUBLICATION (accessed on 26 February 2021).
- Zhao, W.; Hsu, W.T. Re-evaluation of fatigue thickness effect based on fatigue test database. J. Mar. Sci. Eng. 2020, 8, 895. [Google Scholar] [CrossRef]
- Liao, X.; Qiang, B.; Wu, J.; Yao, C.; Wei, X.; Li, Y. An improved life prediction model of corrosion fatigue for T-welded joint. Int. J. Fatigue 2021, 152, 106438. [Google Scholar] [CrossRef]
- Fricke, W. Recent developments and future challenges in fatigue strength assessment of welded joints. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 229, 1224–1239. [Google Scholar] [CrossRef] [Green Version]
- Radaj, D.; Sonsino, C.M.; Fricke, W. Recent developments in local concepts of fatigue assessment of welded joints. Int. J. Fatigue 2009, 31, 2–11. [Google Scholar] [CrossRef]
- Dong, P. A structural stress definition and numerical implementation for fatigue analysis of welded joints. Int. J. Fatigue 2001, 23, 865–876. [Google Scholar] [CrossRef]
- Radaj, D.; Sonsino, C.M.; Fricke, W. Fatigue Assessment of Welded Joints by Local Approaches, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 9781855739482. [Google Scholar]
- Sonsino, C.M.; Radaj, D.; Brandt, U.; Lehrke, H.P. Fatigue assessment of welded joints in AlMg 4.5Mn aluminum alloy (AA 5083) by local approaches. Int. J. Fatigue 1999, 21, 985–999. [Google Scholar] [CrossRef]
- Lazzarin, P.; Tovo, R. A notch intensity factor approach to the stress analysis of welds. Fatigue Fract. Eng. Mater. Struct. 1998, 21, 1089–1103. [Google Scholar] [CrossRef]
- Atzori, B.; Lazzarin, P.; Meneghetti, G.; Ricotta, M. Fatigue design of complex welded structures. Int. J. Fatigue 2009, 31, 59–69. [Google Scholar] [CrossRef]
- Taylor, D.; Barrett, N.; Lucano, G. Some new methods for predicting fatigue in welded joints. Int. J. Fatigue 2002, 24, 509–518. [Google Scholar] [CrossRef]
- Taylor, D. The Theory of Critical Distances: A New Perspective in Fracture Mechanics; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 9780080554723. [Google Scholar]
- Fan, J.L.; Guo, X.L.; Wu, C.W.; Zhao, Y.G. Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints. Mater. Sci. Eng. A 2011, 528, 8417–8427. [Google Scholar] [CrossRef]
- Williams, P.; Liakat, M.; Khonsari, M.M.; Kabir, O.M. A thermographic method for remaining fatigue life prediction of welded joints. Mater. Des. 2013, 51, 916–923. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.G.; Crupi, V.; Jiang, C.; Guglielmino, E. Quantitative Thermographic Methodology for fatigue life assessment in a multiscale energy dissipation framework. Int. J. Fatigue 2015, 81, 249–256. [Google Scholar] [CrossRef]
- Corigliano, P.; Crupi, V. Fatigue analysis of TI6AL4V/INCONEL 625 dissimilar welded joints. Ocean Eng. 2021, 221, 108582. [Google Scholar] [CrossRef]
- Saiprasertkit, K. Fatigue strength assessment of load-carrying cruciform joints in low- and high-cycle fatigue region based on effective notch strain concept: HENRY GRANJON PRIZE 2013 Winner Category C: Design and Structural Integrity. Weld. World 2014, 58, 455–467. [Google Scholar] [CrossRef]
- Dong, P.; Pei, X.; Xing, S.; Kim, M.H. A structural strain method for low-cycle fatigue evaluation of welded components. Int. J. Press. Vessel. Pip. 2014, 119, 39–51. [Google Scholar] [CrossRef]
- Hobbacher, A. Recommendations for Fatigue Design of Welded Joints and Components; IIW Doc. IIW-1823-07 ex XIII-2151r4-07/XV-1254r4-07; International Institute of Welding: Paris, France, 2008. [Google Scholar]
- Dong, P.; Prager, M.; Osage, D.A.; Hong, J.K.; Dewees, D.J. The Master S-N Curve Method: An Implementation for Fatigue Evaluation of Welded Components in the ASME B & PV Code, Section VIII, Division 2 and API 579-1/ASME FFS-1; Welding Research Council: New York, NY, USA, 2010; ISBN 9781581455304. [Google Scholar]
- Pei, X.; Dong, P.; Xing, S. A structural strain parameter for a unified treatment of fatigue behaviors of welded components. Int. J. Fatigue 2019, 124, 444–460. [Google Scholar] [CrossRef]
- Pei, X.; Dong, P. An analytically formulated structural strain method for fatigue evaluation of welded components incorporating nonlinear hardening effects. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 239–255. [Google Scholar] [CrossRef] [Green Version]
- Xing, R.; Yu, D.; Shi, S.; Chen, X. Cyclic deformation of 316L stainless steel and constitutive modeling under non-proportional variable loading path. Int. J. Plast. 2019, 120, 127–146. [Google Scholar] [CrossRef]
- Su, M.; Xu, L.; Peng, C.; Han, Y.; Zhao, L. Fatigue short crack growth, model and EBSD characterization of marine steel welding joint. Int. J. Fatigue 2022, 156, 106689. [Google Scholar] [CrossRef]
- Corigliano, P.; Crupi, V.; Guglielmino, E. Non linear finite element simulation of explosive welded joints of dissimilar metals for shipbuilding applications. Ocean Eng. 2018, 160, 346–353. [Google Scholar] [CrossRef]
- Corigliano, P.; Crupi, V.; Pei, X.; Dong, P. DIC-based structural strain approach for low-cycle fatigue assessment of AA 5083 welded joints. Theor. Appl. Fract. Mech. 2021, 116, 103090. [Google Scholar] [CrossRef]
- Corigliano, P.; Ragni, M.; Castagnetti, D.; Crupi, V.; Dragoni, E.; Guglielmino, E. Measuring the static shear strength of anaerobic adhesives in finite thickness under high pressure. J. Adhes. 2019, 98, 783–800. [Google Scholar] [CrossRef]
- GOM mbH. ARAMIS User Manual—Software V6.3.; GOM mbH: Braunschweig, Germany, 2011; pp. 1–129. [Google Scholar]
- Atzori, B.; Meneghetti, G. Fatigue strength of fillet welded structural steels: Finite elements, strain gauges and reality. Int. J. Fatigue 2001, 23, 713–721. [Google Scholar] [CrossRef]
- Fricke, W. IIW Recommendations for the Fatigue Assessment of Welded Structures by Notch Stress Analysis: IIW-2006-09; Woodhead Publishing: Sawston, UK, 2012; ISBN 9780857098559. [Google Scholar]
- Stathers, P.A.; Hellier, A.K.; Harrison, R.P.; Ripley, M.I.; Norrish, J. Hardness–Tensile Property Relationships for HAZ in 6061-T651 aluminum. Weld. J. 2014, 93, 301–311. [Google Scholar]
- Kamaya, M. Ramberg–Osgood type stress–strain curve estimation using yield and ultimate strengths for failure assessments. Int. J. Press. Vessel. Pip. 2016, 137, 1–12. [Google Scholar] [CrossRef]
- Lopez, Z.; Fatemi, A. A method of predicting cyclic stress-strain curve from tensile properties for steels. Mater. Sci. Eng. A 2012, 556, 540–550. [Google Scholar] [CrossRef]
- Niu, P.; Li, W.; Chen, Y.; Liu, F.; Gong, J.; Chen, D. Cyclic hardening behavior and deformation mechanisms of friction-stir-welded dissimilar AA5083-to-AA2024 joints with heterogeneous microstructures. Mater. Charact. 2021, 181, 111465. [Google Scholar] [CrossRef]
- Ohji, K.; Miller, W.R.; Marin, J. Cumulative damage and effect of mean strain in low-cycle fatigue of a 2024-T351 aluminum alloy. J. Basic Eng. 1966, 88, 801–809. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Dai, H.; Liu, N.; Lin, J. Study on the elastic-plastic correlation of low-cycle fatigue for variable asymmetric loadings. Materials 2020, 13, 2451. [Google Scholar] [CrossRef]
Ultimate Stress, σu | Yield Stress, σy | Elongation at Break, εu | Young’s Modulus, E |
---|---|---|---|
MPa | MPa | % | MPa |
317 | 228 | 16 | 71,000 |
HV (MPa) | σy (MPa) | σu (MPa) | |
---|---|---|---|
BM and HAZ | 91.8 | 224.3 | 267.4 |
WM of welds A and B | 74.5 | 173.7 | 225.7 |
WM of weld C | 82 | 195.6 | 243.8 |
BM and HAZ | WM of Welds A, B | WM of Weld C | |
---|---|---|---|
m | 14.6 | 10.8 | 12.3 |
α | 0.63 | 0.82 | 0.73 |
σy (MPa) | σu (MPa) | K’ (MPa) | n’ | |
---|---|---|---|---|
BM and HAZ | 224.4 | 267.4 | 0.206237 | 903.2 |
WM (weld C) | 195.7 | 243.8 | 0.215732 | 875.8 |
WM (welds A, B) | 173.7 | 225.8 | 0.223842 | 854.9 |
Test | Displacement Amplitude da (mm) | Cycles to Failure Nf_exp |
---|---|---|
1 | 0.4 | 2350 |
2 | 0.5 | 850 |
3 | 0.45 | 1450 |
4 | 0.55 | 360 |
5 | 0.35 | 4050 |
Test | Displacement Amplitude da (mm) | Cycles to Failure Nf_exp |
---|---|---|
6 | 0.325 | 4500 |
7 | 0.35 | 2000 |
8 | 0.375 | 2900 |
9 | 0.4 | 1400 |
10 | 0.45 | 630 |
11 | 0.475 | 570 |
12 | 0.5 | 150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corigliano, P. On the Compression Instability during Static and Low-Cycle Fatigue Loadings of AA 5083 Welded Joints: Full-Field and Numerical Analyses. J. Mar. Sci. Eng. 2022, 10, 212. https://doi.org/10.3390/jmse10020212
Corigliano P. On the Compression Instability during Static and Low-Cycle Fatigue Loadings of AA 5083 Welded Joints: Full-Field and Numerical Analyses. Journal of Marine Science and Engineering. 2022; 10(2):212. https://doi.org/10.3390/jmse10020212
Chicago/Turabian StyleCorigliano, Pasqualino. 2022. "On the Compression Instability during Static and Low-Cycle Fatigue Loadings of AA 5083 Welded Joints: Full-Field and Numerical Analyses" Journal of Marine Science and Engineering 10, no. 2: 212. https://doi.org/10.3390/jmse10020212
APA StyleCorigliano, P. (2022). On the Compression Instability during Static and Low-Cycle Fatigue Loadings of AA 5083 Welded Joints: Full-Field and Numerical Analyses. Journal of Marine Science and Engineering, 10(2), 212. https://doi.org/10.3390/jmse10020212