Length-Based Stock Assessment for the Data-Poor Bombay Duck Fishery from the Northern Bay of Bengal Coast, Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Length-Weight Relationship
2.4. Stock Assessment Indicators
2.4.1. Growth Parameters Estimation
2.4.2. Fishing Mortality and Exploitation
- (a)
- fishing mortality and exploitation at maximum yield per recruit (Fmax and Emax),
- (b)
- fishing mortality and exploitation that reduces the population to 50% of unfished spawning biomass (F0.5 and E0.5),
- (c)
- fishing mortality and exploitation reduces the marginal gain in yield per recruit to an arbitrary 10% of that at F = 0 (F0.1 and E0.1),
2.4.3. Length-Based Spawning Potential Ratio (LB-SPR)
2.4.4. Length-Based Indicators
3. Results
3.1. Landing and Fishing Gears
3.2. Length Distributions
3.3. Length–Weight Relationship
3.4. Growth Parameters and Mortality
3.4.1. Growth Parameters
3.4.2. Mortality and Exploitation
3.5. Length-Based Spawning Potential Ratio (SPR)
3.5.1. Estimation of Life History Ratio (LHR) and Size of Maturity
3.5.2. Model Fitting to the Length Distribution Data
3.5.3. Length Selectivity and Maturity
3.5.4. Spawning Potential Ratio (SPR)
3.5.5. Existing vs. Expected Size Composition at the Target SPR (0.40)
3.6. Results from Catch Composition Analysis
4. Discussion
4.1. Trends in Landing
4.2. Growth, Mortality, and Exploitation
4.3. Diagnosis of the Stock Based on LB-SPR and Catch Proportion Analysis
4.4. Management Recommendations
5. Conclusions
- Not to allow the catching of fish with a length equal to or smaller than 17.95 cm;
- Reduce fishing mortality by controlling the fishing efforts;
- Ensure that all SBNs operating in Bangladesh’s coastal waters are licensed;
- Establish a systematic monitoring framework to guarantee that existing laws and regulations are followed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.Z.; Kurup, K.N.; Lipton, A.P. Status of Bombay duck Harpodon nehereus (Ham.) resource off Saurashtra coast. Indian J. Fish. 1992, 39, 235–242. [Google Scholar]
- Frimodt, C. A Multilingual Illustrated Guide to the World’s Commercial Warm-Water Fish; Fishing News Books: Oxford, UK, 1995; p. 215. [Google Scholar]
- Froese, R.; Pauly, D. FishBase. Concepts, Design and Data Sources; ICLARM: Los Baños, Philippines, 2000; p. 344. [Google Scholar]
- Fernandez, I.; Devaraj, M. Dynamics of the Bombay duck (Harpodon nehereus) stock along the northwest coast of India. Indian J. Fish. 1996, 43, 1–11. [Google Scholar]
- Yamada, U.; Shirai, S.; Irie, T.; Tokimura, M.; Deng, S.; Zheng, Y.; Li, C.; Kim, Y.U.; Kim, Y.S. Names and Illustrations of Fishes from the East China Sea and the Yellow Sea; Overseas Fishery Cooperation Foundation: Tokyo, Japan, 1995; p. 288. [Google Scholar]
- DoF (Department of Fisheries). Yearbook of Fisheries Statistics of Bangladesh 2017–2018; Department of Fisheries, Ministry of Fisheries and Livestock: Dhaka, Bangladesh, 2019. [Google Scholar]
- FAO (Food and Agricultural Organization of the United Nations). FAO Fisheries and Aquaculture–Online Query Panel. Available online: http://www.fao.org/fishery/statistics/global-capture-production/query/ (accessed on 23 August 2019).
- Shamsuzzaman, M.M.; Xiangmin, X.; Ming, Y.; Tania, N.J. Towards sustainable development of coastal fisheries resources in Bangladesh: An analysis of the legal and institutional framework. Turk. J. Fish Aquat. Sci. 2017, 17, 833–841. [Google Scholar] [CrossRef]
- Cope, J.; Punt, A.E. Length-based reference points for data-limited situations: Applications and restrictions. Mar. Coast. Fish. Dyn. Manag. Ecosyst. Sci. 2009, 1, 169–186. [Google Scholar] [CrossRef]
- Haddon, M. Modelling and Quantitative Methods in Fisheries, 2nd ed.; Taylor & Francis: Boca Raton, FL, USA, 2010. [Google Scholar]
- BoBLME (Bay of Bengal Large Marine Ecosystem Project). Status of Hilsa (Tenualosa ilisha) Management in the Bay of Bengal—An Assessment of Population Risk and Data Gaps for More Effective Regional Management; BOBLME: Phuket, Thailand, 2010; p. 70. [Google Scholar]
- Martell, S.; Froese, R. A simple method for estimating MSY from catch and resilience. Fish Fish. 2012, 14, 504–514. [Google Scholar] [CrossRef]
- Rahman, M.J.; Wahab, M.A.; Amin, S.M.N.; Nahiduzzaman, M.; Romano, N. Catch Trend and Stock Assessment of Hilsa Tenualosailisha Using Digital Image Measured Length-Frequency Data. Mar. Coast. Fish. 2018, 10, 386–401. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.S.; Liu, Q.; Nabi, M.R.-U.; Al-Mamun, M.A. Fish Stock Assessment for Data-Poor Fisheries, with a Case Study of Tropical Hilsa Shad (Tenualosa ilisha) in the Water of Bangladesh. Sustainability 2021, 13, 3604. [Google Scholar] [CrossRef]
- Islam, S.S. Population Dynamics of Some Fishes and Shrimp of Karnafully River Estuary Based on Length-Frequency Data. Master’s Thesis, Department of Zoology, University of Chittagong, Chittagong, Bangladesh, 1995. [Google Scholar]
- Mustafa, M.G.; Zafar, M.; Matin, A.K.M.A.; Amin, S.M.N. Population dynamics of Harpadon nehereus (Hamilton-Buchannan.) from the Kutubdia channel of Bangladesh. Bangladesh J. Fish. Res. 1998, 2, 83–90. [Google Scholar]
- Mustafa, M.G.; Azadi, M.A.; Islam, M.S. ELEFAN based population dynamics of Bombay duck Harpadon nehereus Hamilton-Buchman from the Kumira estuary. In Proceedings of the 9th National Zoology Conference of the Zoological Society of Bangladesh, Dhaka, Bangladesh, 26–28 January 1994. [Google Scholar]
- Sarker, M.N.; Humayun, M.; Rahman, M.A.; Uddin, M.S. Population dynamics of Bombay duck Harpadon nehereus of the Bay of Bengal along Bangladesh coast. Bangladesh J. Zool. 2017, 45, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.; Pauly, D. Yield-per-Recruit, Utility-per-Recruit, and Relative Biomass of 21 Exploited Fish Species in China’s Coastal Seas. Front. Mar. Sci. 2019, 6, 724. [Google Scholar] [CrossRef]
- Hilborn, R.; Walters, C.J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty, 2nd ed.; Chapman and Hall Inc.: New York, NY, USA, 1992; p. 570. [Google Scholar]
- Andrew, N.L.; Bène, C.; Hall, S.J.; Allison, E.H.; Heck, S.; Ratner, B.D. Diagnosis and management of small-scale fisheries in developing countries. Fish Fish. 2007, 8, 227–240. [Google Scholar] [CrossRef]
- Costello, C.; Ovando, D.; Hilborn, R.; Gaines, S.D.; Deschenes, O.; Lester, S.E. Status and solutions for the world’s unassessed fisheries. Science 2012, 338, 517–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowling, N.A.; Smith, A.D.M.; Smith, D.C.; Parma, A.M.; Dichmont, C.M.; Sainsbury, K.; Wilson, J.R.; Dougherty, D.T.; Cope, J.M. Generic solutions for data-limited fishery assessments are not so simple. Fish Fish. 2019, 20, 174–188. [Google Scholar] [CrossRef]
- Prince, J.; Hordyk, A. What to do when you have almost nothing: A simple quantitative prescription for managing extremely data-poor fisheries. Fish Fish. 2019, 20, 224–238. [Google Scholar] [CrossRef]
- Quinn, T.J., II; Deriso, R.B. Quantitative Fish Dynamics; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Froese, R. Keep it simple: Three indicators to deal with overfishing. Fish Fish. 2004, 5, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, C.R.; Punt, A.E. Performance of a fisheries catch-at-age model (Stock Synthesis) in data-limited situations. Mar. Freshw. Res. 2011, 62, 927–936. [Google Scholar] [CrossRef]
- Pons, M.; Kell, L.; Rudd, M.B.; Cope, J.M.; Fre, L. Performance of length-based data-limited methods in a multi- fleet context: Application to small tunas, mackerels and bonitos in the Atlantic Ocean. Can. J. Fish. Aquat. Sci. 2019, 4, 960–973. [Google Scholar]
- Chrysafi, A.; Kuparinen, A. Assessing abundance of populations with limited data: Lessons learned from data-poor fisheries stock assessment. Environ. Rev. 2016, 24, 25–38. [Google Scholar] [CrossRef]
- Dowling, N.A.; Dichmont, C.M.; Haddon, M.; Smith, D.C.; Smith, A.D.M.; Sainsbury, K. Guidelines for developing formal harvest strategies for data-poor species and fisheries. Fish. Res. 2015, 171, 130–140. [Google Scholar] [CrossRef]
- Rosenberg, A.A.; Fogarty, M.J.; Cooper, A.B. Developing New Approaches to Global Stock Status Assessment and Fishery Production Potential of the Seas. In FAO Fisheries and Aquaculture Circular No. 1086; FAO: Rome, Italy, 2014. [Google Scholar]
- Froese, R.; Winker, H.; Coro, G.; Demirel, N.; Tsikliras, A.C.; Dimarchopoulou, D.; Scarcella, G.; Probst, W.N.; Dureuil, M.; Pauly, D. A new approach for estimating stock status from length-frequency data. ICES J. Mar. Sci. 2018, 75, 2004–2015. [Google Scholar] [CrossRef]
- Hordyk, A.; Ono, K.; Prince, J.D.; Walters, C.J. A simple length-structured model based on life history ratios and incorporating size-dependent selectivity: Application to spawning potential ratios for data-poor stocks. Can. J. Fish. Aquat. Sci. 2016, 73, 1787–1799. [Google Scholar] [CrossRef]
- Kilduff, P.; Carmichael, J.; Latour, J. Guide to Fisheries Science and Stock Assessment; Atlantic States Marine Fisheries Commission: Washington, DC, USA, 2009; p. 66. [Google Scholar]
- Le Cren, E.D. The length-weight relationships and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 1951, 20, 201–219. [Google Scholar] [CrossRef] [Green Version]
- Mildenberger, T.K.; Taylor, M.H.; Wolff, M. TropFishR: An R package for fisheries analysis with length-frequency data. Methods Ecol. Evol. 2017, 8, 1520–1527. [Google Scholar] [CrossRef] [Green Version]
- Sparre, P.; Venema, S.C. Introduction to Tropical Fish Stock Assessment—Part 1: Manual. FAO Fish. Tech. Pap. 1998, 306, 1–407. [Google Scholar]
- Hordyk, A.; Ono, K.; Sainsbury, K.; Loneragan, N.; Prince, J. Some explorations of the life history ratios to describe length composition, spawning-per-recruit, and the spawning potential ratio. ICES J. Mar. Sci. 2015, 72, 204–216. [Google Scholar] [CrossRef]
- Hordyk, A.; Ono, K.; Valencia, S.; Loneragan, N.; Prince, J. A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES J. Mar. Sci. 2015, 72, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Goodyear, C.P. Spawning Stock Biomass per Recruit in Fisheries Management: Foundation and Current Use. In Risk Evaluation and Biological Reference Points for Fisheries Management; Smith, S.J., Hunt, J.J., Rivard, D., Eds.; Canadian Special Publications of Fisheries Aquatic Sciences: Ottawa, ON, Canada, 1993; pp. 67–82. [Google Scholar]
- Prince, J.; Victor, S.; Kloulchad, V.; Hordyk, A. Length based SPR assessment of eleven Indo-Pacific coral reef fish populations in Palau. Fish. Res. 2015, 171, 42–58. [Google Scholar] [CrossRef] [Green Version]
- von Bertalanffy, L. A quantitative theory of organic growth (in- quiries on growth laws. II.). Hum. Biol. 1938, 10, 181–213. [Google Scholar]
- Pauly, D. Studying Single-Species Dynamics in a Tropical Multispecies Context. In Theory and Management of Tropical Fisheries, Proceedings of the ICLARM/CSIRO Workshop on the Theory and Management of Tropical Multispecies Stocks, Cronulla, Australia, 12–21 January 1981; Pauly, D., Murphy, G.I., Eds.; International Centre for Living Aquatic Resources: Manila, Philippines; Volume 9, pp. 33–70.
- Pauly, D.; Munro, J.L. Once more, on the composition of growth in fish and invertebrates. Fishbyte 1984, 2, 21. [Google Scholar]
- Taylor, M.; Mildenberger, T.K. Extending electronic length frequency analysis in R. Fish. Manag. Ecol. 2017, 24, 330–338. [Google Scholar] [CrossRef]
- Schwamborn, R.; Mildenberger, T.K.; Taylor, M.H. Assessing source of uncertainty in length-based estimates of body growth in populations of fishes and macro-invertebrates with bootstrapped ELEFAN. Ecol. Model. 2019, 293, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Pauly, D. Fish population dynamics in tropical waters: A manual for use with programmable calculator. ICLARM Stud. Rev. 1984, 8, 325. [Google Scholar]
- Then, A.Y.; Hoenig, J.M.; Hall, N.G.; Hewitt, D.A. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES J. Mar. Sci. 2015, 72, 82–92. [Google Scholar] [CrossRef]
- Gulland, JA The Fish Resources of the Ocean; Fishing News (Books): Surrey, UK, 1971.
- Beverton, R.J.H.; Holt, S.J. A review of methods for estimating mortality rates in fish populations, with special references to sources of bias in catch sampling. Rapp Proces-Verb Reun. Cons. Int. Explor. Mer. 1956, 140, 67–83. [Google Scholar]
- Beverton, R.J.H.; Holt, S.J. A review of the lifespans and mortality of fish in nature and the relation to growth and other physiological characteristics. Ciba Found. Colloq. Ageing 1959, 5, 142–177. [Google Scholar]
- Rudd, M.B.; Thorson, J.T. Accounting for variable recruitment and fishing mortality in length-based stock assessments for data-limited fisheries. Can. J. Fish. Aquat. Sci. 2017, 75, 999–1004. [Google Scholar] [CrossRef]
- Babcock, E.A.; Tewfik, A.; Burns-Perez, V. Fish community and singlespecies indicators provide evidence of unsustainable practices in a multi-gear reef fishery. Fish. Res. 2018, 208, 70–85. [Google Scholar] [CrossRef]
- Chong, L.; Mildenberger, T.K.; Rudd, M.B.; Taylor, M.H.; Cope, J.M.; Branch, T.A.; Wolff, M.; Stäbler, M. Performance evaluation of data-limited, length-based stock assessment methods. ICES J. Mar. Sci. 2020, 77, 97–108. [Google Scholar] [CrossRef]
- Froese, R.; Binohlan, C. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J. Fish Biol. 2000, 56, 758–773. [Google Scholar] [CrossRef]
- Hordyk, A. LB-SPR: Length-Based Spawning Potential Ratio. R Package Version 0.1.2. Available online: https://CRAN.R-project.org/package=LB-SPR (accessed on 10 June 2021).
- Babcock, E.A.; Coleman, R.; Karnauskas, M.; Gibson, J. Length-based indicators of fishery and ecosystem status: Glover’s Reef Marine Reserve, Belize. Fish. Res. 2013, 147, 434–445. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 10 June 2021).
- Barman, P.P.; Karim, E.; Khatun, M.H.; Rahman, M.F.; Alam, M.S.; Liu, Q. Application of CMSY to estimate biological reference points of Bombay Duck (Harpadon neherus) from the Bay of Bengal, Bangladesh. Appl. Ecol. Environ. Res. 2020, 18, 8023–8034. [Google Scholar] [CrossRef]
- Herrón, P.; Mildenberger, T.K.; Diaz, J.M.; Wolff, M. Assessment of the stock status of small-scale and multi-gear fisheries resources in the tropical Eastern Pacific region. Reg. Stud. Mar. Sci. 2018, 24, 311–323. [Google Scholar] [CrossRef]
- Hoggarth, D.D.; Abeyasekera, S.; Arthur, R.I.; Beddington, J.R.; Burn, R.W.; Halls, A.S.; Kirkwood, G.P.; McAllister, M.; Medley, P.; Mees, C.C.; et al. Stock Assessment for Fishery Management—A Framework Guide to the Stock Assessment Tools of the Fisheries Management Science Programme (FMSP). In FAO Fisheries Technical Paper. No. 487; FAO: Rome, Italy, 2006; p. 261. [Google Scholar]
- Ullah, H.; Gibson, D.; Knip, D.; Zylich, K.; Zeller, D. Reconstruction of Total Marine Fisheries Catches for Bangladesh: 1950–2010. In Working Paper, 2014–2015; Fisheries Centre, University of British Columbia: Vancouver, BC, Canada.
- Goldman, K.J.; Cailliet, G.M.; Andrews, A.H.; Natanson, L.J. Age Determination and Validation in Chondrichthyan Fishes. In Biology of sharks and their relatives, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 423–451. [Google Scholar]
- Balli, J.J.; Chakraborty, S.K.; Jaiswar, A.K. Population dynamics of Bombay duck Harpadontidae nehereus (Ham. 1822) (Teleostomi/Harpadontidae) from Mumbai waters. Indian J. Geo-Mar. Sci. 2011, 40, 67–70. [Google Scholar]
- Ghosh, S.; Pillai, N.G.K.; Dhokia, H.K. Fishery and population dynamics of Harpadon nehereus (Ham.) off the Saurashtra coast. Indian J. Fish. 2009, 56, 13–19. [Google Scholar]
- Kumar, F.M.D.; Rohit, P. ELEFAN Based Population Dynamics of Bombay Duck, Harpadon nehereus Inhabiting the Marine Waters of the West Coast of India. Indian J. Anim. Res. 2020, 54, 1042–1048. [Google Scholar]
- Kalhoroa, M.T.; Yongtong, M.; Kalhorob, M.A.; Shahc, S.B.H.; Memon, M.A.; Moshine, M.; Dahria, M.A. Resource evaluation, stock, growth and mortality of the Bombay duck (Harpodon nehereus Hamilton, 1822) fishery in the coastal waters of Pakistan. Indian J. Geo Mar. Sci. 2020, 49, 1222–1228. [Google Scholar]
- He, X.; Li, J.; Shen, C.; Shi, Y.; Feng, C.; Guo, J.; Yan, Y.; Kang, B. Length-Weight Relationship and Population Dynamics of Bombay Duck (Harpadon nehereus) in the Min River Estuary, East China Sea. Thalass. Int. J. Mar. Sci. 2018, 35, 253–261. [Google Scholar] [CrossRef]
- Balde, B.S.; Fall, M.; Kantoussan, J.; Sow, F.N.; Diouf, M.; Brehmer, P. Fish-length based indicators for improved management of the sardinella fisheries in Senegal. Reg. Stud. Mar. Sci. 2018, 3, 100801. [Google Scholar] [CrossRef]
- Bapat, S.V.; Banerji, S.K.; Bal, D.V. Observations on the biology of Harpodon nehereus (Ham.). J. Zool. Soc. India 1951, 3, 341–356. [Google Scholar]
- Hunter, A.; Speirs, D.C.; Heath, M.R. Fishery-induced changes to age and length dependent maturation schedules of three demersal fish species in the Firth of Clyde. Fish. Res. 2015, 170, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Halim, A.; Loneragan, N.R.; Wiryawan, B.; Fujita, R.; Adhuri, D.S.; Hordyk, A.; Sondita, M.F.A. Transforming traditional management into contemporary territorial-based fisheries management rights for small-scale fisheries in Indonesia. Mar. Policy 2020, 116, 103923. [Google Scholar] [CrossRef]
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of samples | 650 | 593 | 447 | 405 | 594 | 726 | 387 | 379 | 399 | 671 | 355 | 315 |
Parameters | Value |
---|---|
Asymptotic Length (L∞) | 30.47 cm |
Growth Coefficient (K) | 0.86 year−1 |
t_anchor | 0.42 |
Growth Performance Index (Φ′) | 2.91 |
Rn value | 0.202 |
Parmeters | Value |
---|---|
Natural Mortality (M) | 1.199 year−1 |
Total Mortality (Z) | 3.06 year−1 |
Fishing Mortality (Fcurr) | 1.86 year−1 |
Fmax | 1.41 year−1 |
F0.1 | 0.85 year−1 |
F0.5 | 0.59 year−1 |
Current Exploitation (Ecurr) | 0.61 |
Emax | 0.46 |
E0.1 | 0.28 |
E0.5 | 0.19 |
Length at First Capture (Lc) | 9.69 cm |
Length at 95% capture | 12.36 cm |
Parameters | Value |
---|---|
L∞ | 30.47 cm |
K | 0.86 year−1 |
M | 1.199 year−1 |
M/K | 1.40 |
Length at 50% maturity (L50%) | 17.95 cm |
Length at 95% maturity (L95%) | 19.75 cm |
Prameters | Best | LCI | UCI |
---|---|---|---|
SL50% | 10.01 cm | 9.83 | 10.21 |
SL95% | 14.02 cm | 13.73 | 14.39 |
F/M | 2.03 | 1.19 | 2.15 |
SPR | 0.08 | 0.07 | 0.09 |
Parameters | Value | Comments |
---|---|---|
Lopt | 18.37 cm | Length class at which maximum yield can be obtained. |
Pmat | 15.03% | Percentage of mature fish. |
Popt | 12.40% | Percentage of optimally sized fish. |
Pmega | 4.84% | Percentage of mega-spawners. |
Country | L∞ (cm) | K | Φ | M | F | E | Emax | Lc | Year | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Bangladesh | 24.48 | 1.50 | 2.95 | 2.46 | 3.27 | 0.57 | 0.50 | 6.75 | 1995–1996 | [16] |
45.05 | 1.30 | 3.42 | 1.86 | 2.58 | 0.58 | 0.58 | 17.50 | 2013–2014 | [18] | |
30.47 | 0.86 | 2.91 | 1.199 | 1.86 | 0.61 | 0.46 | 9.69 | 2018 | Present study | |
India | 43.4 | 0.81 | 3.18 | 1.30 | 3.03 | 0.70 | 0.38 | 21 | 2003–2005 | [64] |
35.39 | 0.86 | 3.03 | 1.52 | 1.73 | 0.53 | 0.40 | 3.42 | 2003–2006 | [65] | |
36.6 | 0.98 | 3.12 | 1.64 | 1.68 | 0.51 | 0.66 | 16.34 | - | [66] | |
Pakistan | 29.40 | 0.61 | 2.60 | 1.28 | 0.52 | 0.29 | - | - | 2013–2014 | [67] |
China | 26.9 | 0.94 | 1.58 | 1.69 | 0.52 | 18.07 | 2015 | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.S.; Liu, Q.; Schneider, P.; Mozumder, M.M.H.; Chowdhury, M.Z.R.; Uddin, M.M.; Monwar, M.M.; Hoque, M.E.; Barua, S. Length-Based Stock Assessment for the Data-Poor Bombay Duck Fishery from the Northern Bay of Bengal Coast, Bangladesh. J. Mar. Sci. Eng. 2022, 10, 213. https://doi.org/10.3390/jmse10020213
Alam MS, Liu Q, Schneider P, Mozumder MMH, Chowdhury MZR, Uddin MM, Monwar MM, Hoque ME, Barua S. Length-Based Stock Assessment for the Data-Poor Bombay Duck Fishery from the Northern Bay of Bengal Coast, Bangladesh. Journal of Marine Science and Engineering. 2022; 10(2):213. https://doi.org/10.3390/jmse10020213
Chicago/Turabian StyleAlam, Mohammed Shahidul, Qun Liu, Petra Schneider, Mohammad Mojibul Hoque Mozumder, Mohammad Zahedur Rahman Chowdhury, Mohammad Muslem Uddin, Md. Mostafa Monwar, Md. Enamul Hoque, and Suman Barua. 2022. "Length-Based Stock Assessment for the Data-Poor Bombay Duck Fishery from the Northern Bay of Bengal Coast, Bangladesh" Journal of Marine Science and Engineering 10, no. 2: 213. https://doi.org/10.3390/jmse10020213
APA StyleAlam, M. S., Liu, Q., Schneider, P., Mozumder, M. M. H., Chowdhury, M. Z. R., Uddin, M. M., Monwar, M. M., Hoque, M. E., & Barua, S. (2022). Length-Based Stock Assessment for the Data-Poor Bombay Duck Fishery from the Northern Bay of Bengal Coast, Bangladesh. Journal of Marine Science and Engineering, 10(2), 213. https://doi.org/10.3390/jmse10020213