Bottlenose Dolphins and Seabirds Distribution Analysis for the Identification of a Marine Biodiversity Hotspot in Agrigento Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
2.3.1. Data Preparation
- −
- the seabed index (difference between maximum and minimum depths);
- −
- the mean depth of the seabed;
- −
- the distance from the coastline, represented by the shortest distance between the center of the cell and the coastline, measured in meters;
- −
- the fishing rate (FR), which is proposed to give an idea of how much the cell is used by fishing activities, also considering their temporal variability. This rate was elaborated to evaluate if the fishing effort can influence how the area is used by the species. The FR was obtained from frequency tables built in Microsoft Office for every cell. The tables displayed, for each cell, the number of fishing boats (FB) simultaneously present (e.g., 0 boat, 1 boat, 2 boats,…, n boats) and their rate of occurrence(s), namely the number of times that each number of fishing boats occurred. The FR is calculated as the follow arithmetic average:
2.3.2. MaxEnt Model
- −
- null (0–<0.1);
- −
- low (0.1–0.3);
- −
- medium (>0.3–0.6);
- −
- high (>0.6–1.0).
2.3.3. Model Testing
2.3.4. Cartographic Analysis
3. Results
3.1. Monitoring Results
3.2. Predictive Models with MaxEnt
3.2.1. MaxEnt Model
3.2.2. Model Testing
3.3. Cartographic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coll, M.; Piroddi, C.; Albouy, C.; Ben Rais Lasram, F.; Cheung, W.L.; Christensen, V.; Karpouzi, V.S.; Guilhaumon, F.; Mouillot, D.; Paleczny, M.; et al. The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats, and marine reserves. Glob. Ecol. Biogeogr. 2012, 21, 465–480. [Google Scholar] [CrossRef]
- Cottee-Jones, H.E.W.; Whittaker, R.J. The keystone species concept: A critical appraisal. Front. Biogeogr. 2012, 4, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Piraino, S.; Fanelli, G.; Boero, F. Variability of species’ roles in marine communities: Change of paradigms for conservation priorities. Mar. Biol. 2002, 140, 1067–1074. [Google Scholar] [CrossRef]
- Buxton, R.T.; Gormley, A.M.; Jones, C.J.; Lyver, P.O.B. Monitoring burrowing petrel populations: A sampling scheme for the management of an island keystone species. J. Wild. Manag. 2016, 80, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Azzellino, A.; Fossi, M.C.; Gaspari, S.; Lanfredi, C.; Lauriano, G.; Marsili, L.; Podestà, M. An index based on the biodiversity of cetacean species to assess the environmental status of marine ecosystems. Mar. Environ. Res. 2014, 100, 94–111. [Google Scholar] [CrossRef]
- Bănaru, D.; Mellon-Duval, C.; Roos, D.; Bigot, J.-L.; Souplet, A.; Jadaud, A.; Beaubrun, P.; Fromentin, J.M. Trophic structure in the Gulf of Lions marine ecosystem (north-western Mediterranean Sea) and fishing impacts. J. Mar. Syst. 2013, 111–112, 45–68. [Google Scholar] [CrossRef] [Green Version]
- Estes, J.A.; Tinker, M.T.; Williams, T.M.; Doak, D.F. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 1998, 282, 473–476. [Google Scholar] [CrossRef] [Green Version]
- Durant, J.M.; Hjermann, D.O.; Frederiksen, M.; Charrassin, J.B.; Le Maho, Y.; Sabarros, P.S.; Crawford, R.J.M.; Stenseth, N.C. Pros and cons of using seabirds as ecological indicators. Clim. Res. 2009, 39, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.; Arcos, J.M.; Bretagnolle, V.; Dias, M.P.; Holmes, N.D.; Louzao, M.; Provencher, J.; Raine, A.F.; Ramirez, F.; Rodriguez, B.; et al. Future directions in conservation research on petrels and shearwaters. Front. Mar. Sci. 2019, 6, 27. [Google Scholar] [CrossRef]
- Tardin, R.H.; Chun, Y.; Jenkins, C.N.; Maciel, I.S.; Simão, S.M.; Alves, M.A.S. Environment and anthropogenic activities influence cetacean habitat use in South-eastern Brazil. Mar. Ecol. Progr. Ser. 2019, 616, 197–210. [Google Scholar] [CrossRef]
- Bird Directive, Council Directive 79/409/EEC of 2 April 1979 on the Conservation of Wild Birds, Brussels. 1979. Available online: http://data.europa.eu/eli/dir/1997/49/oj (accessed on 16 December 2021).
- Habitat Directive, Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora, Brussels. 1992. Available online: http://data.europa.eu/eli/dir/1992/43/oj (accessed on 16 December 2021).
- Genovesi, P.; Angelini, P.; Bianchi, E.; Dupré, E.; Ercole, S.; Giacanelli, V.; Ronchi, F.; Stoch, F. Specie e Habitat di Interesse Comunitario in Italia: Distribuzione, Stato di Conservazione e Trend. ISPRA, Serie Rapporti, 194/2014. Available online: https://www.mite.gov.it/sites/default/files/archivio/allegati/rete_natura_2000/rapporto_194_2014.pdf (accessed on 16 December 2021).
- Marine Strategy Framework Directive, Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy, Brussels. 2008. Available online: http://data.europa.eu/eli/dir/2008/56/oj (accessed on 16 December 2021).
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Robinson, N.M.; Nelson, W.A.; Costello, M.J.; Sutherland, J.E.; Lundquist, C.J. A systematic review of marine-based Species Distribution Models (SDMs) with recommendations for best practice. Front. Mar. Sci. 2017, 4, 110–111. [Google Scholar] [CrossRef] [Green Version]
- Domisch, S.; Jähnig, S.C.; Simaika, J.P.; Kuemmerlen, M.; Stoll, S. Application of species distribution models in stream ecosystems: The challenges of spatial and temporal scale, environmental predictors, and species occurrence data. Fundam. Appl. Limnol. 2015, 18, 45–61. [Google Scholar] [CrossRef]
- Baldwin, R.A. Use of maximum entropy modelling in wildlife research. Entropy 2009, 11, 854–866. [Google Scholar] [CrossRef]
- La Manna, G.; Ronchetti, F.; Sarà, G. Predicting common bottlenose dolphin habitat preference to dynamically adapt management measures from a Marine Spatial Planning perspective. Ocean Coast. Manag. 2016, 130, 317–327. [Google Scholar] [CrossRef]
- Breen, P.; Brown, S.; Reid, D.; Rogan, E. Modelling cetacean distribution and mapping overlap with fisheries in the northeast. Ocean Coast. Manag. 2016, 134, 140–149. [Google Scholar] [CrossRef]
- Oviedo Correa, L.; Herra-Miranda, D.; Pachero-Polanco, J.D.; Fernández, M. Spatial analysis on the occurrence of inshore and offshore bottlenose dolphins (Tursiops truncatus) in Osa Peninsula waters and Golfo Dolce, Costa Rica. J. Cetacean Res. Manag. 2019, 20, 1–11. [Google Scholar] [CrossRef]
- González-Paredes, D. Mare Nostrum plena vitae. Descubriendo en el Mediterráneo nuevos hotpoints de biodiversidad a bordo del Galeón Andalucía. Chron. Nat. 2012, 2, 41–52. [Google Scholar]
- Arcos, J.M.; Bécares, J.; Villero, D.; Brotons, L.; Rodríguez, B.; Ruiz, A. Assessing the location and stability of hotspots for pelagic seabirds: An approach to identify marine Important Bird Areas (IBAs) in Spain. Biol. Conserv. 2012, 156, 30–42. [Google Scholar] [CrossRef]
- Pérez-Ortega, M.; İsfendiyaroğlu, S. Predicting foraging hotspots for Yelkouan Shearwater in the Black Sea. Deep-Sea Res. II Top. Stud. Oceanogr. 2017, 141, 237–247. [Google Scholar] [CrossRef]
- Hastie, G.D.; Wilson, B.; Wilson, L.J.; Parsons, K.M.; Thompson, P.M. Functional mechanisms underlying cetacean distribution patterns: Hotspots for bottlenose dolphins are linked to foraging. Mar. Biol. 2004, 144, 397–403. [Google Scholar] [CrossRef]
- Logerwell, E.A.; Hargreaves, N.B. The distribution of sea birds relative to their fish prey off Vancouver Island: Opposing results at large and small spatial scales. Fish. Ocean. 1996, 5, 163–175. [Google Scholar] [CrossRef]
- De la Cruz, A.; Ramos, F.; Tornero, J.; Rincón, M.M.; Jiménez, M.J.; Muñoz Arroyo, G. Seabird distribution is better predicted by abundance of prey than oceanography. A case study in the Gulf of Cadiz (SW, Iberian Peninsula). ICES J. Mar. Sci. 2022, 79, 204–217. [Google Scholar] [CrossRef]
- Fertl, D.; Leatherwood, S. Cetacean Interactions with trawls: A preliminary review. J. Northwest Atl. Fish. Sci. 1997, 22, 219–248. [Google Scholar] [CrossRef]
- Bartumeus, F.; Giuggioli, L.; Louzao, M.; Bretagnolle, V.; Oro, D.; Levin, S.A. Fishery discards impact on seabird movement patterns at regional scales. Curr. Biol. 2010, 20, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Bearzi, G.; Piwetz, S.; Reeves, R.R. Odontocete adaptations to human impact and vice versa. In Ethology and Behavioral Ecology of Odontocetes; Würsig, B., Ed.; Springer: Cham, Switzerland, 2019; pp. 211–235. [Google Scholar] [CrossRef]
- Bonizzoni, S.; Furey, N.B.; Bearzi, G. Bottlenose dolphins (Tursiops truncatus) in the north-western Adriatic Sea: Spatial distribution and effects of trawling. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 31, 635–650. [Google Scholar] [CrossRef]
- Oro, D.; Pradel, R.; Lebreton, J.D. Food availability and nest predation influence life history traits in Audouin’s gull, Larus audouinii. Oecologia 1999, 118, 438–445. [Google Scholar] [CrossRef]
- Votier, S.C.; Bearhop, S.; Fyfe, R.; Furness, R.W. Temporal and spatial variation in the diet of a marine top predator—Links with commercial fisheries. Mar. Ecol. Prog. Ser. 2008, 367, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Louzao, M.; Arcos, J.M.; Guijarro, B.; Valls, M.; Oro, D. Seabird trawling interactions: Factors affecting species-specific to regional community on of fisheries waste. Fish Oceanogr. 2011, 20, 263–277. [Google Scholar] [CrossRef]
- Hudson, A.V.; Furness, R.W. Utilization of discarded fish by scavenging seabirds behind whitefish trawlers in Shetland. J. Zool. 1988, 215, 151–166. [Google Scholar] [CrossRef]
- Jaiteh, V.F.; Allen, S.J.; Meeuwig, J.J.; Loneragan, N.R. Subsurface behaviour of bottlenose dolphins (Tursiops truncatus) interacting with fish trawl nets in Northwestern Australia. Mar. Mamm. Sci. 2013, 29, 266–281. [Google Scholar] [CrossRef] [Green Version]
- Karris, G.; Ketsilis-Rinis, V.; Kalogeropoulou, A.; Xirouchakis, S.; Machias, A. Discards use as prey by two common scavenging seabirds in the Ionian Sea (western Greece). In Proceedings of the 11th Panhellenic Symposium on Oceanography & Fisheries “Aquatic Horizons: Challenges and Perspectives”, Mytilene, Lesvos Island, Greece, 13–17 May 2015. [Google Scholar]
- Alessi, J.; Bruccoleri, F.; Dara, M.; Cafaro, V. Evaluating the influence of professional fishery in the distribution of bottlenose dolphin (Tursiops truncatus, Montagu 1821) and seabirds in the Sicilian Channel. In Proceedings of the 20th European Geosciences Union General Assembly, Vienna, Austria, 8–12 April 2018. [Google Scholar]
- Marchese, C. Biodiversity hotspots: A shortcut for a more complicated concept. Glob. Ecol. Conserv. 2015, 3, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Consoli, P.; Esposito, V.; Battaglia, P.; Altobelli, C.; Perzia, P.; Romeo, T.; Canese, S.; Andaloro, F. Fish distribution and habitat complexity on banks of the Strait of Sicily (Central Mediterranean Sea) from Remotely Operated Vehicle (ROV) explorations. PLoS ONE 2016, 11, e0167809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Defos du Rau, P.; Bourgeois, K.; Ruffino, L.; Dromzée, S.; Ouni, R.; Abiadh, A.; Estève, R.; Durand, J.-P.; Anselme, L.; Faggio, G.; et al. New assessment of the world largest colony of Scopoli’s Shearwater Calonectris diomedea. In Ecology and Conservation of Mediterranean Seabirds and Other Bird Species under the Barcelona Convention; Yésou, P., Bacetti, N., Sultana, J., Eds.; Medmaravis: Alghero, Italy, 2012; pp. 26–28, In Proceedings of the 13th Medmaravis Pan-Mediterranean Symposium, Alghero, Sardinia, Italy, 14–17 October 2011. [Google Scholar]
- Derhé, M. Developing a population assessment for Scopoli’s and Cory’s shearwaters Calonectris Diomedea calonectris borealis. In Ecology and Conservation of Mediterranean Seabirds and Other Bird Species under the Barcelona Convention; Yésou, P., Bacetti, N., Sultana, J., Eds.; Medmaravis: Alghero, Italy, 2012; pp. 29–38, In Proceedings of the 13th Medmaravis Pan-Mediterranean Symposium, Alghero, Sardinia, Italy, 14–17 October 2011. [Google Scholar]
- Thévenet, M. State of knowledge of the populations of vulnerable raptor and seabird species in the Mediterranean: Threats identified and action proposals. In Ecology and Conservation of Mediterranean Seabirds and Other Bird Species under the Barcelona Convention; Yésou, P., Bacetti, N., Sultana, J., Eds.; Medmaravis: Alghero, Italy, 2012; pp. 214–220, In Proceedings of the 13th Medmaravis Pan-Mediterranean Symposium, Alghero, Sardinia, Italy, 14–17 October 2011. [Google Scholar]
- Alessi, J.; Bruccoleri, F.; Ranù, M.; Cafaro, V. Predictive habitat models of bottlenose dolphins (Tursiops truncatus) in the Sicilian Channel (Mediterranean Sea). In Proceedings of the World Marine Mammal Conference, Barcelona, Spain, 9–12 December 2019. [Google Scholar]
- Fiorentino, F.; Garofalo, G.; Gristina, M.; Gancitano, S.; Norrito, G. Some relevant information on the spatial distribution of demersal resources, benthic biocoenoses and fishing pressure in the Strait of Sicily. In Report of the MedSudMed Expert Consultation on Spatial Distribution of Demersal Resources in the Straits of Sicily and the Influence of Environmental Factors and Fishery Characteristics; Levi, D., Bahri, T., Camilleri, M., Jarboui, O., Massa, F., Ragonese, S., Zgozi, S., Eds.; MedSudMed Technical Documents: Mazara del Vallo, Italy, 2004; Volume 2, pp. 50–66. Available online: https://agris.fao.org/agris-search/search.do?recordID=XF2016027074 (accessed on 16 December 2021).
- Consoli, P.; Esposito, V.; Falautano, M.; Battaglia, P.; Castriota, L.; Romeo, T.; Sinopoli, M.; Vivona, P.; Andaloro, F. The impact of fisheries on vulnerable habitats: The case of trawling on circa-littoral grounds in the Strait of Sicily (central Mediterranean Sea). Mar. Biol. Res. 2017, 13, 1084–1094. [Google Scholar] [CrossRef]
- Calvo, S.; Tomasello, A.; Pirrotta, M.; Di Maida, G. Attività di Supporto per la Redazione del Piano di Tutela della Acque (di cui all’art. 44 del D. Lgs. 11 Maggio 1999 n. 152 e s.m.i.). Fase di Analisi: Classificazione dello Stato Ecologico e dello Stato Ambientale dei Corpi Idrici Superficiali. Corsi D’acqua; SOGESID: Palermo, Italy, 2005; pp. 1–128. Available online: http://hdl.handle.net/10447/12564 (accessed on 16 December 2021).
- Alessi, J.; Bruccoleri, F.; Cafaro, V. How citizens can encourage scientific research: The case study of bottlenose dolphins monitoring. Ocean Coast. Manag. 2019, 167, 9–19. [Google Scholar] [CrossRef]
- Thompson, P.M.; Lusseau, D.; Barton, T.; Simmons, D.; Rusin, J.; Bailey, H. Assessing the responses of coastal cetaceans to the construction of offshore wind turbines. Mar. Pol. Bul. 2010, 60, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Microsoft Corporation. Microsoft Excel 365. Available online: https://office.microsoft.com/excel (accessed on 1 November 2021).
- QGIS.org. Available online: http://www.qgis.org (accessed on 1 November 2021).
- Morteo, E.; Rocha-Olivares, A.; Arceo-Briseño, P.; Abarca-Arenas, L. Spatial analyses of bottlenose dolphin–fisheries interactions reveal human avoidance off a productive lagoon in the western Gulf of Mexico. J. Mar. Biol. Assoc. UK 2012, 92, 1893–1900. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1). Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 15 December 2021).
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Merckx, B.; Steyaert, M.; Vanreusel, A.; Vincx, M.; Vanaverbeke, J. Null models reveal preferential sampling, spatial autocorrelation, and overfitting in habitat suitability modelling. Ecol. Model. 2011, 222, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modelling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Capizzi, D.; Sarrocco, S.; Scalisi, M. L’utilizzo di dati di presenza per la costruzione di modelli di idoneità ambientale per le specie di interesse. In Proceedings of the Giornata Romana di Ornitologia, Rome, Italy, 24 November 2012. [Google Scholar]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Zarzo-Arias, A.; Penteriani, V.; Delgado, M.d.M.; Peon Torre, P.; Garcıa Gonzalez, R.; Mateo-Sanchez, M.C.; Vázquez García, P.; Dalerum, F. Identifying potential areas of expansion for the endangered brown bear (Ursus arctos) population in the Cantabrian Mountains (NW Spain). PLoS ONE 2019, 14, e0209972. [Google Scholar] [CrossRef] [PubMed]
- Friedlaender, A.R.; Johnston, D.W.; Fraser, W.R.; Burns, J.; Halpin, P.N.; Costa, D.P. Ecological niche modeling of sympatric krill predators around Marguerite Bay, Western Antarctic Peninsula. Deep-Sea Res. II 2011, 58, 1729–1740. [Google Scholar] [CrossRef]
- Briscoe, D.; Hiatt, S.; Lewison, R.; Hines, E. Modeling habitat and bycatch risk for dugongs in Sabah, Malaysia. Endang. Species Res. 2014, 24, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J. A Brief Tutorial on Maxent. 2017. Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 1 November 2021).
- Convertino, M.; Welle, P.; Muñoz-Carpena, R.; Kiker, G.A.; Chu-Agor, M.L.; Fischer, R.A.; Linkov, I. Epistemic uncertainty in predicting shorebird biogeography affected by sea-level rise. Ecol. Model. 2012, 240, 1–15. [Google Scholar] [CrossRef]
- Raes, N.; Ter Steege, H. A null-model for significance testing of presence-only species distribution models. Ecography 2007, 30, 727–736. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeo. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Parsons, E.C.M.; Baulch, S.; Bechshoft, T.; Bellazzi, G.; Bouchet, P.; Cosentino, M.; Godard-Codding, C.; Gulland, F.; Hoffmann-Kuhnt, M.; Hoyt, E.; et al. Key research questions of global importance for cetacean conservation. Endang. Spec. Res. 2015, 27, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Bearzi, G.; Fortuna, C.M.; Reeves, R.R. Ecology and conservation of common bottlenose dolphins Tursiops truncatus in the Mediterranean Sea. Mamm. Rev. 2009, 39, 92–123. [Google Scholar] [CrossRef]
- Welch, H.E.; Crawford, R.E.; Hop, H. Occurrence of Arctic cod (Boreogadus saida) schools and their vulnerability to predation in the Canadian High Arctic. Arctic 1993, 46, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Cafaro, V.; Angeletti, D.; Bellisario, B.; Macali, A.; Carere, C.; Alessi, J. Habitat overlap between bottlenose dolphins and seabirds: A pilot study to identify high-presence coastal areas in the Tyrrhenian Sea. J. Mar. Biol. Assoc. UK 2016, 96, 891–901. [Google Scholar] [CrossRef]
- Lambert, C.; Laran, S.; David, L.; Dorémus, G.; Pettex, E.; Van Canneyt, O.; Ridoux, V. How does ocean seasonality drive habitat preferences of highly mobile top predators? Part I: The northwestern Mediterranean Sea. Deep Sea Res. II 2017, 141, 115–132. [Google Scholar] [CrossRef]
- Almeida, D. Distribution and Habitat Use of Bottlenose Dolphin (Tursiops truncatus) in Central and South West of Portugal Mainland. Master’s Thesis, University of Lisbon, Lisbon, Portugal, 2017. [Google Scholar]
- Pitchford, J.L.; Howard, V.A.; Shelley, J.K.; Serafin, B.J.S.; Coleman, A.T.; Solangi, M. Predictive spatial modelling of seasonal bottlenose dolphin (Tursiops truncatus) distributions in the Mississippi Sound. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 289–306. [Google Scholar] [CrossRef]
- Notarbartolo di Sciara, G.; Demma, M. Guida dei Mammiferi Marini del Mediterraneo, 3rd ed.; Franco Muzzio: Padua, Italy, 2004; pp. 1–264. [Google Scholar]
- Malvarosa, L.; Scarcella, G.; Sabatella, R.; Cozzolino, M. Stage 1.b—Deeper mapping/Annex III—GSA 16. In Blufish Project, Marine Stewardship Council; NISEA: Salerno, Italy, 2018; pp. 1–27. Available online: www.msc.org/it/progetto-blufish (accessed on 15 December 2021).
- Karamitros, G.; Gkafas, G.A.; Giantsis, I.A.; Martsikalis, P.; Kavouras, M.; Exadactylos, A. Model-based distribution and abundance of three Delphinidae in the Mediterranean. Animals 2020, 10, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlucci, R.; Cipriano, G.; Paoli, C.; Ricci, P.; Fanizza, C.; Capezzuto, F.; Vassallo, P. Random Forest population modelling of striped and common-bottlenose dolphins in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Estua. Coast. Shelf Sci. 2018, 204, 177–192. [Google Scholar] [CrossRef]
- Marini, C.; Fossa, F.; Paoli, C.; Bellingeri, M.; Gnone, G.; Vassallo, P. Predicting bottlenose dolphin distribution along Liguria coast (northwestern Mediterranean Sea) through different modeling techniques and indirect predictors. J. Environ. Manag. 2015, 150, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Cañadas, A.; Sagarminaga, R.; Garcıa-Tiscar, S. Cetacean distribution related with depth and slope in the Mediterranean waters off southern Spain. Deep Sea Res. I 2002, 49, 2053–2073. [Google Scholar] [CrossRef]
- Azzellino, A.; Panigada, S.; Lanfredi, C.; Zanardelli, M.; Airoldi, S.; Notarbartolo Di Sciara, G. Predictive habitat models for managing marine areas: Spatial and temporal distribution of marine mammals within the Pelagos Sanctuary (Northwestern Mediterranean sea). Ocean Coast. Manag. 2012, 67, 63–74. [Google Scholar] [CrossRef]
- Labach, H.; Azzinari, C.; Barbier, M.; Cesarini, C.; Daniel, B.; David, L.; Dhermain, F.; Di-Méglio, N.; Guichard, B.; Jourdan, J.; et al. Distribution and abundance of common bottlenose dolphin (Tursiops truncatus) over the French Mediterranean continental shelf. Mar. Mamm. Sci. 2022, 38, 212–222. [Google Scholar] [CrossRef]
- Louzao, M.; Arcos, J.M.; Hyrenbach, K.D.; Oro, D. Marine protected areas for the conservation of Mediterranean Procellariiformes. In Proceedings of the European Symposium on MPAs as a Tool for Fisheries Management & Ecosystem Conservation, Murcia, Spain, 25–28 September 2007. [Google Scholar]
- Amorim, P.; Figueiredo, M.; Machete, M.; Morato, T.; Martins, A.; Serrão Santos, R. Spatial variability of seabird distribution associated with environmental factors: A case study of marine Important Bird Areas in the Azores. ICES J. Mar. Sci. 2009, 66, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Bailey, H.; Thompson, P. Effect of oceanographic features on fine-scale foraging movements of bottlenose dolphins. Mar. Ecol. Prog. Ser. 2010, 418, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Martınez-Abraın, A.; Maestre, R.; Oro, D. Demersal trawling waste as a food source for Western Mediterranean seabirds during the summer. ICES J. Mar. Sci. 2002, 59, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Manzoni, P. Pesci dei Mari Italiani; De Agostini: Novara, Italy, 2015; pp. 1–176. [Google Scholar]
- Petretti, F. Uccelli di Mare E Limicoli; Edagricole-New Business Media: Milan, Italy, 2002; pp. 1–300. [Google Scholar]
- Edgar, G.J.; Russ, G.R.; Babcock, R.C. Marine protected areas. In Marine Ecology; Connell, S., Gillanders, B.M., Eds.; Oxford University Press: South Melbourne, Australia, 2007; pp. 533–555. [Google Scholar]
- Ansmann, I.C.; Parra, G.J.; Chilvers, B.L.; Lanyon, J.M. Dolphins restructure social system after reduction of commercial fisheries. Anim. Behav. 2012, 84, 575–581. [Google Scholar] [CrossRef]
No. of Sightings (Bottlenose Dolphin) | 2018 | 2019 | Total |
---|---|---|---|
Interactions with trawlers | 20 | 19 | 39 |
Interactions with pair trawlers | 6 | 7 | 13 |
No interactions | 2 | 8 | 10 |
SS | df | MS | F | p-Value | F crit | |
---|---|---|---|---|---|---|
Between groups | 441 | 1 | 441 | 49 | 0.019803941 | 18.51282 |
Within groups | 18 | 2 | 9 | |||
TOT | 459 | 3 |
Year | Survey Effort (km) | Bottlenose Dolphin Sightings | European Storm Petrel Sightings | Shearwaters Sightings | Bottlenose Dolphin ER | European Storm Petrel ER | Shearwaters ER |
---|---|---|---|---|---|---|---|
2018 | 1652.87 | 28 | 49 | 324 | 0.017 | 0.030 | 0.196 |
2019 | 2412.25 | 34 | 43 | 350 | 0.014 | 0.018 | 0.145 |
Total | 4065.12 | 62 | 92 | 674 | 0.015 | 0.023 | 0.166 |
Species or Family | Model | Regularization Multiplier | AUC | SD |
---|---|---|---|---|
Bottlenose dolphin | LQH | 1 | 0.925 | 0.025 |
Shearwaters | LQH | 1 | 0.931 | 0.014 |
European storm petrel | LQH | 1 | 0.909 | 0.028 |
Variable | Bottlenose Dolphin | Shearwaters | European Storm Petrel |
---|---|---|---|
% of distance from the coast | 75.9 | 77.8 | 80 |
% of seabed depth | 17.4 | 14.9 | 14.8 |
% of slope index | 7.1 | 7.2 | 3.3 |
% of fishing rate | 0.6 | 0.1 | 1.9 |
Species or Family | Hotspot Extension (km2) | Area Occupied by the Hotspot (%) |
---|---|---|
Bottlenose dolphin | 633.39 | 33.53 |
Shearwater | 563.22 | 29.82 |
European storm petrel | 660.67 | 34.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranù, M.; Vanacore, A.; Mandich, A.; Alessi, J. Bottlenose Dolphins and Seabirds Distribution Analysis for the Identification of a Marine Biodiversity Hotspot in Agrigento Waters. J. Mar. Sci. Eng. 2022, 10, 345. https://doi.org/10.3390/jmse10030345
Ranù M, Vanacore A, Mandich A, Alessi J. Bottlenose Dolphins and Seabirds Distribution Analysis for the Identification of a Marine Biodiversity Hotspot in Agrigento Waters. Journal of Marine Science and Engineering. 2022; 10(3):345. https://doi.org/10.3390/jmse10030345
Chicago/Turabian StyleRanù, Marco, Alessandra Vanacore, Alberta Mandich, and Jessica Alessi. 2022. "Bottlenose Dolphins and Seabirds Distribution Analysis for the Identification of a Marine Biodiversity Hotspot in Agrigento Waters" Journal of Marine Science and Engineering 10, no. 3: 345. https://doi.org/10.3390/jmse10030345
APA StyleRanù, M., Vanacore, A., Mandich, A., & Alessi, J. (2022). Bottlenose Dolphins and Seabirds Distribution Analysis for the Identification of a Marine Biodiversity Hotspot in Agrigento Waters. Journal of Marine Science and Engineering, 10(3), 345. https://doi.org/10.3390/jmse10030345